請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80890完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生(Guey-Sheng Liou) | |
| dc.contributor.author | Min-Hao Pai | en |
| dc.contributor.author | 白旻昊 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:20:41Z | - |
| dc.date.available | 2021-10-04 | |
| dc.date.available | 2022-11-24T03:20:41Z | - |
| dc.date.copyright | 2021-10-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-26 | |
| dc.identifier.citation | 1. Staudinger, H., Über polymerisation. Berichte der deutschen chemischen Gesellschaft 1920, 53 (6), 1073-1085. 2. Carothers, W. H.; Williams, I.; Collins, A. M.; Kirby, J. E., Acetylene polymers and their derivatives. II. A new synthetic rubber: chloroprene and its polymers. J. Am. Chem. Soc. 1931, 53 (11), 4203-4225. 3. Hill, R.; Walker, E., Polymer constitution and fiber properties. J. Polym. Sci. 1948, 3 (5), 609-630. 4. Chokai, M.; Wilbers, D.; Nagasaka, B.; Kuwahara, H.; De Weijer, T.; Klop, E.; Hayakawa, T.; Kakimoto, M., Development of a Highly Oriented Poly-biphenylenebisoxazole Fiber Obtained via a Precursor Polymer Spun From a Liquid Crystalline Aqueous Solution Polym. J. 2009, 41 (8), 679-684. 5. García, J. M.; García, F. C.; Serna, F.; José, L., High-performance aromatic polyamides. Prog. Polym. Sci. 2010, 35 (5), 623-686. 6. Kwolek, S. L., Poly (p-benzamide) composition, process and product. Google Patents: 1971. 7. Reglero Ruiz, J. A.; Trigo-López, M.; García, F. C.; García, J. M., Functional aromatic polyamides. Polymers 2017, 9 (9), 414. 8. Bair, T.; Morgan, P.; Killian, F., Poly (1, 4-phenyleneterephthalamides). polymerization and novel liquid-crystalline solutions. Macromolecules 1977, 10 (6), 1396-1400. 9. Ogata, N.; Tanaka, Synthesis of Polyamides by Phosphoroxidation. II. Reaction Conditions. Polym. J. 1972, 3 (3), 365-369. 10. Ogata, N.; Tanaka, H., Synthesis of polyamide by phosphoroxidation. Polym. J. 1971, 2 (5), 672-674. 11. Yamazaki, N.; Higashi, F., Studies on reactions of N‐phosphonium salts of pyridines. VIII. Preparation of polyamides by means of diphenyl phosphite in pyridine Polym. Lett. 1974, 12, 185. 12. Yamazaki, N.; Matsumoto, M.; Higashi, F., Studies on reactions of the N‐phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci., Polym. Chem. Ed. 1975, 13 (6), 1373-1380. 13. Preston, J.; Krigbaum, W.; Kotek, R., Synthesis of high‐molecular‐weight rodlike polyamides and block copolymers. J. Polym. Sci., Polym. Chem. Ed. 1982, 20 (11), 3241-3249. 14. Preston, J., High performance fibers from aromatic polymers. Polym. Eng. Sci. 1976, 16 (5), 298-302. 15. Liou, G. S.; Oishi, Y.; Kakimoto, M. A.; Imai, Y., Preparation and properties of aromatic polymides from 2, 2′‐bibenzoic acid and aromatic diamines. J. Polym. Sci. A Polym. Chem. 1991, 29 (7), 995-1000. 16. Espeso, J. F.; De La Campa, J. G.; Lozano, A. E.; De Abajo, J., Synthesis and characterization of new soluble aromatic polyamides based on 4‐(1‐adamantyl)‐1, 3‐bis (4‐aminophenoxy) benzene. J. Polym. Sci. A Polym. Chem. 2000, 38 (6), 1014-1023. 17. de Abajo, J.; de la Campa, J. G.; Lozano, A. E., Designing aromatic polyamides and polyimides for gas separation membranes. Macromol. Symp. 2003, 199 (1), 293-306. 18. Granqvist, C. G., Handbook of inorganic electrochromic materials. Elsevier: 1995. 19. Platt, J. R., Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys. 1961, 34 (3), 862-863. 20. Deb, S., A novel electrophotographic system. Appl. Opt. 1969, 8 (101), 192-195. 21. DeSmet, D.; Ord, J., Optical anisotropy and electrostriction in the anodic oxide of molybdenum. J. Electrochem. Soc. 1983, 130 (2), 280. 22. Monk, P. M.; Mortimer, R. J.; Rosseinsky, D. R., Electrochromism: fundamentals and applications. John Wiley Sons: 2008. 23. Mortimer, R. J., Electrochromic materials. Chem. Soc. Rev. 1997, 26 (3), 147-156. 24. Somani, P. R.; Radhakrishnan, S., Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2003, 77 (1), 117-133. 25. Yen, H. J.; Liou, G. S., Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog. Polym. Sci. 2019, 89, 250-287. 26. Deb, S., Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. Lett. 1973, 27 (4), 801-822. 27. Lee, S. H.; Cheong, H. M.; Zhang, J. G.; Mascarenhas, A.; Benson, D. K.; Deb, S. K., Electrochromic mechanism in a-WO 3− y thin films. Appl. Phys. Lett. 1999, 74 (2), 242-244. 28. Granqvist, C. G., Electrochromic metal oxides: an introduction to materials and devices. Electrochromic Materials Devices 2015. 29. Faughnan, B. W.; Crandall, R. S.; Heyman, P. M., Electrochromism in WO3 amorphous films. Rca Rev. 1975, 36 (1), 177-197. 30. Patil, P.; Kadam, L.; Lokhande, C., Studies on electrochromism of spray pyrolyzed cobalt oxide thin films. Sol. Energy Mater. Sol. Cells 1998, 53 (3-4), 229-234. 31. Mortimer, R. J., Electrochemical responses of bilayer electrodes with Prussian blue as the ‘inner’layer and electroactive cation-incorporated Nafion® as the ‘outer’layer. J. Electroanal. Chem. 1995, 397 (1-2), 79-86. 32. Weil, M.; Schubert, W. D., The beautiful colours of tungsten oxides. International tungsten Industry Association 2013, 4, 1-12. 33. Gottesfeld, S.; McIntyre, J.; Beni, G.; Shay, J., Electrochromism in anodic iridium oxide films. Appl. Phys. Lett. 1978, 33 (2), 208-210. 34. Oi, T., Electrochromic materials. Annu. Rev. Mater. Sci. 1986, 16 (1), 185-201. 35. Pauporté, T.; Aberdam, D.; Hazemann, J. L.; Faure, R.; Durand, R., X-ray absorption in relation to valency of iridium in sputtered iridium oxide films. J. Electroanal. Chem. 1999, 465 (1), 88-95. 36. Besenhard, J. O., Handbook of battery materials. John Wiley Sons: 2008. 37. Tilley, R. J., Colour and the optical properties of materials. John Wiley Sons: 2020. 38. Estrada, W.; Andersson, A. M.; Granqvist, C. G., Electrochromic nickel‐oxide‐based coatings made by reactive dc magnetron sputtering: Preparation and optical properties. J. Appl. Phys. 1988, 64 (7), 3678-3683. 39. Svensson, J. S. E.; Granqvist, C. G., Optical properties of electrochromic hydrated nickel oxide coatings made by rf sputtering. Applied optics 1987, 26 (8), 1554-1556. 40. Murphy, T. P.; Hutchins, M. G., Oxidation states in nickel oxide electrochromism. Sol. Energy Mater. Sol. Cells 1995, 39 (2-4), 377-389. 41. He, T.; Yao, J. N., Photochromism in transition-metal oxides. Res. Chem. Intermed. 2004, 30. 42. Mortimer, R. J., Metal complexes as dyes for optical data storage and electrochromic materials. Comprehensive Coordination Chemistry, From Biology to Nanotechnology 2004, 581-619. 43. Dehnicke, K., The Chemistry of Cyano Complexes of the Transition Metals. Organometallic Chemistry‐A Series of Monographs. Angew. Chem. 1976, 88 (22), 774-774. 44. Ainscough, E. W.; Brodie, A. M.; Freeman, G. H., Prussian Blue: Its accidental discovery and rebirth of interest. Chemistry in New Zealand 2014. 45. Mortimer, R. J.; Rosseinsky, D. R., Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J. Electroanal. Chem. Interf. Electrochem. 1983, 151 (1-2), 133-147. 46. Mortimer, R. J.; Rosseinsky, D. R., Iron hexacyanoferrate films: spectroelectrochemical distinction and electrodeposition sequence of' soluble'(K+-containing) and' insoluble'(K+-free) Prussian Blue, and composition changes in polyelectrochromic switching. J. Chem. Soc. 1984, (9), 2059-2062. 47. Moskalev, P.; Kirin, I., Effect of electrode potential on absorption spectrum of a rare-earth diphthalocyanine layer. Opt. Spectrosc. 1970, 29 (2), 220. 48. Collins, G.; Schiffrin, D., The electrochromic properties of lutetium and other phthalocyanines. J. Electroanal. Chem. Interf. Electrochem. 1982, 139 (2), 335-369. 49. Collins, G.; Schiffrin, D., The properties of electrochromic film electrodes of lanthanide diphthalocyanines in ethylene glycol. J. Electrochem. Soc. 1985, 132 (8), 1835. 50. Nicholson, M.; Pizzarello, F., Charge transport in oxidation product of lutetium diphthalocyanine. J. Electrochem. Soc. 1979, 126 (9), 1490. 51. Nicholson, M.; Pizzarello, F., Galvanostatic transients in lutetium diphthalocyanine films. J. Electrochem. Soc. 1980, 127 (4), 821. 52. Schoot, C.; Ponjee, J.; Van Dam, H.; Van Doorn, R.; Bolwijn, P., New electrochromic memory display. Appl. Phys. Lett. 1973, 23 (2), 64-65. 53. Patil, A.; Heeger, A.; Wudl, F., Optical properties of conducting polymers. Chem. Rev. 1988, 88 (1), 183-200. 54. Kobayashi, S.; Müllen, K., Encyclopedia of polymeric nanomaterials. Springer Berlin Heidelberg: 2015. 55. Yen, H. J.; Liou, G. S., Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym. Chem. 2018, 9 (22), 3001-3018. 56. Chiu, K. Y.; Su, T. X.; Li, J. H.; Lin, T.-H.; Liou, G.-S.; Cheng, S.-H., Novel trends of electrochemical oxidation of amino-substituted triphenylamine derivatives. J. Electroanal. Chem. 2005, 575 (1), 95-101. 57. Chiu, K. Y.; Su, T. X.; Li, J. H.; Lin, T. H.; Liou, G. S.; Cheng, S. H., Novel trends of electrochemical oxidation of amino-substituted triphenylamine derivatives. J. Electroanal. Chem. 2005, 575 (1), 95-101. 58. Chang, C. W.; Liou, G. S.; Hsiao, S. H., Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem. 2007, 17 (10), 1007-1015. 59. Yen, H. J.; Liou, G. S., Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chemistry of Materials 2009, 21 (17), 4062-4070. 60. Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N., Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966, 88 (15), 3498-3503. 61. Yen, H. J.; Liou, G. S., Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3 (2), 255-264. 62. Chuang, Y. W.; Yen, H. J.; Wu, J. H.; Liou, G. S., Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications. ACS Appl. Mater. Interfaces 2014, 6 (5), 3594-3599. 63. Lampert, C. M., Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76 (4), 489-499. 64. Wu, J. T.; Liou, G. S., A novel panchromatic shutter based on an ambipolar electrochromic system without supporting electrolyte. Chem. Commun. 2018, 54 (21), 2619-2622. 65. Liu, H. S.; Pan, B. C.; Huang, D. C.; Kung, Y. R.; Leu, C. M.; Liou, G. S., Highly transparent to truly black electrochromic devices based on an ambipolar system of polyamides and viologen. NPG Asia Mater. 2017, 9 (6), e388-e388. 66. Mortimer, R. J.; Rosseinsky, D. R.; Monk, P. M., Electrochromic materials and devices. John Wiley Sons: 2015. 67. Tang, K.; Zhang, Y.; Shi, Y.; Cui, J.; Shu, X.; Wang, Y.; Qin, Y.; Liu, J.; Tan, H. H.; Wu, Y., Crystalline WO3 nanowires array sheathed with sputtered amorphous shells for enhanced electrochromic performance. Appl. Surf. Sci. 2019, 498, 143796. 68. Wang, J.; Khoo, E.; Lee, P. S.; Ma, J., Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 2008, 112 (37), 14306-14312. 69. Patzke, G. R.; Zhou, Y., Targeted synthesis of nanostructured oxide materials. Mater. Res. Soc. Symp. Proc. 2007, 1056. 70. Li, H.; McRae, L.; Firby, C. J.; Al-Hussein, M.; Elezzabi, A. Y., Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy storing smart windows. Nano Energy 2018, 47, 130-139. 71. Cho, S. I.; Lee, S. B., Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc. Chem. Res. 2008, 41 (6), 699-707. 72. Wang, K.; Wu, H.; Meng, Y.; Zhang, Y.; Wei, Z., Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 2012, 5 (8), 8384-8389. 73. Schüth, F.; Sing, K. S. W.; Weitkamp, J., Handbook of porous solids. Wiley-Vch: 2002. 74. Ilinitch, O.; Fenelonov, V.; Lapkin, A.; Okkel, L.; Terskikh, V.; Zamaraev, K., Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous Mesoporous Mater. 1999, 31 (1-2), 97-110. 75. McKeown, N. B., Polymers of intrinsic microporosity. ISRN Materials Science 2012. 76. Ikai, T.; Yoshida, T.; Awata, S.; Wada, Y.; Maeda, K.; Mizuno, M.; Swager, T. M., Circularly polarized luminescent triptycene-based polymers. ACS Macro Lett. 2018, 7 (3), 364-369. 77. McKeown, N. B., Phthalocyanine-containing polymers. J. Mater. Chem. 2000, 10 (9), 1979-1995. 78. McKeown, N. B.; Makhseed, S.; Budd, P. M., Phthalocyanine-based nanoporous network polymers. Chem. Commun. 2002, (23), 2780-2781. 79. McKeown, N.; Makhseed, S. Organic microporous materials derived from porphyrinic macrocycles. 2003. 80. Hashem, M.; Bezzu, C. G.; Kariuki, B. M.; McKeown, N. B., Enhancing the rigidity of a network polymer of intrinsic microporosity by the combined use of phthalocyanine and triptycene components. Polym. Chem. 2011, 2 (10), 2190-2192. 81. McKeown, N. B., The synthesis of polymers of intrinsic microporosity (PIMs). Sci. China Chem. 2017, 60 (8), 1023-1032. 82. Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B., A spirobifluorene‐based polymer of intrinsic microporosity with improved performance for gas separation. Adv. Mater. 2012, 24 (44), 5930-5933. 83. Ma, X.; Salinas, O.; Litwiller, E.; Pinnau, I., Novel spirobifluorene-and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications. Macromolecules 2013, 46 (24), 9618-9624. 84. Bezzu, C. G.; Carta, M.; Ferrari, M. C.; Jansen, J. C.; Monteleone, M.; Esposito, E.; Fuoco, A.; Hart, K.; Liyana-Arachchi, T.; Colina, C. M., The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. J. Mater. Chem. A 2018, 6 (22), 10507-10514. 85. Emmler, T.; Heinrich, K.; Fritsch, D.; Budd, P. M.; Chaukura, N.; Ehlers, D.; Rätzke, K.; Faupel, F., Free volume investigation of polymers of intrinsic microporosity (PIMs): PIM-1 and PIM1 copolymers incorporating ethanoanthracene units. Macromolecules 2010, 43 (14), 6075-6084. 86. Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B., An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339 (6117), 303-307. 87. Tocci, E.; De Lorenzo, L.; Bernardo, P.; Clarizia, G.; Bazzarelli, F.; Mckeown, N. B.; Carta, M.; Malpass-Evans, R.; Friess, K.; Pilnáček, K. t., Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Tröger’s Base Units. Macromolecules 2014, 47 (22), 7900-7916. 88. Ghanem, B. S., A facile synthesis of a novel triptycene-containing A–B monomer: precursor to polymers of intrinsic microporosity. Polym. Chem. 2012, 3 (1), 96-98. 89. Ghanem, B. S.; Swaidan, R.; Litwiller, E.; Pinnau, I., Ultra‐microporous triptycene‐based polyimide membranes for high‐performance gas separation. Adv. Mater. 2014, 26 (22), 3688-3692. 90. Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Lee, M.; Rose, I.; McKeown, N. B., The synthesis of microporous polymers using Tröger's base formation. Polym. Chem. 2014, 5 (18), 5267-5272. 91. Carta, M.; Croad, M.; Jansen, J. C.; Bernardo, P.; Clarizia, G.; McKeown, N. B., Synthesis of cardo-polymers using Tröger's base formation. Polym. Chem. 2014, 5 (18), 5255-5261. 92. Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; McKeown, N. B.; Fritsch, D., Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 2005, 251 (1-2), 263-269. 93. Tröger, J., Ueber einige mittelst nascirenden Formaldehydes entstehende Basen. J. Prakt. Chem. 1887, 36 (1), 225-245. 94. Spielman, M., The structure of Troeger's base. J. Am. Chem. Soc. 1935, 57 (3), 583-585. 95. Wagner, E., Condensations of aromatic amines with formaldehyde in media containing acid. III. The formation of Tröger's base. J. Am. Chem. Soc. 1935, 57 (7), 1296-1298. 96. Zhuang, Y.; Seong, J. G.; Do, Y. S.; Jo, H. J.; Cui, Z.; Lee, J.; Lee, Y. M.; Guiver, M. D., Intrinsically microporous soluble polyimides incorporating Tröger’s base for membrane gas separation. Macromolecules 2014, 47 (10), 3254-3262. 97. Yang, Z.; Guo, R.; Malpass‐Evans, R.; Carta, M.; McKeown, N. B.; Guiver, M. D.; Wu, L.; Xu, T., Highly conductive anion‐exchange membranes from microporous Tröger's base polymers. Angew. Chem. 2016, 128 (38), 11671-11674. 98. Bartlett, P. D.; Ryan, M. J.; Cohen, S. G., Triptycene1 (9, 10-o-benzenoanthracene). J. Am. Chem. Soc. 1942, 64 (11), 2649-2653. 99. Long, T. M.; Swager, T. M., Minimization of free volume: alignment of triptycenes in liquid crystals and stretched polymers. Adv. Mater. 2001, 13 (8), 601-604. 100. Carta, M.; Croad, M.; Malpass‐Evans, R.; Jansen, J. C.; Bernardo, P.; Clarizia, G.; Friess, K.; Lanč, M.; McKeown, N. B., Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers. Adv. Mater. 2014, 26 (21), 3526-3531. 101. Rose, I.; Carta, M.; Malpass-Evans, R.; Ferrari, M. C.; Bernardo, P.; Clarizia, G.; Jansen, J. C.; McKeown, N. B., Highly permeable benzotriptycene-based polymer of intrinsic microporosity. ACS Macro Lett. 2015, 4 (9), 912-915. 102. Green, M., The promise of electrochromic systems. Che. Ind. 1996, (17), 641-644. 103. Rosseinsky, D. R.; Mortimer, R. J., Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13 (11), 783-793. 104. Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R., Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 2004, 16 (23), 4401-4412. 105. Dyer, A. L.; Österholm, A. M.; Shen, D. E.; Johnson, K. E.; Reynolds, J. R., Conjugated electrochromic polymers: structure-driven colour and processing control. Electrochromic Materials Devices. John Wiley Sons 2015. 106. Pan, B. C.; Chen, W. H.; Hsiao, S. H.; Liou, G. S., A facile approach to prepare porous polyamide films with enhanced electrochromic performance. Nanoscale 2018, 10 (35), 16613-16620. 107. Pan, B. C.; Chen, W. H.; Lee, T. M.; Liou, G. S., Synthesis and characterization of novel electrochromic devices derived from redox-active polyamide–TiO 2 hybrids. J. Mater. Chem. C 2018, 6 (45), 12422-12428. 108. Chiu, Y. W.; Tan, W. S.; Yang, J. S.; Pai, M. H.; Liou, G. S., Electrochromic Response Capability Enhancement with Pentiptycene‐Incorporated Intrinsic Porous Polyamide Films. Macromol. Rapid Commun. 2020, 41 (12), 2000186. 109. Hawes, C. S.; Fitchett, C. M.; Batten, S. R.; Kruger, P. E., Synthesis and structural characterisation of a Co (II) coordination polymer incorporating a novel dicarboxy-Trögers base/bis-pyrazole mixed ligand system. Inorganica Chim. Acta 2012, 389, 112-117. 110. Hu, X.; Lee, W. H.; Zhao, J.; Bae, J. Y.; Kim, J. S.; Wang, Z.; Yan, J.; Zhuang, Y.; Lee, Y. M., Tröger's Base (TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations. J. Membr. Sci. 2020, 610, 118255. 111. Gidley, D. W.; Peng, H.-G.; Vallery, R. S., Positron annihilation as a method to characterize porous materials. Annu. Rev. Mater. Res. 2006, 36, 49-79. 112. Yen, H. J.; Guo, S. M.; Liou, G. S., Synthesis and unexpected electrochemical behavior of the triphenylamine‐based aramids with ortho‐and para‐trimethyl‐protective substituents. J. Polym. Sci. Part A: Polym. Chem. 2010, 48 (23), 5271-5281. 113. Wu, J. H.; Liou, G. S., High‐Performance Electrofluorochromic Devices Based on Electrochromism and Photoluminescence‐Active Novel Poly (4‐Cyanotriphenylamine). Adv. Funct. Mater. 2014, 24 (41), 6422-6429. 114. Orazem, M. E.; Tribollet, B., Electrochemical impedance spectroscopy. New Jersey 2008, 383-389. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80890 | - |
| dc.description.abstract | 本論文分為四大章節,第一章為總體緒論,介紹功能性高分子、電致變色的歷史及發展、含有奈米結構的電致變色材料以及固有微孔高分子的歷史及發展;第二章實驗部分,分別講述兩種新型含有苯荑之電活性三苯胺二胺單體及四種具電致變色性能的聚醯胺的合成,並以正子湮滅壽命光譜儀、氮氣等溫吸脫附線、廣角X射線繞射儀、電化學阻抗譜及循環伏安法等,探討材料中固有孔洞對於電致變色性能的影響;第三章結果討論部分,實驗表明固有孔洞的導入可以有效的提升氧化還原過程電解質中反離子的擴散速率,進而優化電致變色材料的性能;第四章則總結本論文的實驗結果。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:20:41Z (GMT). No. of bitstreams: 1 U0001-2209202119161300.pdf: 11196565 bytes, checksum: 262fecbd21138089c374df32b62b0a4c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Table of Contents 致謝 I ABSTRACT II 中文摘要 III CHAPTER 1 1 1.1 High-Performance Polymer 2 1.1.1 Preparation of Aromatic Polyamides 3 1.1.2 Modification of Aromatic Polyamides 6 1.1.3 Applications of Aromatic Polyamides 7 1.2 Electrochromism 9 1.2.1 A Brief History and Development of Electrochromism 9 1.2.2 Important Criteria and Terminology for Electrochromism 10 1.2.3 Common Electrochromic Materials 13 1.2.4 Structure of Electrochromic Devices (ECDs) 29 1.3 Electrochromic Materials with Nanostructures 32 1.3.1 Transition Metal Oxides (TMOs) with Nanostructures 34 1.3.2 Conjugated Polymers with Nanostructures 37 1.4 Polymers of Intrinsic Microporosity (PIMs) 40 1.4.1 The Development of PIMs 41 1.4.2 Designing Concept for PIMs 43 1.4.3 The common structure utilized for PIMs 43 1.5 Research Motivation 53 CHAPTER 2 56 2.1 Materials 57 2.1.1 Commercial chemicals and basic monomers 57 2.1.2 Synthesis of pentiptycene-derived TPA diamine monomers (Provided by Prof. Jye-Shane Yang) 58 2.1.3 Synthesis of Polyamides 62 2.2 Fabrication of Electrochromic Devices (ECDs) 64 2.3 Measurements 64 CHAPTER 3 67 3.1 Basic Characterization 68 3.1.1 Synthesis and Characterization of Monomer 68 3.1.2 Synthesis of Polyamides 83 3.2 Novel Pentiptycene-Incorporated Intrinsic Porous Redox-active Polyamides 86 3.2.1 Relationship between energy and dihedral angle of diamine monomers 86 3.2.2 Basic Properties of Polyamide 87 3.2.3 Characteristic of intrinsic microporosity in polyamides 91 3.2.4 Optical Properties of Polyamide Films 94 3.2.5 Electrochromic Properties of Polyamide Films 97 3.2.6 Electrochromic Properties of ECDs 106 3.3 Tröger’s Base-derived Intrinsic Microporous Polyamide Films 110 3.3.1 Basic Properties of Polyamide 110 3.3.2 Characteristic of intrinsic microporosity in polyamides 112 3.3.3 Optical Properties of Polyamide Films 115 3.3.4 Electrochromic Properties of Polyamide Films 117 3.3.5 Electrochromic Properties of ECDs 122 CHAPTER 4 126 References 129 APPENDIX 145 LIST OF PUBLICATIONS 146 | |
| dc.language.iso | en | |
| dc.subject | 電致變色響應性能 | zh_TW |
| dc.subject | 電致變色聚醯胺膜 | zh_TW |
| dc.subject | 固有微孔洞 | zh_TW |
| dc.subject | 五苯荑 | zh_TW |
| dc.subject | 特羅格爾鹼 | zh_TW |
| dc.subject | pentiptycene | en |
| dc.subject | Tröger’s Base | en |
| dc.subject | electrochromic polyamide film | en |
| dc.subject | intrinsic microporosity | en |
| dc.subject | EC response capability | en |
| dc.title | 藉固有微孔洞聚醯胺提升電致變色應答性能之研究 | zh_TW |
| dc.title | Study of Redox-active Polyamides with Intrinsic Microporosity for Enhancing Electrochromic Response Capability | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡蒨傑(Hsin-Tsai Liu),楊吉水(Chih-Yang Tseng),蕭勝輝,龔宇睿 | |
| dc.subject.keyword | 電致變色聚醯胺膜,固有微孔洞,五苯荑,特羅格爾鹼,電致變色響應性能, | zh_TW |
| dc.subject.keyword | electrochromic polyamide film,intrinsic microporosity,pentiptycene,Tröger’s Base,EC response capability, | en |
| dc.relation.page | 147 | |
| dc.identifier.doi | 10.6342/NTU202103294 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2209202119161300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
