Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩燁(Rita Pei-Yeh Chen)
dc.contributor.authorSung-Pang Chenen
dc.contributor.author陳頌邦zh_TW
dc.date.accessioned2021-05-20T00:48:49Z-
dc.date.available2025-12-01
dc.date.available2021-05-20T00:48:49Z-
dc.date.copyright2020-12-04
dc.date.issued2020
dc.date.submitted2020-11-26
dc.identifier.citation[1] Haney EF, Hancock REW (2013). Peptide design for antimicrobial and immunomodulatory applications. Biopolymers. 100:572-583.
[2] Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC (2005). Human defensins. Journal of Molecular Medicine. 83:587-595.
[3] Dubos RJ (1939). Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. Journal of Experimental Medicine. 70:1-10.
[4] Hotchkiss RD, Dubos RJ (1940). Fractionation of the bactericidal agent from cultures of a soil bacillus. Journal of Biological Chemistry. 132:791-792.
[5] Kamysz W (2005). Are antimicrobial peptides an alternative for conventional antibiotics? Nuclear Medicine Review Central Eastern Europe. 8:78-86.
[6] Shai Y (2002). From innate immunity to de-novo designed antimicrobial peptides. Current Pharmaceutical Design. 8:715-725.
[7] Radek K, Gallo R (2007). Antimicrobial peptides: natural effectors of the innate immune system. Seminars in Immunopathology. 29:27-43.
[8] Fjell CD, Hiss JA, Hancock RE, Schneider G (2012). Designing antimicrobial peptides: form follows function. Nature Reviews Drug Discovery. 11:37-51.
[9] Pasupuleti M, Schmidtchen A, Malmsten M (2012). Antimicrobial peptides: key components of the innate immune system. Critical Reviews in Biotechnology. 32:143-171.
[10] Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology. 6:194.
[11] Koo HB, Seo J (2019). Antimicrobial peptides under clinical investigation. Peptide Science. 111:6.
[12] Peters BM, Shirtliff ME, Jabra-Rizk MA (2010). Antimicrobial peptides: Primeval molecules or future drugs? PLOS Pathogens. 6:e1001067.
[13] Giuliani A, Pirri G, Nicoletto S (2007). Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology. 2:1-33.
[14] Hancock RE, Sahl H-G (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology. 24:1551-1557.
[15] Molchanova N, Hansen PR, Franzyk H (2017). Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 22:1430.
[16] Zhao X, Wu H, Lu H, Li G, Huang Q (2013). LAMP: A database linking antimicrobial peptides. PLoS ONE. 8:e66557.
[17] Hultmark D, Steiner H, Rasmuson T, Boman HG (1980). Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. European Journal of Biochemistry. 106:7-16.
[18] Boman HG, Hultmark D (1981). Cell-free immunity in insects. Trends in Biochemical Sciences. 6:306-309.
[19] Steiner H, Hultmark D, Engström Å, Bennich H, Boman H (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 292:246-248.
[20] Zasloff M (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences. 84:5449-5453.
[21] Hirsch JG (1956). Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. Journal of Experimental Medicine. 103:589-611.
[22] Chen CH, Lu TK (2020). Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics. 9:24.
[23] Epand RM, Vogel HJ (1999). Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta - Biomembranes. 1462:11-28.
[24] Takahashi D, Shukla SK, Prakash O, Zhang G (2010). Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 92:1236-1241.
[25] Dürr UH, Sudheendra U, Ramamoorthy A (2006). LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta - Biomembranes. 1758:1408-1425.
[26] Johansson J, Gudmundsson GH, Rottenberg MnE, Berndt KD, Agerberth B (1998). Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. Journal of Biological Chemistry. 273:3718-3724.
[27] Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M (2005). Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrobial Agents and Chemotherapy. 49:2845-2850.
[28] Matsuzaki K (1998). Magainins as paradigm for the mode of action of pore forming polypeptides. Biochimica et Biophysica Acta. 1376:391-400.
[29] Lehrer RI, Cole AM, Selsted ME (2012). θ-Defensins: cyclic peptides with endless potential. Journal of Biological Chemistry. 287:27014-27019.
[30] Raj PA, Antonyraj KJ, Karunakaran T (2000). Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochemical Journal. 347:633-641.
[31] Nguyen LT, Haney EF, Vogel HJ (2011). The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology. 29:464-472.
[32] Pränting M, Negrea A, Rhen M, Andersson DI (2008). Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrobial Agents and Chemotherapy. 52:2734-2741.
[33] LeBel G, Vaillancourt K, Yi L, Gottschalk M, Grenier D (2018). Dipeptidylpeptidase IV of Streptococcus suis degrades the porcine antimicrobial peptide PR-39 and neutralizes its biological properties. Microbial pathogenesis. 122:200-206.
[34] McCaslin TG, Pagba CV, Yohannan J, Barry BA (2019). Specific metallo-protein interactions and antimicrobial activity in Histatin-5, an intrinsically disordered salivary peptide. Scientific Reports. 9:1-14.
[35] De Smet K, Contreras R (2005). Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnology Letters. 27:1337-1347.
[36] Puri S, Li R, Ruszaj D, Tati S, Edgerton M (2015). Iron binding modulates candidacidal properties of salivary histatin 5. Journal of Dental Research. 94:201-208.
[37] Bochenska O, Rapala-Kozik M, Wolak N, Aoki W, Ueda M, Kozik A (2016). The action of ten secreted aspartic proteases of pathogenic yeast Candida albicans on major human salivary antimicrobial peptide, histatin 5. Acta Biochimica Polonica. 63:403-410.
[38] Selsted ME, Novotny MJ, Morris WL, Tang Y-Q, Smith W, Cullor JS (1992). Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of Biological Chemistry. 267:4292-4295.
[39] Subbalakshmi C, Sitaram N (1998). Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters. 160:91-96.
[40] Sitaram N, Subbalakshmi C, Nagaraj R (2003). Indolicidin, a 13-residue basic antimicrobial peptide rich in tryptophan and proline, interacts with Ca2+-calmodulin. Biochemical and Biophysical Research Communications. 309:879-884.
[41] Rokitskaya TI, Kolodkin NI, Kotova EA, Antonenko YN (2011). Indolicidin action on membrane permeability: Carrier mechanism versus pore formation. Biochimica et Biophysica Acta - Biomembranes. 1808:91-97.
[42] Gottler LM, Ramamoorthy A (2009). Structure, membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. Biochimica et Biophysica Acta - Biomembranes. 1788:1680-1686.
[43] Yeaman MR, Yount NY (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews. 55:27-55.
[44] Matsuzaki K (1999). Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochimica et Biophysica Acta - Biomembranes. 1462:1-10.
[45] Huang HW (2000). Action of antimicrobial peptides: two-state model. Biochemistry. 39:8347-8352.
[46] Hancock RE, Chapple DS (1999). Peptide antibiotics. Antimicrobial Agents and Chemotherapy. 43:1317-1323.
[47] Malanovic N, Lohner K (2016). Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals. 9:59.
[48] Omardien S, Brul S, Zaat SAJ (2016). Antimicrobial activity of cationic antimicrobial peptides against gram-positives: current progress made in understanding the mode of action and the response of bacteria. Frontiers in Cell and Developmental Biology. 4:111.
[49] Wimley WC (2010). Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology. 5:905-917.
[50] Pieta P, Mirza J, Lipkowski J (2012). Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proceedings of the National Academy of Sciences. 109:21223-21227.
[51] Toke O (2005). Antimicrobial peptides: New candidates in the fight against bacterial infections. Peptide Science. 80:717-735.
[52] Giuliani A, Pirri G, Bozzi A, Giulio AD, Aschi M, Rinaldi A (2008). Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cellular and Molecular Life Sciences. 65:2450-2460.
[53] Brogden KA (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology. 3:238-250.
[54] Gabernet G, Müller AT, Hiss JA, Schneider G (2016). Membranolytic anticancer peptides. MedChemComm. 7:2232-2245.
[55] Ge Y, MacDonald DL, Holroyd KJ, Thornsberry C, Wexler H, Zasloff M (1999). In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrobial Agents and Chemotherapy. 43:782-788.
[56] Monteiro C, Fernandes M, Pinheiro M, Maia S, Seabra CL, Ferreira-da-Silva F, Costa F, Reis S, Gomes P, Martins MCL (2015). Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78. Biochimica et Biophysica Acta - Biomembranes. 1848:1139-1146.
[57] Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004). Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrobial Agents and Chemotherapy. 48:3112-3118.
[58] Fritsche TR, Rhomberg PR, Sader HS, Jones RN (2008). In vitro activity of omiganan pentahydrochloride tested against vancomycin-tolerant,-intermediate, and-resistant Staphylococcus aureus. Diagnostic Microbiology and Infectious Disease. 60:399-403.
[59] Ng SMS, Teo SW, Yong YE, Ng FM, Lau QY, Jureen R, Hill J, Chia CB (2017). Preliminary investigations into developing all-D omiganan for treating mupirocin-resistant MRSA skin infections. Chemical Biology Drug Design. 90:1155-1160.
[60] Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020). Antimicrobial host defence peptides: functions and clinical potential. Nature Reviews Drug Discovery. 19:311-332.
[61] Yip BS, Chen HL, Cheng HT, Wu JM, Cheng J-W (2009). Solution structure and model membrane interactions of P-113, a clinically active antimicrobial peptide derived from human saliva. Journal of the Chinese Chemical Society. 56:961-966.
[62] Cheng K-T, Wu C-L, Yip B-S, Chih Y-H, Peng K-L, Hsu S-Y, Yu H-Y, Cheng J-W (2020). The interactions between the antimicrobial peptide P-113 and living Candida albicans cells shed light on mechanisms of antifungal activity and resistance. International Journal of Molecular Sciences. 21:2654.
[63] Bellm L, Giles FJ, Redman R, Yazji S (2002). Iseganan HCl: a novel antimicrobial agent. Expert Opinion on Investigational Drugs. 11:1161-1170.
[64] Trotti A, Garden A, Warde P, Symonds P, Langer C, Redman R, Pajak TF, Fleming TR, Henke M, Bourhis J (2004). A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. International Journal of Radiation Oncology•Biology•Physics. 58:674-681.
[65] Costa F, Teixeira C, Gomes P, Martins MCL. Clinical application of AMPs. Antimicrobial Peptides: Springer ; 2019. p. 281-298.
[66] Van Der Does AM, Bogaards SJ, Ravensbergen B, Beekhuizen H, Van Dissel JT, Nibbering PH (2010). Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrobial Agents and Chemotherapy. 54:811-816.
[67] van der Does AM, Hensbergen PJ, Bogaards SJ, Cansoy M, Deelder AM, van Leeuwen HC, Drijfhout JW, van Dissel JT, Nibbering PH (2012). The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. The Journal of Immunology. 188:5012-5019.
[68] van der Velden WJ, van Iersel TM, Blijlevens NM, Donnelly JP (2009). Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Medicine. 7:44.
[69] Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases. 16:161-168.
[70] Rhouma M, Beaudry F, Theriault W, Letellier A (2016). Colistin in pig production: chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Frontiers in Microbiology. 7:1789.
[71] Gurjar M (2015). Colistin for lung infection: an update. Journal of Intensive Care. 3:3.
[72] Nation RL, Li J (2009). Colistin in the 21st century. Current Opinion in Infectious Diseases. 22:535-543.
[73] Falagas ME, Rafailidis PI, Matthaiou DK (2010). Resistance to polymyxins: Mechanisms, frequency and treatment options. Drug Resistance Updates. 13:132-138.
[74] Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K (2005). Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. International Journal of Antimicrobial Agents. 25:11-25.
[75] Javan AO, Shokouhi S, Sahraei Z (2015). A review on colistin nephrotoxicity. European Journal of Clinical Pharmacology. 71:801-810.
[76] Ghirga F, Stefanelli R, Cavinato L, Lo Sciuto A, Corradi S, Quaglio D, Calcaterra A, Casciaro B, Loffredo MR, Cappiello F (2020). A novel colistin adjuvant identified by virtual screening for ArnT inhibitors. Journal of Antimicrobial Chemotherapy. 75:2564-2572.
[77] Dı́ez AID, Pérez MAB, Bouza JMaE, Gómez AA, Rodrı́guez PG, Gómez MaAM, Domingo AO, Rodrı́guez-Torres A (2004). Susceptibility of the Acinetobacter calcoaceticus–A. baumannii complex to imipenem, meropenem, sulbactam and colistin. International Journal of Antimicrobial Agents. 23:487-493.
[78] Gupta S, Govil D, Kakar PN, Prakash O, Arora D, Das S, Govil P, Malhotra A (2009). Colistin and polymyxin B: A re-emergence. Indian Journal of Critical Care Medicine. 13:49-53.
[79] Jangra M, Randhawa HK, Kaur M, Srivastava A, Maurya N, Patil PP, Jaswal P, Arora A, Patil PB, Raje M (2018). Purification, characterization and in vitro evaluation of polymyxin A from Paenibacillus dendritiformis: An underexplored member of the polymyxin family. Frontiers in Microbiology. 9:2864.
[80] Jeannot K, Bolard A, Plesiat P (2017). Resistance to polymyxins in Gram-negative organisms. International Journal of Antimicrobial Agents. 49:526-535.
[81] Lim LM, Ly N, Anderson D, Yang JC, Macander L, Jarkowski III A, Forrest A, Bulitta JB, Tsuji BT (2010). Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. 30:1279-1291.
[82] Howard A, O’Donoghue M, Feeney A, Sleator RD (2012). Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence. 3:243-250.
[83] Peleg AY, Seifert H, Paterson DL (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clinical Microbiology Reviews. 21:538-582.
[84] Cisneros JM, Rodríguez-Baño J (2002). Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clinical Microbiology and Infection. 8:687-693.
[85] Kanafani ZA, Kanj SS (2013). Acinetobacter infection: Epidemiology, microbiology, pathogenesis, clinical features, and diagnosis. Wolters Kluwer. 2:21-33.
[86] 童郁琇, 陳怡君, 陳銘鴻, 戴慶玲, 康玉嬋 (2015). 不動桿菌屬感染之流行病學、抗藥性及治療. 內科學誌. 26:336-343.
[87] Centers for Disease Control and Prevention (CDC) (2012). Klebsiella pneumoniae in Healthcare Settings. Available on: https://wwwcdcgov/hai/organisms/klebsiella/klebsiellahtml.
[88] Ashurst JV, Dawson A. Klebsiella pneumonia. StatPearls [Internet]: StatPearls Publishing; 2020.
[89] Jiao Y, Qin Y, Liu J, Li Q, Dong Y, Shang Y, Huang Y, Liu R (2015). Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization and predictors of mortality: a retrospective study. Pathogens and Global Health. 109:68-74.
[90] 盧柏樑 (2015). 新的超級細菌在台灣–具碳青黴烯抗藥性之腸桿菌科細菌. 內科學誌. 26:328-335.
[91] van Duin D, Cober ED, Richter SS, Perez F, Cline M, Kaye KS, Kalayjian RC, Salata RA, Evans S, Fowler Jr VG (2014). Tigecycline therapy for carbapenem-resistant Klebsiella pneumoniae (CRKP) bacteriuria leads to tigecycline resistance. Clinical Microbiology and Infection. 20:O1117-O1120.
[92] Taylor TA, Unakal CG. Staphylococcus aureus. StatPearls [Internet]: StatPearls Publishing ; 2017.
[93] Kobayashi SD, DeLeo FR (2013). Staphylococcus aureus protein A promotes immune suppression. mBio. 4:e00764-00713.
[94] Shallcross LJ, Fragaszy E, Johnson AM, Hayward AC (2013). The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. The Lancet Infectious Diseases. 13:43-54.
[95] Bhakdi S, Tranum-Jensen J (1991). Alpha-toxin of Staphylococcus aureus. Microbiological Reviews. 55:733-751.
[96] Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews. 28:603-661.
[97] Garoy EY, Gebreab YB, Achila OO, Tekeste DG, Kesete R, Ghirmay R, Kiflay R, Tesfu T (2019). Methicillin-resistant Staphylococcus aureus (MRSA): Prevalence and antimicrobial sensitivity pattern among patients—a multicenter study in Asmara, Eritrea. Canadian Journal of Infectious Diseases and Medical Microbiology. 2019.
[98] Sato AK, Viswanathan M, Kent RB, Wood CR (2006). Therapeutic peptides: technological advances driving peptides into development. Current Opinion in Biotechnology. 17:638-642.
[99] Bang J-K, Nan Y-H, Lee E-K, Shin S-Y (2010). A novel Trp-rich model antimicrobial peptoid with increased protease stability. Bulletin of the Korean Chemical Society. 31:2509-2513.
[100] Hamamoto K, Kida Y, Zhang Y, Shimizu T, Kuwano K (2002). Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiology and Immunology. 46:741-749.
[101] Manabe T, Kawasaki K (2017). D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Scientific Reports. 7:1-10.
[102] Webster AM, Cobb SL (2018). Recent advances in the synthesis of peptoid macrocycles. Chemistry–A European Journal. 24:7560-7573.
[103] Nagarajan D, Roy N, Kulkarni O, Nanajkar N, Datey A, Ravichandran S, Thakur C, Sandeep T, Aprameya IV, Sarma SP (2019). Ω76: A designed antimicrobial peptide to combat carbapenem-and tigecycline-resistant Acinetobacter baumannii. Science Advances. 5:eaax1946.
[104] Peng J, Long H, Liu W, Wu Z, Wang T, Zeng Z, Guo G, Wu J (2019). Antibacterial mechanism of peptide Cec4 against Acinetobacter baumannii. Infection and Drug Resistance. 12:2417-2428.
[105] Mwangi J, Yin Y, Wang G, Yang M, Li Y, Zhang Z, Lai R (2019). The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proceedings of the National Academy of Sciences. 116:26516-26522.
[106] Feng X, Sambanthamoorthy K, Palys T, Paranavitana C (2013). The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides. 49:131-137.
[107] Leite NB, Aufderhorst-Roberts A, Palma MS, Connell SD, Neto JR, Beales PA (2015). PE and PS lipids synergistically enhance membrane poration by a peptide with anticancer properties. Biophysical Journal. 109:936-947.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8085-
dc.description.abstract近年來,由於抗生素藥物的過度使用造成抗藥性菌株的大量出現,且新的抗生素發展速度緩慢,發展新型態的抗生素已成為當務之急。抗微生物胜肽(Antimicrobial peptides,AMPs) 或稱為抗菌胜肽,被認為極具潛力發展成為取代傳統抗生素的新一類抗生素。
在實驗室先前的研究中,我們設計了五條陽離子抗菌胜肽,均由18個胺基酸組成,擁有不同的疏水性/親水性胺基酸分佈。在經過初步的抗菌活性測試(Minimal Inhibitory Concentration/ Minimal Bactericidal Concentration ; MIC/MBC測試) 後,我們挑選了抗菌活性最好的胜肽,並在本研究中,以此胜肽為模板進行不同的修飾,例如縮短胜肽長度、替換相同性質的胺基酸、改變N端的保護基、使用D-form胺基酸或在序列中加入類肽結構。我們測試這些修飾後的胜肽對於4種醫院內病原菌 (Acinetobacter baumannii、Klebsiella pneumoniae、Staphylococcus aureus及Staphylococcus epidermidis) 的MIC/MBC,以及這些胜肽對於大鼠或狗紅血球細胞的溶血活性。接著,我們挑選出展現最佳選擇性 (低MIC/MBC與低溶血活性) 的胜肽,測試它們對人類胚胎腎細胞 (HEK293) 的細胞毒性,並測試這些胜肽在大鼠血漿中的穩定性,以判斷胜肽是否易被血漿中的蛋白酶降解,同時也利用大鼠的全血測試胜肽在血液中的殺菌能力與速度。最終,我們以薄層層析分析細菌細胞膜的磷脂質組成,藉此實驗幫助找出細菌細胞膜磷脂質成分與抗菌活性之間的關係。
根據本研究的實驗結果,我們總結出將胜肽的N端以較長鏈的醯基修飾會增加溶血活性並且降低抗菌效果。在本研究所有設計的胜肽中,將序列修短的pepD3、換成D-form胺基酸的pepdD2以及將leucine換成isoleucine的pepI2表現出較好的抗菌活性和較低的溶血活性。pepdD2在血漿中最穩定,pepI2對HEK293的細胞毒性最低。在未來的研究中,我們將著重於pepD3、pepdD2、pepI2,評估此三條胜肽在活體內的功效和毒性,並測試它們是否同樣對抗藥性細菌展現出抗菌活性。
zh_TW
dc.description.abstractRecently, the overuse of traditional antibiotics makes the emergence of antibiotic-resistant bacterial strains. Unfortunately, there are not enough new drugs in the pharmaceutical pipeline to keep pace with drug-resistant bacterial development. Thus, the development of an effective novel class of antibiotics is an urgent need. Antimicrobial peptides (AMP) is considered as one of the most promising candidates for a novel class of antibiotics.
In our previous investigation, we designed five cationic AMPs. All of them composed of 18 amino acids with different hydrophobic/hydrophilic amino acid distribution. After a preliminary antimicrobial test (Minimal Inhibitory Concentration/ Minimal Bactericidal Concentration test, MIC/MBC test), we chose the one which showed the best antimicrobial activity and then modified this peptide with different methods, such as decreasing peptide length, replacing amino acids with the ones with similar property, changing the N-terminal capping group, using D-form amino acids or inserting peptoid structure. We tested the MIC/MBC of these modified peptides against four nosocomial pathogens (Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus and Staphylococcus epidermidis) and the hemolysis of these peptides against rat or dog red blood cells. After that, we chose the ones that showed the best selectivity (low MIC/MBC and hemolysis) and following test their cytotoxicity to human embryonic kidney cells (HEK293). We also tested their stability in rat plasma to evaluate whether these peptides easily degraded by plasma protease. Besides, we also used rat whole blood to evaluate bactericidal ability and time-kill kinetics of peptides in blood environment. Finally, we used thin-layer chromatography to analyze the lipid composition of the bacterial cytoplasmic membrane. From this test, we can find out the relationship between bacterial membrane lipid composition and antimicrobial activity.
Based on our data, we conclude that longer chain-length of the acyl group at N-terminus increased hemolysis activity and decreased antimicrobial activity. Among all the designed peptides, pepD3 (shorter length), pepdD2 (D-form peptide), and pepI2 (replace Leu with Ile) displayed better antimicrobial activity and lower hemolysis. pepdD2 is the most stable peptide in plasma. pepI2 has the lowest cytotoxicity to HEK293 cells. In the future, we will focus on pepD3, pepdD2, and pepI2 to evaluate their in vivo efficacy, in vivo toxicity, and test whether they are effective against antimicrobial-resistant bacteria.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:48:49Z (GMT). No. of bitstreams: 1
U0001-2411202001115700.pdf: 9399721 bytes, checksum: fb9c38b8595e6db42d190269f8cf08f5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
口試委員會審定書 i
誌謝 ii
中文摘要 iv
Abstract vi
縮寫表 Abbreviations viii
圖目錄 xvi
表目錄 xviii
第一章 緒論 1
1-1 抗菌胜肽簡介 1
1-2 抗菌胜肽之分類 3
1-2-1 α螺旋抗菌胜肽 (α-helices AMPs) 3
1-2-2 β摺板抗菌胜肽 (β-Sheet AMPs) 5
1-2-3 具延展性/隨機螺旋結構之抗菌胜肽 (extended/random-coil structure) 5
1-3 抗菌胜肽之作用機制 7
1-3-1 選擇毒性 (selective toxicity) 7
1-3-2 Two-state model 9
1-3-3 Shai–Huang–Matsuzaki 模型 9
1-3-4 細胞死亡的機制 (mechanisms of cell death) 11
1-4 抗菌胜肽在臨床上的應用 13
1-4-1 抗菌胜肽藥物介紹 13
1-4-2 發展抗菌胜肽於臨床上之應用所需面臨的挑戰 20
1-5 常見的醫院感染性細菌 21
1-6 研究目的與實驗設計 24
第二章 材料與方法 30
2-1 材料 30
2-1-1 化學藥品 30
2-1-2 細菌/細胞培養藥品 31
2-1-3 耗材 32
2-1-4 菌株/細胞株/全血 33
2-1-5 儀器 33
2-2 方法 35
2-2-1 抗菌胜肽合成 35
2-2-1-1 以PS3胜肽合成儀自動合成胜肽 36
2-2-1-2 手動合成peptide-peptoid hybrid 37
2-2-1-3 胜肽從固相樹脂上切下並去除保護基 (cleavage) 40
2-2-2 抗菌胜肽純化 40
2-2-3 細菌菌數測定 41
2-2-4 抗菌活性測試 (MIC/MBC ; 最低抑制濃度/最低殺菌濃度) 43
2-2-4-1 MIC (Minimal Inhibitory Concentration ; 最低抑制濃度) 測定 44
2-2-4-2 MBC (Minimal Bactericidal Concentration ; 最低殺菌濃度) 測定 46
2-2-5 溶血活性測試 (hemolytic assay) 47
2-2-6 細胞培養 49
2-2-6-1 解凍細胞 50
2-2-6-2 細胞繼代 50
2-2-6-3 冷凍細胞 50
2-2-6-4 細胞計數 51
2-2-7 細胞存活率測試 51
2-2-8 血漿中穩定性測試 53
2-2-9 細菌細胞膜脂質組成分析 55
2-2-9-1 細胞膜脂質萃取 55
2-2-9-2 以薄層層析分析脂質組成 55
2-2-10 殺菌時間動力學分析 (time-kill kinetic analysis) 57
第三章 結果 60
3-1 胜肽鏈長與抗菌活性及溶血活性之關係 60
3-2 同性質胺基酸之替換與鏡像異構物之替換對抗菌活性與溶血活性之影響 62
3-3 利用不同長度的羧基修飾胜肽對抗菌活性與溶血活性之影響 67
3-3-1 以長鏈脂肪酸修飾pepD2 67
3-3-2 以短鏈飽和羧酸修飾pepD3 72
3-4 使用peptide/peptoid hybrid對抗菌活性與溶血活性之影響 76
3-5 使用BBHBBHHBBH之胺基酸排列方式對抗菌活性與溶血活性之影響 80
3-6 細胞毒性測試 82
3-7 血漿中穩定性測試 84
3-8 以薄層層析分析細菌細胞膜磷脂質組成 87
3-9 殺菌時間動力學分析 (time-kill kinetic analysis) 89
第四章 討論 94
第五章 未來展望 100
參考文獻 101
附錄 112
dc.language.isozh-TW
dc.title可用於對抗人類病原菌的抗菌胜肽之設計及應用zh_TW
dc.titleDesign and application of antimicrobial peptides against human pathogensen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-6433-4160
dc.contributor.oralexamcommittee鄭秋萍(Chiu-Ping Cheng),陳志毅(Jyh-Yih Chen),邱政洵(Cheng-Hsun Chiu)
dc.subject.keyword抗菌胜肽,院內感染性細菌,鮑氏不動桿菌,克雷伯氏肺炎菌,金黃色葡萄球菌,表皮葡萄球菌,抗生素抗藥性細菌,zh_TW
dc.subject.keywordAntimicrobial peptides (AMPs),nosocomial pathogen,A. baumannii,K. pneumoniae,S. aureus,S. epidermidis,antimicrobial-resistant bacteria,en
dc.relation.page138
dc.identifier.doi10.6342/NTU202004350
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-11-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2025-12-01-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2411202001115700.pdf9.18 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved