請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80835完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江宏仁(Hong-Ren Jiang) | |
| dc.contributor.author | Wen-Hsin Hsieh | en |
| dc.contributor.author | 謝文忻 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:18:26Z | - |
| dc.date.available | 2021-11-06 | |
| dc.date.available | 2022-11-24T03:18:26Z | - |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-30 | |
| dc.identifier.citation | [1] F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, 'Flexible triboelectric generator,' Nano Energy, vol. 1, no. 2, pp. 328-334, 2012/03/01/ 2012, doi: https://doi.org/10.1016/j.nanoen.2012.01.004. [2] A. Nauman, Y. A. Qadri, M. Amjad, Y. B. Zikria, M. K. Afzal, and S. W. Kim, 'Multimedia Internet of Things: A Comprehensive Survey,' IEEE Access, vol. 8, pp. 8202-8250, 2020, doi: 10.1109/ACCESS.2020.2964280. [3] Y. Liu et al., 'Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops,' ACS Nano, vol. 12, no. 3, pp. 2893-2899, 2018/03/27 2018, doi: 10.1021/acsnano.8b00416. [4] S. Wang and S. Wang, 'Impacts of wind energy on environment: A review,' Renewable and Sustainable Energy Reviews, vol. 49, pp. 437-443, 2015/09/01/ 2015, doi: https://doi.org/10.1016/j.rser.2015.04.137. [5] Z. L. Wang, 'On Maxwell's displacement current for energy and sensors: the origin of nanogenerators,' Materials Today, vol. 20, no. 2, pp. 74-82, 2017/03/01/ 2017, doi: https://doi.org/10.1016/j.mattod.2016.12.001. [6] H. Shao et al., 'Triboelectric–Electromagnetic Hybrid Generator for Harvesting Blue Energy,' Nano-Micro Letters, vol. 10, no. 3, p. 54, 2018/05/29 2018, doi: 10.1007/s40820-018-0207-3. [7] W.-S. Jung et al., 'Powerful curved piezoelectric generator for wearable applications,' Nano Energy, vol. 13, pp. 174-181, 2015/04/01/ 2015, doi: https://doi.org/10.1016/j.nanoen.2015.01.051. [8] Q. Shi, H. Wang, T. Wang, and C. Lee, 'Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications,' Nano Energy, vol. 30, pp. 450-459, 2016/12/01/ 2016, doi: https://doi.org/10.1016/j.nanoen.2016.10.046. [9] J. Wang et al., 'Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator,' ACS Nano, vol. 12, no. 4, pp. 3954-3963, 2018/04/24 2018, doi: 10.1021/acsnano.8b01532. [10] P.-K. Yang et al., 'A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring,' Advanced Materials, https://doi.org/10.1002/adma.201500652 vol. 27, no. 25, pp. 3817-3824, 2015/07/01 2015, doi: https://doi.org/10.1002/adma.201500652. [11] S. Hao, J. Jiao, Y. Chen, Z. L. Wang, and X. Cao, 'Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors,' Nano Energy, vol. 75, p. 104957, 2020/09/01/ 2020, doi: https://doi.org/10.1016/j.nanoen.2020.104957. [12] T. Cheng, Q. Gao, and Z. L. Wang, 'The Current Development and Future Outlook of Triboelectric Nanogenerators: A Survey of Literature,' Advanced Materials Technologies, https://doi.org/10.1002/admt.201800588 vol. 4, no. 3, p. 1800588, 2019/03/01 2019, doi: https://doi.org/10.1002/admt.201800588. [13] L. Zhao et al., 'A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator,' Nano Energy, vol. 28, pp. 172-178, 2016/10/01/ 2016, doi: https://doi.org/10.1016/j.nanoen.2016.08.024. [14] I.-W. Tcho et al., 'Surface structural analysis of a friction layer for a triboelectric nanogenerator,' Nano Energy, vol. 42, pp. 34-42, 2017/12/01/ 2017, doi: https://doi.org/10.1016/j.nanoen.2017.10.037. [15] M.-L. Seol, S.-H. Lee, J.-W. Han, D. Kim, G.-H. Cho, and Y.-K. Choi, 'Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures,' Nano Energy, vol. 17, pp. 63-71, 2015/10/01/ 2015, doi: https://doi.org/10.1016/j.nanoen.2015.08.005. [16] H. Wang et al., 'High performance triboelectric nanogenerators with aligned carbon nanotubes,' Nanoscale, 10.1039/C6NR06319E vol. 8, no. 43, pp. 18489-18494, 2016, doi: 10.1039/C6NR06319E. [17] J. Chen et al., 'Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film,' ACS Applied Materials Interfaces, vol. 8, no. 1, pp. 736-744, 2016/01/13 2016, doi: 10.1021/acsami.5b09907. [18] D. M. Pai and B. E. Springett, 'Physics of electrophotography,' Reviews of Modern Physics, vol. 65, no. 1, pp. 163-211, 01/01/ 1993, doi: 10.1103/RevModPhys.65.163. [19] Q. Liang et al., 'Recyclable and Green Triboelectric Nanogenerator,' Advanced Materials, https://doi.org/10.1002/adma.201604961 vol. 29, no. 5, p. 1604961, 2017/02/01 2017, doi: https://doi.org/10.1002/adma.201604961. [20] S. Pan and Z. Zhang, 'Fundamental theories and basic principles of triboelectric effect: A review,' Friction, vol. 7, no. 1, pp. 2-17, 2019/02/01 2019, doi: 10.1007/s40544-018-0217-7. [21] L. Konopka, S. Jantač, M. Vrzáček, M. Svoboda, and J. Kosek, 'Triboelectric charging of polyethylene powders: Comparison of same-material and different-material contributions to the charge build-up,' Powder Technology, vol. 367, pp. 713-723, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.powtec.2020.04.029. [22] C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, 'Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape,' Nature, vol. 455, no. 7216, pp. 1089-1092, 2008/10/01 2008, doi: 10.1038/nature07378. [23] L. S. McCarty and G. M. Whitesides, 'Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets,' Angewandte Chemie International Edition, https://doi.org/10.1002/anie.200701812 vol. 47, no. 12, pp. 2188-2207, 2008/03/07 2008, doi: https://doi.org/10.1002/anie.200701812. [24] Z. L. Wang and A. C. Wang, 'On the origin of contact-electrification,' Materials Today, vol. 30, pp. 34-51, 2019/11/01/ 2019, doi: https://doi.org/10.1016/j.mattod.2019.05.016. [25] P. E. Shaw and E. H. Barton, 'Experiments on tribo-electricity. I.—The tribo-electric series,' Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 94, no. 656, pp. 16-33, 1917/11/05 1917, doi: 10.1098/rspa.1917.0046. [26] Z. L. Wang, 'Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors,' ACS Nano, vol. 7, no. 11, pp. 9533-9557, 2013/11/26 2013, doi: 10.1021/nn404614z. [27] S. Niu et al., 'Theory of Sliding-Mode Triboelectric Nanogenerators,' Advanced Materials, vol. 25, no. 43, pp. 6184-6193, 2013, doi: https://doi.org/10.1002/adma.201302808. [28] S. Niu et al., 'Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system,' Nano Energy, vol. 8, pp. 150-156, 2014/09/01/ 2014, doi: https://doi.org/10.1016/j.nanoen.2014.05.018. [29] C. Wu, A. C. Wang, W. Ding, H. Guo, and Z. L. Wang, 'Triboelectric Nanogenerator: A Foundation of the Energy for the New Era,' Advanced Energy Materials, https://doi.org/10.1002/aenm.201802906 vol. 9, no. 1, p. 1802906, 2019/01/01 2019, doi: https://doi.org/10.1002/aenm.201802906. [30] G. Zhu et al., 'Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning,' Nano Letters, vol. 12, no. 9, pp. 4960-4965, 2012/09/12 2012, doi: 10.1021/nl302560k. [31] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, 'Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism,' Nano Letters, vol. 13, no. 5, pp. 2226-2233, 2013/05/08 2013, doi: 10.1021/nl400738p. [32] Y. Yang, Y. S. Zhou, H. Zhang, Y. Liu, S. Lee, and Z. L. Wang, 'A Single-Electrode Based Triboelectric Nanogenerator as Self-Powered Tracking System,' Advanced Materials, https://doi.org/10.1002/adma.201302453 vol. 25, no. 45, pp. 6594-6601, 2013/12/01 2013, doi: https://doi.org/10.1002/adma.201302453. [33] H. Guo et al., 'Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing,' ACS Nano, vol. 11, no. 1, pp. 856-864, 2017/01/24 2017, doi: 10.1021/acsnano.6b07389. [34] S. W. Chen et al., 'An Ultrathin Flexible Single-Electrode Triboelectric-Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing,' Advanced Energy Materials, https://doi.org/10.1002/aenm.201601255 vol. 7, no. 1, p. 1601255, 2017/01/01 2017, doi: https://doi.org/10.1002/aenm.201601255. [35] S. Wang, Y. Xie, S. Niu, L. Lin, and Z. L. Wang, 'Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes,' Advanced Materials, https://doi.org/10.1002/adma.201305303 vol. 26, no. 18, pp. 2818-2824, 2014/05/01 2014, doi: https://doi.org/10.1002/adma.201305303. [36] Y. P. Kathuria, 'Microstructuring by selective laser sintering of metallic powder,' Surface and Coatings Technology, vol. 116-119, pp. 643-647, 1999/09/01/ 1999, doi: https://doi.org/10.1016/S0257-8972(99)00266-2. [37] J. Korpela, A. Kokkari, H. Korhonen, M. Malin, T. Närhi, and J. Seppälä, 'Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling,' Journal of Biomedical Materials Research Part B: Applied Biomaterials, https://doi.org/10.1002/jbm.b.32863 vol. 101B, no. 4, pp. 610-619, 2013/05/01 2013, doi: https://doi.org/10.1002/jbm.b.32863. [38] F. C. Williams, D. A. Hammer, T. R. Wentland, and R. Y. Kim, 'Immediate Teeth in Fibulas: Planning and Digital Workflow With Point-of-Care 3D Printing,' Journal of Oral and Maxillofacial Surgery, vol. 78, no. 8, pp. 1320-1327, 2020/08/01/ 2020, doi: https://doi.org/10.1016/j.joms.2020.04.006. [39] S. U. Ilyas, R. Pendyala, and N. Marneni, 'Stability and Agglomeration of Alumina Nanoparticles in Ethanol-Water Mixtures,' Procedia Engineering, vol. 148, pp. 290-297, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.proeng.2016.06.616. [40] L.-C. Luo, D.-C. Bao, W.-Q. Yu, Z.-H. Zhang, and T.-L. Ren, 'A Low Input Current and Wide Conversion Ratio Buck Regulator with 75% Efficiency for High-Voltage Triboelectric Nanogenerators,' Scientific Reports, vol. 6, no. 1, p. 19246, 2016/01/19 2016, doi: 10.1038/srep19246. [41] S. Niu et al., 'Theoretical study of contact-mode triboelectric nanogenerators as an effective power source,' Energy Environmental Science, 10.1039/C3EE42571A vol. 6, no. 12, pp. 3576-3583, 2013, doi: 10.1039/C3EE42571A. [42] H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu, and Z. L. Wang, 'Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy,' Advanced Functional Materials, vol. 25, no. 35, pp. 5691-5697, 2015, doi: https://doi.org/10.1002/adfm.201502318. [43] Z. Wang, L. Cheng, Y. Zheng, Y. Qin, and Z. L. Wang, 'Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion,' Nano Energy, vol. 10, pp. 37-43, 2014/11/01/ 2014, doi: https://doi.org/10.1016/j.nanoen.2014.08.017. [44] Z. Bai et al., 'An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing,' ACS Applied Materials Interfaces, vol. 12, no. 38, pp. 42880-42890, 2020/09/23 2020, doi: 10.1021/acsami.0c12709. [45] W. contributors. 'Permittivity.' Wikipedia, The Free Encyclopedia. (accessed. [46] T. A. L. Burgo, T. R. D. Ducati, K. R. Francisco, K. J. Clinckspoor, F. Galembeck, and S. E. Galembeck, 'Triboelectricity: Macroscopic Charge Patterns Formed by Self-Arraying Ions on Polymer Surfaces,' Langmuir, vol. 28, no. 19, pp. 7407-7416, 2012/05/15 2012, doi: 10.1021/la301228j. [47] H. Yoshizawa and J. Israelachvili, 'Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules,' The Journal of Physical Chemistry, vol. 97, no. 43, pp. 11300-11313, 1993. [48] A. Socoliuc, R. Bennewitz, E. Gnecco, and E. Meyer, 'Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction,' Physical review letters, vol. 92, no. 13, p. 134301, 2004. [49] S. Baojiang and Y. Shaoze, '界面黏滑摩擦现象的研究进展,' 中国机械工程, vol. 28, no. 13, pp. 1513-1522, 2017. [50] X. Kang, C. Pan, Y. Chen, and X. Pu, 'Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer,' RSC Advances, 10.1039/D0RA02181D vol. 10, no. 30, pp. 17752-17759, 2020, doi: 10.1039/D0RA02181D. [51] G. Min, Y. Xu, P. Cochran, N. Gadegaard, D. M. Mulvihill, and R. Dahiya, 'Origin of the contact force-dependent response of triboelectric nanogenerators,' Nano Energy, vol. 83, p. 105829, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.nanoen.2021.105829. [52] R. K. Pandey, H. Kakehashi, H. Nakanishi, and S. Soh, 'Correlating Material Transfer and Charge Transfer in Contact Electrification,' The Journal of Physical Chemistry C, vol. 122, no. 28, pp. 16154-16160, 2018/07/19 2018, doi: 10.1021/acs.jpcc.8b04357. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80835 | - |
| dc.description.abstract | " 摩擦起電是環境中常見的一個現象,許多材料在不經意接觸或摩擦後便會產生靜電,在以往工業生產和生活上常常視其為負面影響,而2012年Wang, Z. L等人首次提出摩擦微奈米發電機(triboelectric nanogenerator, TENG)此應用[1],開啟了摩擦起電另外一大發展性,可將環境與人體機械能轉換為電能並對小型電子用品供電,有機會取代傳統需要外部電源供電之設備,對環境永續發展與電子產品縮小化有很大的貢獻。為了提高摩擦電輸出,許多TENG研究在摩擦表面創造微奈米結構,提高材料接觸時的有效面積,然而,並無研究深入探討橫向摩擦下結構動態與輸出之間的關係,以及是否能利用結構設計達到訊號差異。 本論文利用光固化成型技術製作介電層翻模模具,並以鋁作為電極、PDMS作為柔性介電層基材,由於PDMS的柔軟特性,可使結構變形與產生不同響應。本研究首先為了提高摩擦輸出電壓,添加高介電常數奈米顆粒於PDMS形成複合材料介電層,提高介電質整體有效電容率,提高摩擦電壓,而為了改善顆粒佔據表面的負面影響,塗覆一層極薄PDMS於表面並有效改善此現象。我們也觀察到橫向摩擦過程中平坦介電層會產生黏滑現象,尤其在低速與高壓情況下,而黏滑運動產生的振動會影響電壓大小與平滑度。最後,我們設計非對稱鋸齒表面結構介電層,發現不同摩擦方向的電壓確實不同,而電壓與結構型貌及結構接觸及分離動態很相關,大的摩擦力道與快的分離速度使電壓增加,且摩擦力道為電壓變化主因。最後,為了可應用於實際生活,我們設計了偵測方向的特殊結構,結構由兩組不同數目之對稱鋸齒組成,藉由分離過程產生之峰值數目可成功判定摩擦方向. " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:18:26Z (GMT). No. of bitstreams: 1 U0001-3009202119521600.pdf: 7442121 bytes, checksum: acf23066ecd548a8e5f18e6a4bbf2fe1 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 論文審定書 I 誌謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機 6 1.4 內容簡介 6 第二章 文獻回顧與理論基礎 7 2.1 摩擦起電之基本原理 7 2.1.1 摩擦起電 7 2.1.2 基本原理 11 2.1.3 操作模式與工作機制 14 2.2 結構化材料之製備方法 18 第三章 實驗方法與量測系統 22 3.1 介電層材料 22 3.1.1 聚二甲基矽氧烷(PDMS) 22 3.1.2 氧化鋁(Al2O3)與二氧化鈦(TiO2) 22 3.2 介電層製備 23 3.2.1 平坦介電層之製備 23 3.2.2 表面結構化介電層之製備 26 3.3 TENG元件組裝 28 3.4 量測方法與架設 28 3.4.1 TENG輸出訊號之量測 29 3.4.2 荷重感測器 30 3.4.3 側向摩擦力道感測器 31 第四章 摩擦奈米發電機之輸出特性研究 34 4.1 添加高介電常數NPs於PDMS以提高摩擦電壓 34 4.2.1 Al2O3/PDMS與TiO2/PDMS介電質之摩擦電輸出 35 4.2.2 改善顆粒於表面之負面影響 40 4.2 PDMS在橫向摩擦下的運作原理 41 4.3橫向摩擦生電下之電輸出與摩擦特性探討 43 4.3.1 不同上電極施加壓力之電輸出 44 4.3.2 摩擦距離與電輸出之關係 47 4.3.3 上電極移動速率對電壓及介電層動態的影響 49 4.3.4 黏滑現象的電壓響應 53 4.4 具表面結構介電層於橫向摩擦生電下之輸出與動態探討 55 4.4.1 量測條件對輸出電壓的影響 56 4.4.2 非對稱鋸齒結構介電層之輸出電壓 61 4.4.3 鋸齒分離過程之電壓響應 68 4.4.4 影響輸出電壓之因素探討 71 4.5 偵測方向性之特殊結構 75 4.5.1 不同材料楊氏係數對電輸出之影響 77 第五章 結論 80 參考文獻 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 方向感測器 | zh_TW |
| dc.subject | 摩擦起電裝置 | zh_TW |
| dc.subject | 黏滑運動 | zh_TW |
| dc.subject | 表面結構化介電層 | zh_TW |
| dc.subject | 摩擦電荷密度 | zh_TW |
| dc.subject | triboelectric charge density | en |
| dc.subject | orientation sensor | en |
| dc.subject | triboelectric nanogenerator | en |
| dc.subject | stick-slip motion | en |
| dc.subject | surface-structured dielectric layer | en |
| dc.title | 非對稱表面結構介電層在橫向摩擦生電下之研究 | zh_TW |
| dc.title | Study of Asymmetric Flexible Dielectric Layer on Lateral Sliding Electrification | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李雨(Hsin-Tsai Liu),江佩勳(Chih-Yang Tseng),林耿慧 | |
| dc.subject.keyword | 摩擦起電裝置,黏滑運動,表面結構化介電層,摩擦電荷密度,方向感測器, | zh_TW |
| dc.subject.keyword | triboelectric nanogenerator,stick-slip motion,surface-structured dielectric layer,triboelectric charge density,orientation sensor, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202103479 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3009202119521600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
