請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80829完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張恆華(Herng-Hua Chang) | |
| dc.contributor.author | Yi-Ru Lin | en |
| dc.contributor.author | 林逸儒 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:18:10Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:18:10Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-04 | |
| dc.identifier.citation | [1] Organization., W. H. (2020). Top 10 causes of death. Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death [2] 衛生福利部. (2020). 腦血管疾病. Retrieved from https://www.hpa.gov.tw/Pages/List.aspx?nodeid=213 [3] neurology, N. D. o. 缺血性腦中風的治療. Retrieved from https://www.ntuh.gov.tw/neur/Fpage.action?fid=4314 [4] Bryda, E. C. (2013). The Mighty Mouse: the impact of rodents on advances in biomedical research. Missouri medicine, 110(3), 207. [5] Mural, R. J., Adams, M. D., Myers, E. W., Smith, H. O., Miklos, G. L. G., Wides, R., . . . Nadeau, J. (2002). A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science, 296(5573), 1661-1671. [6] Greene, N. D., Lythgoe, M. F., Thomas, D. L., Nussbaum, R. L., Bernard, D. J., Mitchison, H. M. (2001). High resolution MRI reveals global changes in brains of Cln3 mutant mice. European Journal of Paediatric Neurology, 5, 103-107. [7] Moffat, B. A., Galbán, C. J., Rehemtulla, A. (2009). Advanced MRI: translation from animal to human in brain tumor research. Neuroimaging Clinics, 19(4), 517-526. [8] Natt, O., Watanabe, T., Boretius, S., Radulovic, J., Frahm, J., Michaelis, T. (2002). High-resolution 3D MRI of mouse brain reveals small cerebral structures in vivo. Journal of neuroscience methods, 120(2), 203-209. [9] Zhang, J., Peng, Q., Li, Q., Jahanshad, N., Hou, Z., Jiang, M., . . . Mori, S. (2010). Longitudinal characterization of brain atrophy of a Huntington's disease mouse model by automated morphological analyses of magnetic resonance images. NeuroImage, 49(3), 2340-2351. [10] Millman, S., Rabi, I., Zacharias, J. (1938). On the nuclear moments of indium. Physical Review, 53(5), 384. [11] Bederson, J. B., Pitts, L. H., Germano, S. M., Nishimura, M. C., Davis, R. L., Bartkowski, H. M. (1986). Evaluation of 2, 3, 5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke, 17(6), 1304-1308. [12] Mulder, I. A., Khmelinskii, A., Dzyubachyk, O., de Jong, S., Rieff, N., Wermer, M. J., . . . van den Maagdenberg, A. M. (2017). Automated ischemic lesion segmentation in MRI mouse brain data after transient middle cerebral artery occlusion. Frontiers in neuroinformatics, 11, 3. [13] Chan, T. F., Vese, L. A. (2001). Active contours without edges. IEEE Transactions on image processing, 10(2), 266-277. [14] Stein, B., Lisin, D., Horowitz, J., Riseman, E., Whitten, G. (2001). Statistical and deformable model approaches to the segmentation of MR imagery and volume estimation of stroke lesions. Paper presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention. [15] Choi, C.-H., Yi, K. S., Lee, S.-R., Lee, Y., Jeon, C.-Y., Hwang, J., . . . Cha, S.-H. (2018). A novel voxel-wise lesion segmentation technique on 3.0-T diffusion MRI of hyperacute focal cerebral ischemia at 1 h after permanent MCAO in rats. Journal of Cerebral Blood Flow Metabolism, 38(8), 1371-1383. [16] Weinman, J., Bissias, G., Horowitz, J., Riseman, E., Hanson, A. (2003). Nonlinear diffusion scale-space and fast marching level sets for segmentation of MR imagery and volume estimation of stroke lesions. Paper presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention. [17] Charoensuk, W., Covavisaruch, N., Lerdlum, S., Likitjaroen, Y. (2015). Acute stroke brain infarct segmentation in DWI images. International Journal of Pharma Medicine and Biological Sciences, 4(2), 115. [18] Pevsner, P. H., Eichenbaum, J. W., Miller, D. C., Pivawer, G., Eichenbaum, K. D., Stern, A., . . . Koutcher, J. A. (2001). A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation. Journal of pharmacological and toxicological methods, 45(3), 227-233. [19] 磁振造影設備. Retrieved from http://tmbic.nccu.edu.tw/zh_tw/Instrument_related/intro11 [20] Schabitz, W.-R., Fisher, M. (1995). Diffusion weighted imaging for acute cerebral infarction. Neurological research, 17(4), 270-274. [21] Towill, L. E., Mazur, P. (1975). Studies on the reduction of 2, 3, 5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Canadian Journal of Botany, 53(11), 1097-1102. [22] Tetrazolium chloride. Retrieved from https://en.wikipedia.org/wiki/Tetrazolium_chloride [23] Cunningham, I. A., Shaw, R. (1999). Signal-to-noise optimization of medical imaging systems. JOSA A, 16(3), 621-632. [24] Libove, J., Singer, J. (1980). Resolution and signal-to-noise relationships in NMR imaging in the human body. Journal of physics E: Scientific instruments, 13(1), 38. [25] mean filter. Retrieved from https://www.supergeotek.com/tw/manuals/SA/10_3.htm [26] median filter. Retrieved from https://honglung.pixnet.net/blog/post/85115497-image-processing---%E4%B8%AD%E5%80%BC%E6%BF%BE%E6%B3%A2(median-filter) [27] alpha-trimmed filter. Retrieved from https://www.albertogramaglia.com/non-linear-smoothing-filters-for-image-processing/ [28] R. C. Gonzalez, R. E. W., and S. L. Eddins. (2004). Digital image processing using MATLAB (Pearson Education India ed.). [29] Chambers, M. C., Bhushan, C., Haldar, J. P., Leahy, R. M., Shattuck, D. W. (2015). Correcting inhomogeneity-induced distortion in FMRI using non-rigid registration. Paper presented at the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). [30] Xu, X., Dony, R. D. (2006). Fast fluid registration using inverse filtering for non-rigid image registration. Paper presented at the 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006. [31] Lee, S., Wolberg, G., Shin, S. Y. (1997). Scattered data interpolation with multilevel B-splines. IEEE transactions on visualization and computer graphics, 3(3), 228-244. [32] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE transactions on medical imaging, 18(8), 712-721. [33] B spline diffeomorphic registration. Retrieved from https://www.creatis.insa-lyon.fr/site7/en/node/45467 [34] Bhattacharyya, A. (1946). On a measure of divergence between two multinomial populations. Sankhyā: the indian journal of statistics, 401-406. [35] Lou, Y., Irimia, A., Vela, P. A., Chambers, M. C., Van Horn, J. D., Vespa, P. M., Tannenbaum, A. R. (2013). Multimodal deformable registration of traumatic brain injury MR volumes via the Bhattacharyya distance. IEEE Transactions on Biomedical Engineering, 60(9), 2511-2520. [36] Venet, L., Pati, S., Yushkevich, P., Bakas, S. (2019). Accurate and robust alignment of variable-stained histologic images using a general-purpose greedy diffeomorphic registration tool. arXiv preprint arXiv:1904.11929. [37] Joshi, S., Davis, B., Jomier, M., Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23, S151-S160. [38] Greedy : Fast Deformable Registration for 3D Medical Images. Retrieved from https://sites.google.com/view/greedyreg/home?authuser=0 [39] Advanced Normalization Tools. Retrieved from https://github.com/ANTsX/ANTs [40] Demon algorithm. Retrieved from https://en.wikipedia.org/wiki/Demon_algorithm [41] Pennec, X., Guttmann, C. R., Thirion, J.-P. (1998). Feature-based registration of medical images: Estimation and validation of the pose accuracy. Paper presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention. [42] Thirion, J.-P. (1996). Non-rigid matching using demons. Paper presented at the Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [43] Huang, S.-C., Cheng, F.-C., Chiu, Y.-S. (2012). Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Transactions on image processing, 22(3), 1032-1041. [44] Farid, H. (2001). Blind inverse gamma correction. IEEE Transactions on image processing, 10(10), 1428-1433. [45] Acharya, A., Giri, A. V. (2020). Contrast improvement using local gamma correction. Paper presented at the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). [46] McInerney, T., Terzopoulos, D. (1996). Deformable models in medical image analysis: a survey. Medical image analysis, 1(2), 91-108. [47] R. C. González, S. L. E., and R. E. Woods. (2010). Digital image processing using MATLAB. [48] Jayadevappa, D., Srinivas Kumar, S., Murty, D. (2011). Medical image segmentation algorithms using deformable models: a review. IETE Technical review, 28(3), 248-255. [49] Xu, C., Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on image processing, 7(3), 359-369. [50] Caselles, V., Catté, F., Coll, T., Dibos, F. (1993). A geometric model for active contours in image processing. Numerische mathematik, 66(1), 1-31. [51] Osher, S., Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1), 12-49. [52] Caselles, V., Kimmel, R., Sapiro, G. (1997). Geodesic active contours. International journal of computer vision, 22(1), 61-79. [53] Yang, J., Liu, C., Zhang, L. (2010). Color space normalization: Enhancing the discriminating power of color spaces for face recognition. Pattern Recognition, 43(4), 1454-1466. [54] Swain, G., Lenka, S. K. (2012). A Novel Approach to RGB Channel Based Image Steganography Technique. Int. Arab. J. e Technol., 2(4), 181-186. [55] Abidi, A. K. a. M. (2008). Digital color image processing. [56] Johnson, G. M., Fairchild, M. D. (2003). A top down description of S‐CIELAB and CIEDE2000. Color Research Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 28(6), 425-435. [57] van Dorsten, F. A., Olah, L., Schwindt, W., Grüne, M., Uhlenküken, U., Pillekamp, F., . . . Hoehn, M. (2002). Dynamic changes of ADC, perfusion, and NMR relaxation parameters in transient focal ischemia of rat brain. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 47(1), 97-104. [58] Lee, J., Le Saint, S., Lee, J.-K., Han, K. (2007). A new algorithm for computing infarct volume in a rat stroke model. Paper presented at the 2007 International Conference on Convergence Information Technology (ICCIT 2007). [59] Chan, Y.-K., Tsai, M.-H., Sun, P.-H., Chang, Y.-L., Tsaig, C.-S. (2018). Ratio Computation of Stroke Rat Brain Infarct Volume and Atrophy Volume Relative to the Normal Brain Volume. Paper presented at the 2018 International Conference on System Science and Engineering (ICSSE). [60] Yeh, S.-J., Tang, S.-C., Tsai, L.-K., Jeng, J.-S., Chen, C.-L., Hsieh, S.-T. (2018). Neuroanatomy-and pathology-based functional examinations of experimental stroke in rats: development and validation of a new behavioral scoring system. Frontiers in behavioral neuroscience, 12, 316. [61] Rousson, M., Deriche, R. (2002). A variational framework for active and adaptative segmentation of vector valued images. Paper presented at the Workshop on Motion and Video Computing, 2002. Proceedings. [62] Mille, J. (2009). Narrow band region-based active contours and surfaces for 2D and 3D segmentation. Computer Vision and Image Understanding, 113(9), 946-965. [63] Chen, M.-Y. Brain Extraction and Hemisphere Segmentation in Rat Brain Images after Stroke. [64] Courant, R., Friedrichs, K., Lewy, H. (1967). On the partial difference equations of mathematical physics. IBM journal of Research and Development, 11(2), 215-234. [65] Chang, H.-H., Zhuang, A. H., Valentino, D. J., Chu, W.-C. (2009). Performance measure characterization for evaluating neuroimage segmentation algorithms. NeuroImage, 47(1), 122-135. [66] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S. (2010). Slic superpixels. Retrieved from [67] Lee, J. C., Cho, G. S., Kim, H. J., Lim, J. H., Oh, Y. K., Nam, W., . . . Kim, W. K. (2005). Accelerated cerebral ischemic injury by activated macrophages/microglia after lipopolysaccharide microinjection into rat corpus callosum. Glia, 50(2), 168-181. [68] Munkres, J. (1999). Topology (2nd edition ed.). [69] Hausdorff Distance. Retrieved from https://en.wikipedia.org/wiki/Hausdorff_distance [70] Shi, X.-F., Ai, H., Lu, W., Cai, F. (2019). SAT: Free software for the semi-automated analysis of rodent brain sections with 2, 3, 5-triphenyltetrazolium chloride staining. Frontiers in neuroscience, 13, 102. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80829 | - |
| dc.description.abstract | "腦中風是造成全球人口死亡與失能的主要原因之一,近年來有許多腦中風之相關研究,在臨床實驗模型中,大多使用囓齒類動物之影像作為實驗研究依據。為了將中風區域分割出來,不僅需要專家耗時且費力的進行手動分割,也容易因為各人的評判標準不同而產生不一致之結果。因此本篇論文以大鼠作為實驗動物,利用其腦部磁振影像與經2,3,5-氯化三苯基四氮唑染色之大腦影像開發一自動演算法,將中風區域分割,以利研究者進行分析與研究。本篇論文主要以大腦動脈阻塞之大鼠作為研究對象,針對缺血性中風之鼠腦進行中風區分割。演算法分為以下幾個部分,首先因為缺血性中風位置之像素影像強度較高,利用左右腦之影像進行影像套合後之差值判定為中風區域初始輪廓,接著套用改良的可變形模型得到分割後的中風區影像。改良的可變形模型是基於窄帶區域的無邊緣主動輪廓模型,並將窄帶區域改成更局部的法線方向,並在迭代過程中對時間步長進行調整,使計算效率提升、準確率上升。本篇研究使用擴散權重磁振影像共有67隻大鼠, T2權重影像共有76隻大鼠, 2,3,5-氯化三苯基四氮唑染色影像共有43隻大鼠。結果顯示在上述三種不同鼠腦影像中,本研究演算法可以產生優良的大鼠大腦中風區分割結果。在相同的實驗設定下,本論文提出之方法優於其他可變形模型之分割結果。本研究提出一個全自動的鼠腦中風區分割方法,可以成為良好的輔佐工具,協助進行腦中風相關之研究。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:18:10Z (GMT). No. of bitstreams: 1 U0001-0110202114315100.pdf: 4765110 bytes, checksum: 2ad8c9e13e8ca3b5ba502622fde59131 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 第 1 章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 2 1.4 論文架構 3 第 2 章 文獻探討 4 2.1 磁振造影 4 2.2 2,3,5-氯化三苯基四氮唑染色鼠腦影像 5 2.3 消除磁振影像雜訊之濾波器 6 2.3.1 平均濾波器 7 2.3.2 中值濾波器 8 2.3.3 Alpha-修整平均濾波器 8 2.3.4 高斯濾波器 9 2.4 影像套合 10 2.4.1 B樣條影像套合 10 2.4.2 巴氏距離 12 2.4.3 貪婪演算法影像套合 12 2.4.4 惡魔演算法影像套合 13 2.5 影像增強 14 2.5.1 伽瑪校正 14 2.5.2 局部伽瑪校正 15 2.6 影像分割演算法 15 2.6.1 形態學 15 2.6.2 強度 16 2.6.3 可變形模型 17 2.7 色彩空間模型 21 2.7.1 RGB色彩空間 21 2.7.2 CIELAB色彩空間 21 2.8 鼠腦中風區域分割演算法 23 2.8.1 鼠腦磁振影像中風區域分割 23 2.8.2 鼠腦TTC影像中風區域分割 24 第 3 章 研究方法設計 25 3.1 資料集 25 3.2 磁振影像中風區分割 25 3.2.1 影像預處理 27 3.2.2 影像套合 27 3.2.3 改進的可變形模型 30 3.2.4 利用改進模型進行分割 34 3.3 TTC影像中風區分割 35 3.3.1 影像預處理 36 3.3.2 中風區域初始輪廓 36 3.3.3 胼胝體去除 36 3.3.4 中風區域初始輪廓閥值計算 39 3.3.5 利用改進模型進行分割 39 第 4 章 實驗結果與討論 41 4.1 實驗說明 41 4.1.1 實驗環境 41 4.1.2 資料集 41 4.1.3 評估標準 41 4.2 參數設定 44 4.2.1 擴散權重磁振影像 44 4.2.2 T2權重影像 47 4.2.3 TTC影像 50 4.3 中風區分割結果 54 4.3.1 擴散權重磁振影像大腦中風區分割結果 54 4.3.2 T2權重影像大腦中風區分割結果 66 4.3.3 TTC影像大腦中風區分割結果 80 第 5 章 結論與未來展望 92 5.1 結論 92 5.2 未來展望 92 參考文獻 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水平集方法 | zh_TW |
| dc.subject | 缺血型中風 | zh_TW |
| dc.subject | 2,3,5-氯化三苯基四氮唑染色影像 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 影像套合 | zh_TW |
| dc.subject | 磁振影像 | zh_TW |
| dc.subject | 動態輪廓模型 | zh_TW |
| dc.subject | Magnetic resonance imaging (MRI) | en |
| dc.subject | 5-triphenyl tetrazolium chloride (TTC) | en |
| dc.subject | ischemic stroke | en |
| dc.subject | image segmentation | en |
| dc.subject | image registration | en |
| dc.subject | deformable model | en |
| dc.subject | level set method | en |
| dc.title | 基於水平集可變形模型之鼠腦影像中風區域分割之研究 | zh_TW |
| dc.title | Infarct Region Segmentation in Rat Brain Images After Stroke Using Level Set-Based Deformable Models | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江明彰(Hsin-Tsai Liu),張瑞益(Chih-Yang Tseng),葉馨喬 | |
| dc.subject.keyword | 磁振影像,2,3,5-氯化三苯基四氮唑染色影像,缺血型中風,影像分割,影像套合,動態輪廓模型,水平集方法, | zh_TW |
| dc.subject.keyword | Magnetic resonance imaging (MRI),2,3,5-triphenyl tetrazolium chloride (TTC),ischemic stroke,image segmentation,image registration,deformable model,level set method, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU202103498 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0110202114315100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
