請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80823完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志宏(Zse-hong Tsai) | |
| dc.contributor.author | Po-Chun Wang | en |
| dc.contributor.author | 王柏鈞 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:17:55Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:17:55Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-03 | |
| dc.identifier.citation | E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on ieee 802.11ax high efficiency wlans,” IEEE Communications Surveys Tutorials, vol. 21, pp. 197–216, First quarter 2019. L. Jay, B. Behrad, and K. Hung-An, “A cyber-physical systems architecture for industry 4.0-based manufacturing systems,” Manufacturing Letters, pp. 18–23, 2015. J. Lee, “Ofdma-based hybrid channel access for ieee 802.11ax wlan,” in Proc. of 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC), pp. 188–193, 2018. F. Wilhelmi, S. Barrachina-Muñoz, and B. Bellalta, “On the performance of the spatial reuse operation in ieee 802.11ax wlans,” in Proc. of 2019 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–6, 2019. A. Malhotra, M. Maity, and A. Dutta, “How much can we reuse? an empirical analysis of the performance benefits achieved by spatial-reuse of ieee 802.11ax,” in Proc. of 2019 11th International Conference on Communication Systems Networks (COMSNETS), pp. 432–435, 2019. J. Mvulla, E. Park, M. Adnan, and J. Son, “Analysis of asymmetric hidden node problem in ieee 802.11ax heterogeneous wlans,” in Proc. of 2015 International Conference on Information and Communication Technology Convergence (ICTC), pp. 539–544, 2015. J. Mvulla and E. Park, “Enhanced dual carrier sensing with transmission time control for fair spatial reuse in heterogeneous and dense wlans,” IEEE Access, vol. 6, pp. 22140–22155, 2018. S. Ioannis, F. Marcin, V. Seiamak, R. Jonathan, and T. Rahim, “Evaluation of the dsc algorithm and the bss color scheme in dense cellular-like ieee 802.11ax deployments,” in Proc. of 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–7, 2016. E. Khorov, A. Kiryanov, S. Schelstraete, and G. Wang, “Multiple navs for spatial reuse. [online]. available: https://mentor.ieee.org/802.11/dcn/15/11-15-1348-00-00ax-multiplenavs-for-spatial-reuse.pptx,” tech. rep., 2015. D. Bertsekas and J. Tsitsiklis, Introduction to Probability. Athena Scientific, September 2008. “Ieee standard for information technology–telecommunications and information exchange between systems - local and metropolitan area networks–specific requirements - part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 2: Sub 1 ghz license exempt operation,” IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016), pp. 279–282, May 2017. M. Nurchis and B. Bellalta, “Target wake time: Scheduled access in ieee 802.11ax wlans,” IEEE Wireless Communications, vol. 26, no. 2, pp. 142–150, 2019. T. Sebastian, Connectivity Prediction in Mobile Ad Hoc Networks for Real-Time Control. Books On Demand, September 2015. C. Aditya, K. Alexander, P. Anna, B. Biljana, D. Christophe, D. Jordan, K. Katerina, B. Mathew, A. Michele, P. Natale, G. Parikshit, D. B. Peter, G. Rediet, G. Remy, H. Robert, D.Sébastien, A. Stefano, S. Steven, Z. Theodore, H. Tom, P. Tommaso, Z. Tom, and J. Vivek, ns-3.33, 3 ed., 6 2021. S. Tayamon, G. Wikström, K. P. Moreno, J. Söder, Y. Wang, and F. Mestanov, Analysis of the potential for increased spectral reuse in wireless lan,” in Proc. of 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1963–1967, 2015. M. Maadani and S. A. Motamedi, “Edca delay analysis of spatial diversity in ieee 802.11-based real-time wireless sensor and actuator networks,” in Proc. of 2011 8th International Symposium on Wireless Communication Systems, pp. 675–679, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80823 | - |
| dc.description.abstract | 隨著智慧工廠自動化流程的發展,對應的安全規範以及對機器安全的要求也隨之提升,尤其在人機協作的環境下,如何維持通訊穩定度成為值得探討的議題。 在可提供信賴的穩定傳輸的協定中,本論文在資通訊技術的選用上,採用IEEE 802.11ax作為智慧工廠Cyber-Physical System (CPS) 無線區網的主要使用科技。然IEEE 802.11ax 在高密度無線區網環境下,其單位面積服務品質雖多具有十分優異的表現,卻仍存在潛在色碼衝突導致的不穩定傳輸風險。 我們因此在智慧工廠CPS導入分散式色碼衝突解決系統,使其更新色碼的流程完整成型,並降低色碼衝突發生的可能性。此分散式系統僅需要各個Basic Service Set (BSS)裝置間交流訊息,並不需要中央控制台的參與,因此僅需要額外輕量的運算資源以及少量的額外儲存空間,便足夠應對智慧工廠大規模無線區網的布建環境。 經由最後的模擬實驗證明,在各種無線區網布建的規模中,我們導入的分散式色碼衝突解決系統都可以大幅度的降低色碼碰撞機率。不僅達到原本降低色碼衝突的問題,更表現出對不同網路布建的高度適應性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:17:55Z (GMT). No. of bitstreams: 1 U0001-0310202101152400.pdf: 22227420 bytes, checksum: b8524da2f61a33b1c8137fea2a3b15a2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………..i 摘要……….…………………………………………………………………………. ii ABSTRACT………………………………………………………………………… iii LIST OF TABLE…………………………………………………………………….vi LIST OF FIGURES…………………………………………………………………vii CHAPTE 1 INTRODUCTION……………..…………………………………….. 1 1.1 Background and literature review………………………………………… 2 1.2 Motivation………………………………………………………………… 3 CHAPTE 2 SYSTEM ARCHITECTURE……….……………………………… 7 2.1 Network protocol stack and operating environment……………………… 7 2.2 Key features in IEEE 802.11ax…………………………………………… 8 2.2.1 Multiple User Uplinks/Downlinks…………………………………. 9 2.2.2 Color Address………………………………………………………. 10 2.2.3 Spatial Reuse……………………………………………………….. 11 2.2.4 Power control………………………………………………………. 13 2.3 The concept of Color Change Mechanism……………………………….. 15 CHAPTE 3 DCCA SYSTEM AND RELATED MODELS………..…………......18 3.1 The DCCA system………………………………………………………….18 3.1.1 Color Selection……………………………………………………….19 3.1.2 Color Collision Related Signal……………………………………….22 3.1.3 Isolating potentially Risky Traffic…………………………………...25 3.1.4 Priority Management…………………………………………………25 3.2 Subsystem model…………………….……………………………………..26 3.2.1 Path loss model………………………………………………………26 3.2.2 Mobility models………………….…………………………………..27 3.3 State machine in DCCA implementation…………………………………...33 3.4 Performance measures……………………………………………………...37 3.4.1 System Reliable-Transmission Availability…………………………38 3.4.2 System Channel-Contention Severity………………………………..38 3.4.3 System Transmission Efficiency……………………………………..39 CHAPTE 4 PERFORMANCE EVALUATION………………….........................40 4.1 The software implementation of DCCA simulation………………………..40 4.2 Color Candidate List behavior in 8 cases…………………………………..41 4.3 A case study of Transient behavior…………………………………………41 4.4 Parameter Setting for medium period simulating…………………………..51 4.5 Experiment Results…………………………………………………………58 4.5.1 Scenario 1: 43% mobile STAs among all served STAs……………...59 4.5.2 Scenario 1: 86% mobile STAs among all served STAs…………...…60 4.5.3 A comparison of results from Scenario 1 and Scenario 2……………63 4.6 The evaluations of DCCA under various numbers of STAs………………..65 4.6.1 The adoption of Nonstop Modified Random-walk…………………..65 4.6.2 The adoption of Intermittent Modified Random-walk……………….66 4.6.3 The adoption of Work-Zone based Random-walk…………………...67 CHAPTE 5 CONCLUSION AND FUTURE WORK…………………………..69 5.1 Conclusion………………………………………………………………….69 5.2 Future Work………………………………………………………………...70 APPENDIX A ̶COLOR SELECTION PROCEDURE…………………………...71 APPENDIX B DETAIL DESCRIPTION OF STATE MACHINE IMPLEMENTED IN DCCA……………………82 | |
| dc.language.iso | en | |
| dc.subject | 空間再利用 | zh_TW |
| dc.subject | 智慧工廠 | zh_TW |
| dc.subject | 802.11ax | zh_TW |
| dc.subject | 高效率無線區域網路 | zh_TW |
| dc.subject | 色碼衝突 | zh_TW |
| dc.subject | WiFi 6 | en |
| dc.subject | color collision | en |
| dc.subject | smart factory | en |
| dc.subject | 802.11ax | en |
| dc.subject | spatial reuse | en |
| dc.title | 智慧工廠無線區網分散式色碼衝突解決系統 | zh_TW |
| dc.title | A Distributed Color Collision Avoidance System for Smart Factory WLAN | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馮輝文(Hsin-Tsai Liu),鍾耀梁(Chih-Yang Tseng),林風 | |
| dc.subject.keyword | 智慧工廠,802.11ax,高效率無線區域網路,色碼衝突,空間再利用, | zh_TW |
| dc.subject.keyword | smart factory,802.11ax,WiFi 6,color collision,spatial reuse, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU202103513 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0310202101152400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 21.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
