Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80821
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorSz-Han Chenen
dc.contributor.author陳思翰zh_TW
dc.date.accessioned2022-11-24T03:17:50Z-
dc.date.available2021-11-05
dc.date.available2022-11-24T03:17:50Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-08
dc.identifier.citation[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303. [2] B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004. 375-377: p. 213-218. [3] G. Okamoto, PASSIVE FILM OF 18-8 STAINLESS-STEEL STRUCTURE AND ITS FUNCTION. Corrosion Science, 1973. 13(6): p. 471-489. [4] H.H. Uhlig, PASSIVITY IN METALS AND ALLOYS. Corrosion Science, 1979. 19(11): p. 777-791. [5] P. Marcus and I. Olefjord, A ROUND ROBIN ON COMBINED ELECTROCHEMICAL AND AES ESCA CHARACTERIZATION OF THE PASSIVE FILMS ON FE-CR AND FE-CR-MO ALLOYS. Corrosion Science, 1988. 28(6): p. 589-602. [6] V. Maurice, W.P. Yang, and P. Marcus, X-ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces. Journal of the Electrochemical Society, 1998. 145(3): p. 909-920. [7] C.O.A. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth. Electrochimica Acta, 2003. 48(9): p. 1093-1104. [8] V. Maurice, H. Peng, L.H. Klein, A. Seyeux, S. Zanna, and P. Marcus, Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces. Faraday Discuss, 2015. 180: p. 151-70. [9] B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun, 2016. 7: p. 10602. [10] D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511. [11] W. Steurer, Single-phase high-entropy alloys – A critical update. Materials Characterization, 2020. 162. [12] X. Yang, Y. Zhang, and P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys. Procedia Engineering, 2012. 36: p. 292-298. [13] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048. [14] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): p. 4062-4074. [15] Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017. 84: p. 153-157. [16] A. Gali and E.P. George, Tensile properties of high- and medium-entropy alloys. Intermetallics, 2013. 39: p. 74-78. [17] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): p. 5743-5755. [18] W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 2013. 68(7): p. 526-529. [19] F. Otto, Y. Yang, H. Bei, and E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 2013. 61(7): p. 2628-2638. [20] B. Cantor, Multicomponent and High Entropy Alloys. Entropy, 2014. 16(9): p. 4749-4768. [21] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014. 345(6201): p. 1153-1158. [22] B. Schuh, F. Mendez-Martin, B. Volker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia, 2015. 96: p. 258-268. [23] W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950°C in various oxygen-containing atmospheres. Corrosion Science, 2016. 108: p. 209-214. [24] G. Laplanche, U.F. Volkert, G. Eggeler, and E.P. George, Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy. Oxidation of Metals, 2016. 85(5-6): p. 629-645. [25] Z.G. Zhu, K.H. Ma, Q. Wang, and C.H. Shek, Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys. Intermetallics, 2016. 79: p. 1-11. [26] Y. Zhao, D.-H. Lee, M.-Y. Seok, J.-A. Lee, M.P. Phaniraj, J.-Y. Suh, H.-Y. Ha, J.-Y. Kim, U. Ramamurty, and J.-i. Jang, Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scripta Materialia, 2017. 135: p. 54-58. [27] H. Luo, Z. Li, A.M. Mingers, and D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corrosion Science, 2018. 134: p. 131-139. [28] Y.K. Kim, Y.A. Joo, H.S. Kim, and K.A. Lee, High temperature oxidation behavior of Cr-Mn-Fe-Co-Ni high entropy alloy. Intermetallics, 2018. 98: p. 45-53. [29] M. Vaidya, K. Guruvidyathri, and B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. Journal of Alloys and Compounds, 2019. 774: p. 856-864. [30] H. Torbati-Sarraf, M. Shabani, P.D. Jablonski, G.J. Pataky, and A. Poursaee, The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures. Materials Design, 2019. 184. [31] L. Wang, D. Mercier, S. Zanna, A. Seyeux, M. Laurent-Brocq, L. Perrière, I. Guillot, and P. Marcus, Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS. Corrosion Science, 2020. 167. [32] Y. Wang, J. Jin, M. Zhang, X. Wang, P. Gong, J. Zhang, and J. Liu, Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 solution. Journal of Alloys and Compounds, 2020. [33] J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, and J.Q. Wang, Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution. Journal of Alloys and Compounds, 2020. 819. [34] H. Luo, S. Zou, Y.-H. Chen, Z. Li, C. Du, and X. Li, Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution. Corrosion Science, 2020. 163. [35] K.-M. Hsu and C.-S. Lin, Microstructural and electrochemical characterization of the passive film on a 50-kg hot rolled FeCrNiCoMn high entropy alloy. Materials Today Communications, 2021. 26. [36] Y.J. Hsu, W.C. Chiang, and J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Materials Chemistry and Physics, 2005. 92(1): p. 112-117. [37] Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corrosion Science, 2010. 52(3): p. 1026-1034. [38] Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, and S.J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2011. 509(5): p. 1607-1614. [39] M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Muñoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, and E. Karapetrova, Absence of long-range chemical ordering in equimolar FeCoCrNi. Applied Physics Letters, 2012. 100(25). [40] M.S. Lucas, D. Belyea, C. Bauer, N. Bryant, E. Michel, Z. Turgut, S.O. Leontsev, J. Horwath, S.L. Semiatin, M.E. McHenry, and C.W. Miller, Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys. Journal of Applied Physics, 2013. 113(17). [41] W.-R. Wang, W.-L. Wang, and J.-W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds, 2014. 589: p. 143-152. [42] Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corrosion of Al CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Science, 2017. 119: p. 33-45. [43] C.-H. Tsau, S.-X. Lin, and C.-H. Fang, Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys. Materials Chemistry and Physics, 2017. 186: p. 534-540. [44] W. Wang, J. Wang, H. Yi, W. Qi, and Q. Peng, Effect of Molybdenum Additives on Corrosion Behavior of (CoCrFeNi)100-xMox High-Entropy Alloys. Entropy (Basel), 2018. 20(12). [45] Z. Niu, J. Xu, T. Wang, N. Wang, Z. Han, and Y. Wang, Microstructure, mechanical properties and corrosion resistance of CoCrFeNiW (x = 0, 0.2, 0.5) high entropy alloys. Intermetallics, 2019. 112. [46] P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, and R. Goodall, The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution. Corrosion Science, 2020. 172. [47] W. Wang, J. Wang, Z. Sun, J. Li, L. Li, X. Song, X. Wen, L. Xie, and X. Yang, Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-Mo high-entropy alloys. Journal of Alloys and Compounds, 2020. 812. [48] W. Chai, T. Lu, and Y. Pan, Corrosion behaviors of FeCoNiCr (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation. Intermetallics, 2020. 116. [49] Z. Niu, Y. Wang, C. Geng, J. Xu, and Y. Wang, Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMo (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys. Journal of Alloys and Compounds, 2020. 820. [50] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005. 36A(4): p. 881-893. [51] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 2014. 62: p. 105-113. [52] Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016. 534(7606): p. 227-+. [53] J.W. Yeh, Recent progress in high-entropy alloys. Annales De Chimie-Science Des Materiaux, 2006. 31(6): p. 633-648. [54] J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys. Jom, 2013. 65(12): p. 1759-1771. [55] J.-W. Yeh, Physical Metallurgy of High-Entropy Alloys. Jom, 2015. 67(10): p. 2254-2261. [56] S. Guo and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 2011. 21(6): p. 433-446. [57] E.J. Pickering and N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects. International Materials Reviews, 2016. 61(3): p. 183-202. [58] L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, and P.K. Liaw, Lattice-distortion dependent yield strength in high entropy alloys. Materials Science and Engineering: A, 2020. 784. [59] Y.S. Zhang and X.M. Zhu, Electrochemical polarization and passive film analysis of austenitic Fe-Mn-Al steels in aqueous solutions. Corrosion Science, 1999. 41(9): p. 1817-1833. [60] Y. Tang, Y. Zuo, J. Wang, X. Zhao, B. Niu, and B. Lin, The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions. Corrosion Science, 2014. 80: p. 111-119. [61] Z. Fan, S. Zhao, K. Jin, D. Chen, Y.N. Osetskiy, Y. Wang, H. Bei, K.L. More, and Y. Zhang, Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys. Acta Materialia, 2019. 164: p. 283-292. [62] K. Park and H. Kwon, Effects of Mn on the localized corrosion behavior of Fe-18Cr alloys. Electrochimica Acta, 2010. 55(9): p. 3421-3427. [63] M. Femenia, J. Pan, and C. Leygraf, In situ local dissolution of duplex stainless steels in 1 M H2SO4+1 M NaCl by electrochemical scanning tunneling microscopy. Journal of the Electrochemical Society, 2002. 149(6): p. B187-B197. [64] I.H. Lo and W.T. Tsai, Effect of selective dissolution on fatigue crack initiation in 2205 duplex stainless steel. Corrosion Science, 2007. 49(4): p. 1847-1861. [65] V.S. Rao and V. Raja, Anodic polarization and surface composition of Fe-16Al-0.14C alloy in 0.25 M sulfuric acid. Corrosion, 2003. 59(7): p. 575-583. [66] K.-M. Hsu, S.-H. Chen, and C.-S. Lin, Microstructure and corrosion behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4. Corrosion Science, 2021. 190: p. 109694. [67] E. Gardin, S. Zanna, A. Seyeux, A. Allion-Maurer, and P. Marcus, XPS and ToF-SIMS characterization of the surface oxides on lean duplex stainless steel - Global and local approaches. Corrosion Science, 2019. 155: p. 121-133. [68] A.S.T.M. A380/A380M-17, Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems. 2017, ASTM International: West Conshohocken, PA. [69] T. Li, O.J. Swanson, G.S. Frankel, A.Y. Gerard, P. Lu, J.E. Saal, and J.R. Scully, Localized corrosion behavior of a single-phase non-equimolar high entropy alloy. Electrochimica Acta, 2019. 306: p. 71-84. [70] S.P. Wang and J. Xu, TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater Sci Eng C Mater Biol Appl, 2017. 73: p. 80-89. [71] M.G. Poletti, S. Branz, G. Fiore, B.A. Szost, W.A. Crichton, and L. Battezzati, Equilibrium high entropy phases in X-NbTaTiZr (X = Al,V,Cr and Sn) multiprincipal component alloys. Journal of Alloys and Compounds, 2016. 655: p. 138-146. [72] M. Nishimoto, I. Muto, Y. Sugawara, and N. Hara, Passivity of (Mn,Cr)S inclusions in type 304 stainless steel: The role of Cr and the critical concentration for preventing inclusion dissolution in NaCl solution. Corrosion Science, 2020. 176. [73] K. Oikawa, S.I. Sumi, and K. Ishida, The effects of addition of deoxidation elements on the morphology of (Mn,Cr)S inclusions in stainless steel. Journal of Phase Equilibria, 1999. 20(3): p. 215-223. [74] R.A. Robie and B.S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10^5 pascals) pressure and at higher temperatures, in Bulletin. 1995. [75] S.R. Shatynski, The thermochemistry of transition metal sulfides. Oxidation of Metals, 1977. 11(6): p. 307-320. [76] G.S. Eklund, INITIATION OF PITTING AT SULFIDE INCLUSIONS IN STAINLESS-STEEL. Journal of the Electrochemical Society, 1974. 121(4): p. 467-473. [77] G.S. Frankel, Pitting corrosion of metals - A review of the critical factors. Journal of the Electrochemical Society, 1998. 145(6): p. 2186-2198. [78] M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, and D.S. McPhail, Why stainless steel corrodes. Nature, 2002. 415(6873): p. 770-774. [79] E.G. Webb and R.C. Alkire, Pit initiation at single sulfide inclusions in stainless steel - I. Electrochemical microcell measurements. Journal of the Electrochemical Society, 2002. 149(6): p. B272-B279. [80] C. Punckt, M. Bolscher, H.H. Rotermund, A.S. Mikhailov, L. Organ, N. Budiansky, J.R. Scully, and J.L. Hudson, Sudden onset of pitting corrosion on stainless steel as a critical phenomenon. Science, 2004. 305(5687): p. 1133-1136. [81] P. Schmuki, H. Hildebrand, A. Friedrich, and S. Virtanen, The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion. Corrosion Science, 2005. 47(5): p. 1239-1250. [82] H. Krawiec, V. Vignal, O. Heintz, R. Oltra, and J.M. Olive, Influence of the chemical dissolution of MnS inclusions on the electrochemical behavior of stainless steels. Journal of the Electrochemical Society, 2005. 152(7): p. B213-B219. [83] H. Krawiec, V. Vignal, O. Heintz, and R. Oltra, Influence of the dissolution of MnS inclusions under free corrosion and potentiostatic conditions on the composition of passive films and the electrochemical behaviour of stainless steels. Electrochimica Acta, 2006. 51(16): p. 3235-3243. [84] I. Muto, Y. Izumiyama, and N. Hara, Microelectrochemical measurements of dissolution of MnS inclusions and morphological observation of metastable and stable pitting on stainless steel. Journal of the Electrochemical Society, 2007. 154(8): p. C439-C444. [85] A. Chiba, I. Muto, Y. Sugawara, and N. Hara, Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions. Journal of the Electrochemical Society, 2013. 160(10): p. C511-C520. [86] N. Shimahashi, I. Muto, Y. Sugawara, and N. Hara, Effects of Corrosion and Cracking of Sulfide Inclusions on Pit Initiation in Stainless Steel. Journal of The Electrochemical Society, 2014. 161(10): p. C494-C500. [87] C.D. Taylor, P. Lu, J. Saal, G.S. Frankel, and J.R. Scully, Integrated computational materials engineering of corrosion resistant alloys. Npj Materials Degradation, 2018. 2(1): p. 10. [88] I. Muto, S. Kurokawa, and N. Hara, Microelectrochemical Investigation of Anodic Polarization Behavior of CrS Inclusions in Stainless Steels. Journal of The Electrochemical Society, 2009. 156(11). [89] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions. 1974: National Association of Corrosion Engineers. [90] A.Y. Gerard, J. Han, S.J. McDonnell, K. Ogle, E.J. Kautz, D.K. Schreiber, P. Lu, J.E. Saal, G.S. Frankel, and J.R. Scully, Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film. Acta Materialia, 2020. 198: p. 121-133. [91] X. Li, J. Han, P. Lu, J.E. Saal, G.B. Olson, G.S. Frankel, J.R. Scully, and K. Ogle, Communication—Dissolution and Passivation of a Ni-Cr-Fe-Ru-Mo-W High Entropy Alloy by Elementally Resolved Electrochemistry. Journal of The Electrochemical Society, 2020. 167(6). [92] V. Maurice, H. Peng, L.H. Klein, A. Seyeux, S. Zanna, and P. Marcus, Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces. Faraday Discussions, 2015. 180: p. 151-170. [93] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011. 257(7): p. 2717-2730. [94] S. Haupt and H.H. Strehblow, A COMBINED SURFACE ANALYTICAL AND ELECTROCHEMICAL STUDY OF THE FORMATION OF PASSIVE LAYERS ON FE/CR ALLOYS IN 0.5 M H2SO4. Corrosion Science, 1995. 37(1): p. 43-54. [95] W.A. Badawy, F.M. Al-Kharafi, and J.R. Al-Ajmi, Electrochemical behaviour of cobalt in aqueous solutions of different pH. Journal of Applied Electrochemistry, 2000. 30(6): p. 693-704. [96] P. Keller and H.H. Strehblow, XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4. Corrosion Science, 2004. 46(8): p. 1939-1952. [97] L.-F. Li, P. Caenen, M. Daerden, D. Vaes, G. Meers, C. Dhondt, and J.-P. Celis, Mechanism of single and multiple step pickling of 304 stainless steel in acid electrolytes. Corrosion Science, 2005. 47(5): p. 1307-1324. [98] Y. Lu, S. Guo, Y. Yang, Y. Liu, Y. Zhou, S. Wu, C. Zhao, and J. Lin, Effect of thermal treatment and fluoride ions on the electrochemical corrosion behavior of selective laser melted CoCrW alloy. Journal of Alloys and Compounds, 2018. 730: p. 552-562. [99] Z.B. Wang, H.X. Hu, and Y.G. Zheng, Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions. Corrosion Science, 2018. 130: p. 203-217. [100] L.T. Wang, A. Seyeux, and P. Marcus, Thermal stability of the passive film formed on 316L stainless steel surface studied by ToF-SIMS. Corrosion Science, 2020. 165: p. 7. [101] Z.B. Wang, H.X. Hu, C.B. Liu, and Y.G. Zheng, The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05M sulfuric acid. Electrochimica Acta, 2014. 135: p. 526-535.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80821-
dc.description.abstract"高熵合金是一種2004年被提出的一種新型合金,近年相關研究也如雨後春筍般大量成長著。其中又以Cantor Alloy能形成穩定FCC單相且在低溫也優秀的機械特性,更是被廣為研究著,未來很有機會應用於工業界,因此本研究使用50公斤級大型鑄件去探討如果在嚴苛的工業環境下被當作結構用件應用著,是否能具有足夠的耐蝕性。而其中的Mn元素曾經有相關論文提出可能對抗蝕性有負面的影響,因此同時也使用低Mn材甚至是無Mn的Cantor Alloy作為對照,量化Mn元素對於Cantor Alloy抗蝕方面究竟有怎樣的影響。 經過SEM-EDX分析還有電化學實測後發現,鑄材的FeCrNiCoMnx(x=1.0, 0.6,0.3,0)高熵合金含有大量偏析,會使得電化學的再現性不佳,並且出現局部區域優先溶解的現象,所以為了減少偏析帶來的干擾,鑄材的FeCrNiCoMnx高熵合金會進行熱軋均質化的熱處理消除掉偏析。 經過熱軋均質化後的FeCrNiCoMnx高熵合金可以完全消除偏析並維持FCC單相結構,然而有許多在鑄造時留下的介在物並無法靠熱處理消除。這些介在物主要由熱力學最穩定的硫化物及氧化物依不同比例所構成可分成四大類,每種合金含有不盡相同種類的介在物,而其中Mn0.6(FeCrNiCoMn0.6)含有最高含量的介在物。介在物對電化學性質的影響透過極化曲線還有浸泡測試可以發現,介在物四周會容易因為電化學性質不同而有加凡尼腐蝕的可能,成為腐蝕的起始位置,導致所有FeCrNiCoMnx高熵合金的腐蝕速率的遠高於304L不鏽鋼。FeCrNiCoMnx高熵合金的鈍化性質則藉由EIS電化學測試和XPS分析鈍化層後得知Mn不但容易產生MnS型介在物,還會和Cr競爭氧化,導致FeCrNiCoMnx高熵合金中的Mn0.6、Mn0.3(FeCrNiCoMn0.3)即使底材有比304L不鏽鋼還多的Cr,鈍化層中最主要的鈍化物種Cr2O3含量不及於304L不鏽鋼,鈍化性質也是一樣的趨勢。 為了消除掉表面的介在物,本研究引入了不鏽鋼的酸洗配方,分別是氫氟酸和硝酸混合溶液的含氫氟酸配方和僅使用硝酸溶液的硝酸配方。雖然酸洗後無法直接達到陽極極化的鈍化效果,仍需要後續陽極極化處理,但仍然可以看到酸洗有一定程度上消除介在物的效果。含氫氟酸配方能夠消除掉表面大多數的介在物,而硝酸配方則只能消除掉硫化物的介在物,氧化物的清除效果有限,然而經由SEM影像可以發現氫氟酸雖可以清除掉大多數介在物,但同樣也會攻擊蝕刻晶界並讓介在物原本位置附近出現大量孔洞,可能會對後續鈍化有負面的影響。陽極極化後電化學EIS測試也發現使用含氫氟酸配方酸洗後試樣僅能小幅提升鈍化性質,對於部分合金甚至有負面的影響;使用硝酸配方酸洗後的試樣大多都可以大幅提升鈍化性質,僅Mn0.6可能因為酸洗後仍留有些許介在物存在而效果沒有那麼明顯,但酸洗對後續鈍化上依舊是帶來正面的效應。XPS的鈍化層分析中則發現,經含氫氟酸配方酸洗,表面會有大量F離子殘留,會導致鈍化層中富集的Cr2O3轉換成鈍化性質稍差一些的Cr(OH)3,且會和O競爭Cr,形成CrF後導致鈍化膜的融解,而在硝酸配方酸洗後卻沒有發現這樣的現象,依然是Cr2O3富集,甚至含有更多,因此,酸洗後鈍化性質上,含氫氟酸配方的酸洗效益遠遠不及使用硝酸配方進行酸洗所帶來的效益大。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:17:50Z (GMT). No. of bitstreams: 1
U0001-0310202116264400.pdf: 10479786 bytes, checksum: a2be9998eb44fc12a54c71d9aa5dce86 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"目錄 碩士學位論文口試委員會審定書 i 誌謝 ii 摘要 iv Abstract vi 總目錄 ix 圖目錄 xii 表目錄 xix 第1章 前言 1 第2章 文獻回顧 2 2.1 高熵合金 2 2.1.1 高熵合金簡介 2 2.1.2 高熵合金的定義 4 2.1.3 高熵合金的四大特性 5 2.1.4 Cantor Alloy 9 2.2 高熵合金之腐蝕行為 11 2.2.1 Mn的影響 11 2.2.2 Al的影響 21 2.2.3 Cr的影響 29 2.2.4 Cu的影響 34 第3章 實驗步驟與方法 39 3.1 試片製備 39 3.1.1 鑄材 (As-Cast) 39 3.1.2 熱軋均質化材 (Homogenized-Hot Rolled, H-HR)註1 39 3.1.3 304L不鏽鋼 40 3.1.4 試片前處理 40 3.2 電化學測試 43 3.2.1 開路電位平衡 43 3.2.2 動電位極化曲線 43 3.2.3 硫酸系統的陽極處理與鈍化膜穩定之觀察 44 3.2.4 電化學阻抗譜(EIS) 44 3.2.5 重量損失測試 45 3.3 顯微結構分析方法 46 3.3.1 掃描式電子顯微鏡(SEM) 46 3.3.2 能量散射X射線譜(EDX) 46 3.3.3 電感耦合電漿體質譜法(ICP-MS) 47 3.3.4 X-Ray光電子能譜儀(XPS) 47 3.4 酸洗化學配方 49 第4章 實驗結果與討論 51 4.1 鑄材(As-Cast) 51 4.1.1 基材的偏析 51 4.1.2 偏析對於電化學測試的影響 56 4.2 熱軋均質化材(H-HR) 59 4.2.1 熱處理後的基本性質 59 4.2.2 FeCrNiCoMnx高熵合金中的介在物(Inclusions) 65 4.2.3 動電位極化曲線 74 4.2.4 浸泡測試 76 4.2.5 EIS測試 82 4.2.6 XPS分析 87 4.3 酸洗的成效 92 4.3.1 EIS鈍化測試 92 4.3.2 SEM-EDX顯微結構觀察 102 4.3.3 XPS的鑑定 109 第5章 結論 117 第6章 未來工作 119 第7章 參考文獻 120 "
dc.language.isozh-TW
dc.subject鈍化膜zh_TW
dc.subject高熵合金zh_TW
dc.subject介在物zh_TW
dc.subject偏析zh_TW
dc.subjectCantor Alloyzh_TW
dc.subject酸洗zh_TW
dc.subjectCantor alloyen
dc.subjectpassive filmen
dc.subjectpicklingen
dc.subjectinclusionen
dc.subjectelement segregationen
dc.subjectHigh entropy alloyen
dc.title"FeCrNiCoMnx(x=1.0,0.6,0.3,0)高熵合金於0.5M硫酸中的抗蝕性質之研究"zh_TW
dc.title"The Corrosion Behavior of FeCrNiCoMnx(x=1.0,0.6,0.3,0) High Entropy Alloys in 0.5M Sulfuric Acid Solution"en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-9094-0466
dc.contributor.oralexamcommittee顏鴻威(Hsin-Tsai Liu),蔡文達(Chih-Yang Tseng),李岳聯,葉宗洸
dc.subject.keyword高熵合金,Cantor Alloy,偏析,介在物,酸洗,鈍化膜,zh_TW
dc.subject.keywordHigh entropy alloy,Cantor alloy,element segregation,inclusion,pickling,passive film,en
dc.relation.page131
dc.identifier.doi10.6342/NTU202103517
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0310202116264400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved