請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80807完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬(CHUN-PIN LIN) | |
| dc.contributor.author | Rupali Bhorade | en |
| dc.contributor.author | 白儒曼 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:17:17Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-24T03:17:17Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-07 | |
| dc.identifier.citation | 1. Ahmed, G.M., et al., Tissue engineering approaches for enamel, dentin, and pulp regeneration: an update. Stem cells international, 2020. 2020: p. 1-15 2. Hashemi-Beni, B., et al., Tissue engineering: dentin–pulp complex regeneration approaches (a review). Tissue and Cell, 2017. 49(5): p. 552-564. 3. Huang, G.T., Pulp and dentin tissue engineering and regeneration: current progress. Regenerative medicine, 2009. 4(5): p. 697-707. 4. Jung, C., et al., Pulp-dentin regeneration: current approaches and challenges. Journal of tissue engineering, 2019. 10: p. 2041731418819263. 5. Yang, J., G. Yuan, and Z. Chen, Pulp regeneration: current approaches and future challenges. Frontiers in physiology, 2016. 7: p. 58. 6. Kim, J.Y., et al., Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Engineering Part A, 2010. 16(10): p. 3023-3031. 7. Moussa, D.G. and C. Aparicio, Present and future of tissue engineering scaffolds for dentin‐pulp complex regeneration. Journal of tissue engineering and regenerative medicine, 2019. 13(1): p. 58-75. 8. Boufdil, H., et al., Apexification with Calcium Hydroxide vs. Revascularization. Case reports in dentistry, 2020. 2020. p. 1-6 9. Lin, J. C., et al., Comparison of mineral trioxide aggregate and calcium hydroxide for apexification of immature permanent teeth: A systematic review and meta-analysis. Journal of the Formosan Medical Association, 2016. 115(7): p. 523-530. 10. Murray, P.E., F. Garcia-Godoy, and K.M. Hargreaves, Regenerative endodontics: a review of current status and a call for action. Journal of endodontics, 2007. 33(4): p. 377-390. 11. Saoud, T.M.A., et al., Regeneration and repair in endodontics—a special issue of the regenerative endodontics—a new era in clinical endodontics. Dentistry journal, 2016. 4(1): p. 1-3. 12. Schmalz, G. and A.J. Smith, Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies. Journal of endodontics, 201 4. 40(4): p. S2-S5. 13. Kim, S., et al., Regenerative endodontics: a comprehensive review. International endodontic journal, 2018. 51(12): p. 1367-1388. 14. NYGAARD‐ÖSTBY, B. and O. HJORTDAL, Tissue formation in the root canal following pulp removal. European Journal of Oral Sciences, 1971. 79(3): p. 333-349. 15. Hørsted, P. and B. Nygaard-Östby, Tissue formation in the root canal after total pulpectomy and partial root filling. Oral Surgery, Oral Medicine, Oral Pathology, 1978. 46(2): p. 275-282. 16. Östby, B.N., The role of the blood clot in endodontic therapy an experimental histologic study. Acta Odontologica Scandinavica, 1961. 19(3-4): p. 323-353. 17. Banchs, F. and M. Trope, Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? Journal of endodontics, 2004. 30(4): p. 196-200. 18. Bansal, R., et al., Regenerative endodontics: a road less travelled. Journal of clinical and diagnostic research: JCDR, 2014. 8(10): p. ZE20. 19. Wigler, R., et al., Revascularization: a treatment for permanent teeth with necrotic pulp and incomplete root development. Journal of endodontics, 2013. 39(3): p. 319-326. 20. Nakashima, M. and A. Akamine, The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of endodontics, 2005. 31(10): p. 711-718. 21. Shah, N., et al., Efficacy of revascularization to induce apexification/apexogensis in infected, nonvital, immature teeth: a pilot clinical study. Journal of endodontics, 2008. 34(8): p. 919-925. 22. Messer, H.H., Re: Efficacy of revascularization to induce apexification/apexogensis in infected, nonvital, immature teeth: a pilot clinical study. Journal of endodontics, 2008. 34(10): p. 1157; author reply 1157-1157; author reply 1157. 23. Latham, J., et al., Disinfection efficacy of current regenerative endodontic protocols in simulated necrotic immature permanent teeth. Journal of endodontics, 2016. 42(8): p. 1218-1225. 24. Lin, L.M. and B. Kahler, A review of regenerative endodontics: current protocols and future directions. Journal of Istanbul University Faculty of Dentistry, 2017. 51(3 Suppl 1): p. S41. 25. Becerra, P., et al., Histologic study of a human immature permanent premolar with chronic apical abscess after revascularization/revitalization. Journal of endodontics, 2014. 40(1): p. 133-139. 26. Nosrat, A., N. Homayounfar, and K. Oloomi, Drawbacks and unfavorable outcomes of regenerative endodontic treatments of necrotic immature teeth: a literature review and report of a case. Journal of endodontics, 2012. 38(10): p. 1428-1434. 27. Torabinejad, M. and M. Turman, Revitalization of tooth with necrotic pulp and open apex by using platelet-rich plasma: a case report. Journal of endodontics, 2011. 37(2): p. 265-268. 28. Tambakad, P.B. and J. Naidu, Pulp and periodontal regeneration of an avulsed permanent mature incisor using platelet-rich plasma after delayed replantation: a 12-month clinical case study. Journal of endodontics, 2016. 42(1): p. 66-71. 29. Alasqah, M., et al., Regenerative endodontic management of an immature molar using calcium hydroxide and triple antibiotic paste: a two-year follow-up. Case reports in dentistry, 2020. 2020. 30. Andreasen, J.O. and L.K. Bakland, Pulp regeneration after non‐infected and infected necrosis, what type of tissue do we want? A review. Dental Traumatology, 2012. 28(1): p. 13-18. 31. Ring, K.C., et al., The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin. Journal of endodontics, 2008. 34(12): p. 1474-1479. 32. Martin, D.E., et al., Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. Journal of endodontics, 2014. 40(1): p. 51-55. 33. Widbiller, M., R.I. Althumairy, and A. Diogenes, Direct and indirect effect of chlorhexidine on survival of stem cells from the apical papilla and its neutralization. Journal of endodontics, 2019. 45(2): p. 156-160. 34. Okino, L., et al., Dissolution of pulp tissue by aqueous solution of chlorhexidine digluconate and chlorhexidine digluconate gel. International endodontic journal, 2004. 37(1): p. 38-41. 35. Trevino, E.G., et al., Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. Journal of endodontics, 2011. 37(8): p. 1109-1115. 36. Casagrande, L., et al., Dentin-derived TGF -2 and odontoblast differentiation. Journal of dental research, 2010. 89(6): p. 603-608. 37. Galler, K.M., et al., Dentin conditioning codetermines cell fate in regenerative endodontics. Journal of endodontics, 2011. 37(11): p. 1536-1541. 38. Zhujiang, A. and S.G. Kim, Regenerative endodontic treatment of an immature necrotic molar with arrested root development by using recombinant human platelet-derived growth factor: a case report. Journal of endodontics, 2016. 42(1): p. 72-75. 39. Torabinejad, M. and N. Chivian, Clinical applications of mineral trioxide aggregate. Journal of endodontics, 1999. 25(3): p. 197-205. 40. Gomes‐Cornélio, A., et al., Bioactivity of MTA Plus, Biodentine and an experimental calcium silicate‐based cement on human osteoblast‐like cells. International endodontic journal, 2017. 50(1): p. 39-47. 41. Wang, C. Y., et al., Biofabrication of Gingival Fibroblast Cell-Laden Collagen/Strontium-Doped Calcium Silicate 3D-Printed Bi-Layered Scaffold for Osteoporotic Periodontal Regeneration. Biomedicines, 2021. 9(4): p. 431. 42. Kao, C. T., et al., The synergistic effects of Xu Duan combined Sr-contained calcium silicate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis marker expression and the induction of bone regeneration in osteoporosis. Materials Science and Engineering: C, 2021. 119: p. 111629. 43. Tu, M. G., et al., Caffeic Acid–coated Nanolayer on Mineral Trioxide Aggregate Potentiates the Host Immune Responses, Angiogenesis, and Odontogenesis. Journal of Endodontics, 2020. 46(10): p. 1455-1464. 44. Su, T. R., et al., The calcium channel affect osteogenic differentiation of mesenchymal stem cells on strontium-substituted Calcium silicate/poly-ε-caprolactone scaffold. Processes, 2020. 8(2): p. 198. 45. Lin, Y. H., et al., The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Materials Science and Engineering: C, 2019. 104: p. 109887. 46. Huang, K. H., et al., Incorporation of calcium sulfate dihydrate into a mesoporous calcium silicate/poly-ε-caprolactone scaffold to regulate the release of bone morphogenetic protein-2 and accelerate bone regeneration. Biomedicines, 2021. 9(2): p. 128. 47. Kao, C. T., et al., Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Materials Science and Engineering: C, 2014. 43: p. 126-134. 48. Nedunchezian, S., et al., Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis. Materials Science and Engineering: C, 2021. 124: p. 112072. 49. Chen, Y.-S., et al., Additive manufacturing of astragaloside-containing polyurethane nerve conduits influenced Schwann cell inflammation and regeneration. Processes, 2021. 9(2): p. 353. 50. Hayashi, K., et al., Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds. Materials Design, 2021. 204: p. 109686. 51. Huang, K. H., et al., Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds. Journal of the Formosan Medical Association, 2018. 117(10): p. 879-887. 52. Woo, J. T., et al., Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biological and Pharmaceutical Bulletin, 2004. 27(4): p. 504-509. 53. Wattel, A., et al., Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochemical Pharmacology, 2003. 65(1): p. 35-42. 54. Orti, V., et al., Pulp regeneration concepts for nonvital teeth: from tissue engineering to clinical approaches. Tissue Engineering Part B: Reviews, 2018. 24(6): p. 419-442. 55. Potdar, P.D. and Y.D. Jethmalani, Human dental pulp stem cells: Applications in future regenerative medicine. World journal of stem cells, 2015. 7(5): p. 839. 56. Yu, J. and H. He, et al.(2010).' Differentiation Potential of Stro-‐1+ Dental Pulp Stem Cells Changes During Cell Passaging.'. BMC Cell Biol. 11: p. 32. 57. Yu, J., et al., Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biology of the Cell, 2007. 99(8): p. 465-474. 58. Nada, O.A. and R.M. El Backly, Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration. Frontiers in bioengineering and biotechnology, 2018. 6: p. 103. 59. Tomokiyo, A., et al., Periodontal Ligament Stem Cells in Regenerative Dentistry for Periodontal Tissues. Journal of Stem Cell Research Therapy, 2016. 1(3). 60. Xiao, L. and M. Nasu, From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem cells and cloning: advances and applications, 2014. 7: p. 89. 61. Kim, B. C., et al., Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Engineering Part B: Reviews, 2012. 18(3): p. 235-244. 62. Kim, J.G., et al., Stimulating effects of quercetin and phenamil on differentiation of human dental pulp cells. European journal of oral sciences, 2013. 121(6): p. 559-565. 63. Piva, E., A.F. Silva, and J.E. Nör, Functionalized scaffolds to control dental pulp stem cell fate. Journal of endodontics, 2014. 40(4): p. S33-S40. 64. Galler, K.M., et al., Scaffolds for dental pulp tissue engineering. Advances in Dental Research, 2011. 23(3): p. 333-339. 65. Galler, K.M., et al., Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. Journal of the American Chemical Society, 2010. 132(9): p. 3217-3223. 66. Wang, H., et al., Cell-laden photocrosslinked GelMA–DexMA copolymer hydrogels with tunable mechanical properties for tissue engineering. Journal of Materials Science: Materials in Medicine, 2014. 25(9): p. 2173-2183. 67. Galler, K.M., et al., A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Engineering Part A, 2012. 18(1-2): p. 176-184. 68. Fergal, O., Biomaterials and scaffolds for tissue engineering. Mater. Today, 2011. 14(3): p. 88-95. 69. Lin, Y.-H., et al., Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2018. 29(1): p. 11. 70. Yang, S., et al., The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue engineering, 2001. 7(6): p. 679-689. 71. Dwivedi, R., et al., Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of oral biology and craniofacial research, 2020. 10(1): p. 381-388. 72. Lyu, J.S., J. S. Lee, and J. Han, Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific reports, 2019. 9(1): p. 1-11. 73. Yu, Y., et al., Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC advances, 2016. 6(112): p. 110557-110565. 74. Chen, G., et al., Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials, 2015. 52: p. 56-70. 75. Wüst, S., R. Müller, and S. Hofmann, Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. Journal of functional biomaterials, 2011. 2(3): p. 119-154. 76. Huang, K. H., et al., Enhanced Capability of Bone Morphogenetic Protein 2–loaded Mesoporous Calcium Silicate Scaffolds to Induce Odontogenic Differentiation of Human Dental Pulp Cells. Journal of endodontics, 2018. 44(11): p. 1677-1685. 77. Torres, E., et al., Influence of the hydrophobic–hydrophilic nature of biomedical polymers and nanocomposites on in vitro biological development. Macromolecular Materials and Engineering, 2017. 302(12): p. 1700259. 78. Attik, G., et al., In vitro biocompatibility of a dentine substitute cement on human MG 63 osteoblasts cells: B iodentine™ versus MTA®. International endodontic journal, 2014. 47(12): p. 1133-1141. 79. Li, X., et al., How effectively do hydraulic calcium-silicate cements re-mineralize demineralized dentin. Dental Materials, 2017. 33(4): p. 434-445. 80. Ebtehal, A. R., H. Perinpanayagam, and D. MacFarland, Human alveolar bone cells interact with ProRoot and tooth-colored MTA. Journal of Endodontics, 2006. 32(9): p. 872-875. 81. Rifaey, H.S., et al., Comparison of the osteogenic potential of mineral trioxide aggregate and endosequence root repair material in a 3-dimensional culture system. Journal of endodontics, 2016. 42(5): p. 760-765. 82. Daltoé, M.O., et al., Expression of mineralization markers during pulp response to biodentine and mineral trioxide aggregate. Journal of endodontics, 2016. 42(4): p. 596-603. 83. Kulan, P., et al., Biocompatibility of accelerated mineral trioxide aggregate on stem cells derived from human dental pulp. Journal of endodontics, 2016. 42(2): p. 276-279. 84. Schatkoski, V.M., et al., Current advances concerning the most cited metal ions doped bioceramics and silicate-based bioactive glasses for bone tissue engineering. Ceramics International, 2020: p. 1-8 85. Huang, K. H., et al., The synergistic effects of quercetin-containing 3D-printed mesoporous calcium silicate/calcium sulfate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis in mesenchymal stem cells. Journal of the Formosan Medical Association, 2021. p. 1-12 86. Kao, C. T., et al., Poly (dopamine) coating of 3D printed poly (lactic acid) scaffolds for bone tissue engineering. Materials Science and Engineering: C, 2015. 56: p. 165-173. 87. Kelly, C.N., et al., The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Materials Science and Engineering: C, 2019. 98: p. 726-736. 88. Wang, S., G. Huang, and Y. Dong, Directional migration and odontogenic differentiation of bone marrow stem cells induced by dentin coated with nanobioactive glass. Journal of endodontics, 2020. 46(2): p. 216-223. 89. Catauro, M., et al., Silica/quercetin sol–gel hybrids as antioxidant dental implant materials. Science and technology of advanced materials, 2015. 90. Lu, J., et al., Regenerative endodontic procedures for traumatized immature permanent teeth with severe external root resorption and root perforation. Journal of endodontics, 2020. 46(11): p. 1610-1615. 91. Mandakhbayar, N., et al., Evaluation of strontium-doped nanobioactive glass cement for dentin–pulp complex regeneration therapy. ACS Biomaterials Science Engineering, 2019. 5(11): p. 6117-6126. 92. Chen, Y. W., et al., Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Materials Science and Engineering: C, 2018. 91: p. 679-687. 93. Shie, M. Y., et al., Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate–graphene composites. Materials Science and Engineering: C, 2017. 73: p. 726-735. 94. Gupta, S.K., R. Kumar, and N.C. Mishra, Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Materials Science and Engineering: C, 2017. 71: p. 919-928. 95. Tan, E.E., et al., Antibiotics used in regenerative endodontics modify immune response of macrophages to bacterial infection. Journal of endodontics, 2019. 45(11): p. 1349-1356. 96. Wu, Y.-H.A., et al., 3D-printed bioactive calcium silicate/poly-ε-caprolactone bioscaffolds modified with biomimetic extracellular matrices for bone regeneration. International journal of molecular sciences, 2019. 20(4): p. 942. 97. Stähli, A., et al., Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1. International journal of oral science, 2019. 11(1): p. 1-8 98. Nakashima, M. and A. Akamine, The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of endodontics, 2005. 31(10): p. 711-718. 99. Woo, J.-T., et al., Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biological and Pharmaceutical Bulletin, 2004. 27(4): p. 504-509. 100. Hytham N. Fageeh, Shilpa Bhandi Viability of Quercetin-Induced Dental Pulp Stem Cells in Forming Living Cellular Constructs for Soft Tissue Augmentation. J. Pers. Med. 2021, 11(5), 430-439 101. Wang et al., Quercetin promotes human epidermal stem cell proliferation through the estrogen receptor/β-catenin/c-Myc/cyclin A2 signaling pathway. Acta Biochimica et Biophysica Sinica, 2020. 52(10): p. 1102-1110. 102. Hashemi et al., Quercetin decreases Th17 production by down-regulation of MAPK-TLR4 signaling Pathway on T cells in dental pulpitis. Journal of Dentistry, 2018. 19(4): p. 259 103. Mandana Sattari et.al., The relationship of pulp polyp with the presence and concentration of immunoglobulin E, histamine, interleukin-4 and interleukin-12. Australian Endodontic Journal 2009, 164-168 104. Gao et. al., Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacologica Sinica 37, pages1166–1177 (2016) 105. Mortada et. al., Dental pulp stem cells and osteogenesis: an update. Cytotechnology, 2018. 70(5): p. 1479-1486. 106. Jansen et al., Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials, 2005. 26(21): p. 4423-31. 107. L. Malaval et. al., Role of the small integrin-binding ligand N-linked glycoprotein (SIBLING), bone sialoprotein (BSP) in bone development and remodeling. International Osteoporosis, 2009 20, pages1077–1080 109. Chang C. C. et. al., Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. Journal of the Formosan Medical Association. 2014;113(12):956–965. 110. Volponi A. A., Pang Y., Sharpe P. T. Stem cell-based biological tooth repair and regeneration. Trends in Cell Biology. 2010;20(12):715–722. 111. Gronthos S. et al. Stem cell properties of human dental pulp stem cells. Journal of Dental Research. 2002;81(8):531–535. 112. Baume et al., The biology of pulp and dentine. A historic, terminologic-taxonomic, histologic-biochemical, embryonic and clinical survey. Monographs in Oral Science. 1980;8:1–220. 113. Zhang N. et. al. The effect of bone marrow mesenchymal stem cell transplantation on diabetic cardiomyopathy. 2008;36(12):1115–1119. 114. Farea et al., Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Archives of oral biology, 2014. 59(12): p. 1400-1411. 115. Choukroun et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006. 101(3): p. e56-e60. 116. Lin et al., Comparison of mineral trioxide aggregate and calcium hydroxide for apexification of immature permanent teeth: A systematic review and meta-analysis. Journal of the Formosan Medical Association, 2016. 115(7): p. 523-530. 117. Boufdil et al., Apexification with Calcium Hydroxide vs. Revascularization. Case reports in dentistry, 2020. 2020 p. 1-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80807 | - |
| dc.description.abstract | 組織工程在牙科領域從根本上改變了根管治療師評估治療方案的方式。我們先前的研究發現,含有奎塞汀的中孢子鈣矽酸鹽/硫酸鈣(MSCSQ)可以誘導硬組織缺陷區域再生和新肌形成。這項研究的重點是MSCSQ支架是否也能有效地調節牙本質再生。在這項研究中,我們使用3D列印技術製造了MSCSQ複合腳手架。通過掃描電子顯微鏡(SEM)檢查了MSCSQ支架的特徵,並評估了機械特性。此外,我們評估了不同支架上培養的人類牙髓幹細胞(hDPSC)的細胞生存能力、細胞增殖、與牙本質再生相關的蛋白質表達和礦化行為。 我們發現球形石在短時間內迅速沉澱在支架表面。細胞行為的體外(in-vitro)結果顯示,帶有MSCSQ支架的hDPSC的細胞生存能力顯著高於帶有MSCS支架的hDPSC的細胞。此外,在MSCSQ支架上培養了hDPSC之後,特定牙本質生成的標誌,如DSPP和DMP-1蛋白,被明顯地誘導出。此外,與MSCS支架相比,MSCSQ支架還具有增強的牙本質再生性和免疫抑制性能。這些結果表明,MSCSQ支架可被視為臨床應用和牙齦再生的潛在生物安全架。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:17:17Z (GMT). No. of bitstreams: 1 U0001-0510202111421300.pdf: 2164002 bytes, checksum: e8fbc94e9b10ab27476fc3e8ad0cdf5e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Chapter 1: Introduction 1 1.1 Need for pulp regeneration 1 1.2 Definition and fundamental characteristics of regenerated pulp tissue 2 1.3 Current approaches of pulp regeneration 4 1.3.1 Cell homing strategy 4 1.3.2 Cell transplantation strategy 7 1.4 Drawbacks of current pulp regeneration techniques 8 1.5 Consideration to be taken for regeneration of healthy pulp-dentin complex 12 1.6 Future challenges 13 Chapter 2: Literature review 15 2.1 Stem Cells 17 2.2 Bioactive agents-growth factors (GF) 18 2.2.1 Herbal extract quercetin (Figure 2.3) 18 2.3 Scaffolds 22 2.3.1 Why use scaffolds? 22 2.3.2 Types of scaffolds: 22 2.3.3 Scaffolds in Regenerative Endodontics 24 2.3.4 Ideal Requirements of Scaffold 26 2.3.5 Characteristics of polycaprolactone scaffold PCL 27 2.4 3D printing 29 2.4.1 Importance of 3D printing technique for scaffold printing 29 Chapter 3: Purpose of study and study design 32 3.1 Research Goal 32 3.2 Hypothesis 32 3.3 Specific Aim 32 3.4 Study design 33 Chapter 4: Materials and methods 35 4.1 Development of quercetin-contained MSCS scaffold 35 4.1.1 Synthesis and characterization of MSCS composites 35 4.1.2 Preparation of scaffolds 36 4.1.3 In Vitro Soaking 37 4.2 Evaluation of the characteristics of the scaffold 37 4.2.1 X-ray diffraction (XRD) and stress-strain curve 37 4.2.2 Contact angle 37 4.3 Effect of quercetin-contained MSCS scaffold on human dental pulp stem cells (hDPSCs) 37 4.3.1 Cell Culture 37 4.3.2 Cytotoxicity Assay 38 4.3.3 Cell Adhesion and Cell Viability Assay (using MG63 cells) 38 4.3.4 Cell viability and proliferation (using hDPSCs) 39 4.3.5 Enzyme-linked immunosorbent assay 39 4.3.6 Calcium deposition 40 4.3.7 Statistical analysis 40 Chapter 5: Results 41 5.1 Scaffold characteristics 41 5.1.1 Physical characteristics of the scaffold 41 5.1.2 Mechanical properties and microstructure 45 5.1.3 Contact angle 48 5.2 Cytotoxicity, proliferation, and inflammatory marker 49 5.3 Odontogenesis behaviors 56 Chapter 6: Discussion 59 Chapter 7: Conclusion 69 References 72" | |
| dc.language.iso | en | |
| dc.subject | 孔矽酸鈣 | zh_TW |
| dc.subject | 槲皮素 | zh_TW |
| dc.subject | 三維列印 | zh_TW |
| dc.subject | 3D printing | en |
| dc.subject | mesoporous calcium silicate/ calcium sulfate | en |
| dc.subject | odontogenesis | en |
| dc.subject | Quercetin | en |
| dc.subject | dentin regeneration | en |
| dc.title | 研發三維列印中孔矽酸鈣陶瓷支架搭載天然槲皮素萃取物應用於牙本質再生 | zh_TW |
| dc.title | Development of mesoporous calcium silicate scaffold combined with herbal extract (quercetin) created by using a 3D printing technique for Dentinogenesis | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 林俊彬(0000-0002-3498-1113) | |
| dc.contributor.oralexamcommittee | 劉緒宗(Hsin-Tsai Liu),陳文章(Chih-Yang Tseng),謝明佑,章浩宏 | |
| dc.subject.keyword | 槲皮素,三維列印,孔矽酸鈣, | zh_TW |
| dc.subject.keyword | Quercetin,3D printing,dentin regeneration,odontogenesis,mesoporous calcium silicate/ calcium sulfate, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202103555 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-07 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0510202111421300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
