請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80760完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆(Fei-Pei Lai) | |
| dc.contributor.author | Yu-Chieh Cheng | en |
| dc.contributor.author | 鄭郁潔 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:15:35Z | - |
| dc.date.available | 2021-11-06 | |
| dc.date.available | 2022-11-24T03:15:35Z | - |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-13 | |
| dc.identifier.citation | 1. Qureshi H, Sharafkhaneh A, Hanania NA. Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications. Ther Adv Chronic Dis 2014 Sep 14;5(5):212-227 [doi: 10.1177/2040622314532862] [Medline: 25177479] 2. Yan R, Wang Y, Bo J, Li W. Healthy lifestyle behaviors among individuals with chronic obstructive pulmonary disease in urban and rural communities in China: a large community-based epidemiological study. Int J Chron Obstruct Pulmon Dis 2017;12:3311-3321. [doi: 10.2147/COPD.S144978] [Medline: 29180861] 3. Global Initiative for Chronic Obstructive Lung Disease. URL: https://goldcopd.org/ [accessed 2021-03-23] 4. Ambrosino N, Bertella E. Lifestyle interventions in prevention and comprehensive management of COPD. Breathe (Sheff) 2018 Sep 31;14(3):186-194 [doi: 10.1183/20734735.018618] [Medline: 30186516] 5. Adibi A, Sin DD, Safari A, Johnson KM, Aaron SD, FitzGerald JM, et al. The Acute COPD Exacerbation Prediction Tool: a modelling study. Lancet Respir Med 2020 Oct;8(10):1013-1021. [doi: 10.1016/S2213-2600(19)30397-2] [Medline: 32178776] 6. Sobnath D, Philip N, Kayyali R, Nabhani-Gebara S, Pierscionek B, Vaes A, Spruit M, Kaimakamis E: Features of a Mobile Support App for Patients with Chronic Obstructive Pulmonary Disease: Literature Review and Current Applications JMIR Mhealth Uhealth 2017;5(2):e17, URL: https://mhealth.jmir.org/2017/2/e17, DOI: 10.2196/mhealth.4951 7. Sanchez-Morillo D, Fernandez-Granero MA, Leon-Jimenez A. Use of predictive algorithms in-home monitoring of chronic obstructive pulmonary disease and asthma: A systematic review. Chron Respir Dis 2016 Aug;13(3):264-283 [FREE Fulltext] [doi: 10.1177/1479972316642365] [Medline: 27097638] 8. Hurst JR, Donaldson GC, Quint JK, Goldring JJ, Patel AR, Wedzicha JA. Domiciliary pulse-oximetry at exacerbation of chronic obstructive pulmonary disease: prospective pilot study. BMC Pulm Med 2010 Oct 20;10:52 [doi: 10.1186/1471-2466-10-52] [Medline: 20961450] 9. Sánchez-Morillo D, Crespo M, León A, Crespo Foix LF. A novel multimodal tool for telemonitoring patients with COPD. Inform Health Soc Care 2015 Jan 31;40(1):1-22. [doi: 10.3109/17538157.2013.872114] [Medline: 24380372] 10. Sanders C, Rogers A, Bowen R, Bower P, Hirani S, Cartwright M, et al. Exploring barriers to participation and adoption of telehealth and telecare within the Whole System Demonstrator trial: a qualitative study. BMC Health Serv Res 2012 Jul 26;12:220 [doi: 10.1186/1472-6963-12-220] [Medline: 22834978] 11. RIES, Andrew L. Minimally clinically important difference for the UCSD Shortness of Breath Questionnaire, Borg scale, and visual analog scale. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2005, 2.1: 105-110. 12. Saleh L, Mcheick H, Ajami H, Mili H, Dargham J. Comparison of machine learning algorithms to increase prediction accuracy of COPD domain. In: Mokhtari M, Abdulrazak B, Aloulou H, editors. Enhanced Quality of Life and Smart Living. ICOST 2017. Lecture Notes in Computer Science. Cham: Springer; 2017:247-254. 13. Jones, P. W., Quirk, F. H., Baveystock, C. M. (1991). The St George's Respiratory Questionnaire. Respiratory medicine, 85, 25-31. 14. Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med 1987 Feb;106(2):196-204. [doi: 10.7326/0003-4819-106-2-196] [Medline: 3492164] 15. Riis HC, Jensen MH, Cichosz SL, Hejlesen OK. Prediction of exacerbation onset in chronic obstructive pulmonary disease patients. J Med Eng Technol 2016;40(1):1-7. [doi: 10.3109/03091902.2015.1105317] [Medline: 26745746] 16. Davis, F. D., Bagozzi, R. P., Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003. 17. Wang C, Chen X, Du L, Zhan Q, Yang T, Fang Z. Comparison of machine learning algorithms for the identification of acute exacerbations in chronic obstructive pulmonary disease. Comput Methods Programs Biomed 2020 May;188:105267. [doi: 10.1016/j.cmpb.2019.105267] [Medline: 31841787] 18. Rahman MJ, Nemati E, Rahman MM, Nathan V, Vatanparvar K, Kuang J. Automated assessment of pulmonary patients using heart rate variability from everyday wearables. Smart Health 2020 Mar;15:100081. doi: 10.1016/j.smhl.2019.100081 19. Himani S, Sunil K. A survey on decision tree algorithms of classification in data mining. Int J Sci Res 2016 Apr 05;5(4):2094-2097. doi: 10.21275/v5i4.nov162954 20. Ho TK. A data complexity analysis of comparative advantages of decision forest constructors. Pattern Anal Appl 2002 Jun 7;5(2):102-112. [doi: 10.1007/s100440200009] 21. Sergey I, Christian S. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv. 2015. URL: https://arxiv.org/abs/1502.03167 [accessed 2021-04-11] 22. KINGMA, Diederik P.; BA, Jimmy. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 23. Scornet, E. (2020). Trees, forests, and impurity-based variable importance. arXiv preprint arXiv:2001.04295. 24. Ashmore J, Russo R, Peoples J, et al. Chronic obstructive pulmonary disease self-management activation research trial (COPD-SMART): design and methods. Contemporary Clinical Trials. 2013 Jul;35(2):77-86. DOI: 10.1016/j.cct.2013.05.004. 25. Rassouli, F., Boutellier, D., Duss, J., Huber, S., Brutsche, M. H. (2018). Digitalizing multidisciplinary pulmonary rehabilitation in COPD with a smartphone application: an international observational pilot study. International journal of chronic obstructive pulmonary disease, 13, 3831. 26. Goto T, Camargo CA, Faridi MK, Yun BJ, Hasegawa K. Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. Am J Emerg Med 2018 Sep;36(9):1650-1654. [doi: 10.1016/j.ajem.2018.06.062] [Medline: 29970272] 27. Peng J, Chen C, Zhou M, Xie X, Zhou Y, Luo CH. A machine-learning approach to forecast aggravation risk in patients with acute exacerbation of chronic obstructive pulmonary disease with clinical indicators. Sci Rep 2020 Feb 20;10(1):3118. [doi: 10.1038/s41598-020-60042-1] [Medline: 32080330] 28. Esmaili, S., Hermosa, J. L. R., Gomila, A. F., Maestu, L. P., Diago, C. A., González, F. C., Pacios, A. M. (2019). Detecting COPD exacerbations through Prevexair App 29. Fernandez-Granero MA, Sanchez-Morillo D, Lopez-Gordo MA, Leon A. A machine learning approach to prediction of exacerbations of chronic obstructive pulmonary disease. In: Artificial Computation in Biology and Medicine. Lecture Notes in Computer Science Volume 9107. Cham: Springer; 2015 Presented at: International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC 2015); June 1-5, 2015; Elche, Spain p. 305-311. [doi: 10.1007/978-3-319-18914-7_32] 30. Shah SA, Velardo C, Farmer A, Tarassenko L. Exacerbations in chronic obstructive pulmonary disease: identification and prediction using a digital health system. J Med Internet Res 2017 Mar 07;19(3):e69 [FREE Full text] [doi: 10.2196/jmir.7207] [Medline: 28270380] 31. Lee, Y., Kozar, K. A., Larsen, K. R. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for information systems, 12(1), 50. 32. S. Khalid, T. Khalil and S. Nasreen, 'A survey of feature selection and feature extraction techniques in machine learning,' 2014 Science and Information Conference, 2014, pp. 372-378, doi: 10.1109/SAI.2014.6918213. 33. Singh, A., Thakur, N., Sharma, A. (2016, March). A review of supervised machine learning algorithms. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1310-1315). IEEE. 34. Song, Y. Y., Lu, Y. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130–135. https://doi.org/10.11919/j.issn.1002-0829.215044 35. Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(6), 275-285. 36. Biau, G., Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227. 37. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. 38. Jinsol Kim, “ML Concept Random Forest,”https://gaussian37.github.io/ml-concept-RandomForest/ 2018 39. Canziani, A., Paszke, A., Culurciello, E. (2016). An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678. 40. Kriegeskorte, N., Golan, T. (2019). Neural network models and deep learning. Current Biology, 29(7), R231-R236. 41. Moy, M. L., Teylan, M., Weston, N. A., Gagnon, D. R., Garshick, E. (2013). Daily step count predicts acute exacerbations in a US cohort with COPD. PLoS One, 8(4), e60400. 42. Lan, C. C., Huang, H. C., Yang, M. C., Lee, C. H., Huang, C. Y., Wu, Y. K. (2014). Pulmonary rehabilitation improves subjective sleep quality in COPD. Respiratory care, 59(10), 1569-1576. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80760 | - |
| dc.description.abstract | "慢性肺阻塞病 (Chronic obstructive pulmonary disease, COPD) 於2020年世界衛生組織發布之全球十大死因第三名,每年奪走300萬人性命,是最嚴重的慢性疾病之一,該疾病導致呼吸困難、濃痰產生、嚴重咳嗽等症狀,患者飽受病痛之苦,生活品質不堪,其中急性發作更是造成肺功能迅速下降、致死率節節攀升的元兇。 本研究的主要目的是:(1)為慢性肺阻塞病患以及醫護人員發展一個智慧型手機遠端醫療輔助應用程式,幫助監測病患之健康狀態,及早發現COPD急性發作,(2)監測病患肺復原運動之健康狀態,並提供醫師一平台給予病患對應之回饋。此應用程式有助於病患自我督促進行肺復原運動,藉由醫師的監測,提供病患一個可安全遵從的訓練指標,使得病患更願意進行肺復原運動且在活動力指標也表現得較好。而急性發作預測模型則是使用生理數據、環境資料作為參數,並利用機器學習、深度學習建構而成。本次研究使用之模型有:隨機森林、決策樹及深度神經網路,其結果最好可達到準確度0.82、靈敏度0.53、精確性0.52,我們相信隨著資料搜集的廣泛度、多樣性,勢必能使得模型表現更加提升。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:15:35Z (GMT). No. of bitstreams: 1 U0001-1310202111282600.pdf: 3464075 bytes, checksum: a16ddc5c824f2a41fb711e7568beb9be (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 2 致謝 3 中文摘要 4 Abstract 5 Contents 7 List of figures 9 List of tables 9 1 Introduction 11 1.1 Background 11 1.2 Previous Work 13 1.3 Aim of this Study 13 2 Related Researches 14 2.1 Technology Acceptance Model (TAM) 14 2.2 Machine Learning Model 15 2.2.1 Decision Tree 15 2.2.2 Random Forest 17 3 Method 18 3.1 Data Collection 18 3.2 Smartphone Application System Architecture 20 3.3 Smartphone Application Evaluating 22 3.4 Data Preprocessing and Data Labeling 23 3.5 Classification model 26 4 Result 30 4.1 Patient Characteristics 30 4.2 Research architecture 32 4.3 COPD smartphone application 35 4.4 Exercise Indicators during Pulmonary Rehabilitation 37 4.5 Performance of AECOPD prediction models 39 4.6 Feature Importance 42 4.7 Health outcome 44 4.8 Participant Satisfaction 45 5 Discussion 48 5.1 Principal Findings 48 5.2 Comparison with Prior Work 48 5.3 Limitations 50 6 Conclusion and Future Work 51 Reference 52 | |
| dc.language.iso | en | |
| dc.subject | 穿戴式裝置 | zh_TW |
| dc.subject | 慢性肺阻塞病 | zh_TW |
| dc.subject | 肺復原運動 | zh_TW |
| dc.subject | 醫病互動平台 | zh_TW |
| dc.subject | 急性發作預測 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | pulmonary rehabilitation | en |
| dc.subject | wearable devices | en |
| dc.subject | machine learning | en |
| dc.subject | acute exacerbation prediction | en |
| dc.subject | physician-patient Interacting platform | en |
| dc.subject | deep learning | en |
| dc.subject | COPD | en |
| dc.title | 智慧手機程式應用於慢性肺阻塞病患肺功能復原訓練 | zh_TW |
| dc.title | Application of Smartphone App to Lung Function Recovery Training for Patients with Chronic Obstructive Pulmonary Disease | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡榮彥(Hsin-Tsai Liu),江岱倫(Chih-Yang Tseng),郭律成,顏廷聿 | |
| dc.subject.keyword | 慢性肺阻塞病,肺復原運動,醫病互動平台,急性發作預測,機器學習,深度學習,穿戴式裝置, | zh_TW |
| dc.subject.keyword | COPD,pulmonary rehabilitation,physician-patient Interacting platform,acute exacerbation prediction,machine learning,deep learning,wearable devices, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202103685 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1310202111282600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
