Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜昱至(Yu- Chih Chiang)
dc.contributor.authorHsiao-Wen Yehen
dc.contributor.author葉筱雯zh_TW
dc.date.accessioned2022-11-24T03:15:04Z-
dc.date.available2022-10-31
dc.date.available2022-11-24T03:15:04Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-21
dc.identifier.citation[1] D. Tziafas, A. J. Smith, and H. Lesot, 'Designing new treatment strategies in vital pulp therapy,' J Dent, vol. 28, no. 2, pp. 77-92, Feb 2000, doi: 10.1016/s0300-5712(99)00047-0. [2] G. N. Glickman and N. S. Seale, 'AAPD and AAE symposium overview: emerging science in pulp therapy--new insights into dilemmas and controversies,' Pediatric dentistry, vol. 30, no. 3, pp. 190-1, May-Jun 2008. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/18615982. [3] B. Rutherford and M. Fitzgerald, 'A new biological approach to vital pulp therapy,' Crit Rev Oral Biol Med, vol. 6, no. 3, pp. 218-29, 1995, doi: 10.1177/10454411950060030401. [4] T. Takita et al., 'Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells,' Int Endod J, vol. 39, no. 5, pp. 415-22, May 2006, doi: 10.1111/j.1365-2591.2006.01097.x. [5] M. Torabinejad et al., 'Tooth retention through endodontic microsurgery or tooth replacement using single implants: a systematic review of treatment outcomes,' J Endod, vol. 41, no. 1, pp. 1-10, Jan 2015, doi: 10.1016/j.joen.2014.09.002. [6] D. J. Caplan, J. Cai, G. Yin, and B. A. White, 'Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times,' J Public Health Dent, vol. 65, no. 2, pp. 90-6, Spring 2005. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15929546. [7] 'Guideline on Pulp Therapy for Primary and Immature Permanent Teeth,' Pediatric dentistry, vol. 38, no. 6, pp. 280-288, Oct 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/27931467. [8] D. Ricucci, J. F. Siqueira, Jr., Y. Li, and F. R. Tay, 'Vital pulp therapy: histopathology and histobacteriology-based guidelines to treat teeth with deep caries and pulp exposure,' J Dent, vol. 86, pp. 41-52, Jul 2019, doi: 10.1016/j.jdent.2019.05.022. [9] S. Liu, S. Wang, and Y. Dong, 'Evaluation of a bioceramic as a pulp capping agent in vitro and in vivo,' J Endod, vol. 41, no. 5, pp. 652-7, May 2015, doi: 10.1016/j.joen.2014.12.009. [10] Y. C. Chiang et al., 'Nanocrystalline calcium sulfate/hydroxyapatite biphasic compound as a TGF-beta1/VEGF reservoir for vital pulp therapy,' Dent Mater, vol. 32, no. 10, pp. 1197-1208, Oct 2016, doi: 10.1016/j.dental.2016.06.013. [11] C. Prati and M. G. Gandolfi, 'Calcium silicate bioactive cements: Biological perspectives and clinical applications,' Dent Mater, vol. 31, no. 4, pp. 351-70, Apr 2015, doi: 10.1016/j.dental.2015.01.004. [12] A. E. Dawood, P. Parashos, R. H. K. Wong, E. C. Reynolds, and D. J. Manton, 'Calcium silicate-based cements: composition, properties, and clinical applications,' J Investig Clin Dent, vol. 8, no. 2, May 2017, doi: 10.1111/jicd.12195. [13] P. E. Murray, F. Garcia-Godoy, and K. M. Hargreaves, 'Regenerative endodontics: a review of current status and a call for action,' J Endod, vol. 33, no. 4, pp. 377-90, Apr 2007, doi: 10.1016/j.joen.2006.09.013. [14] G. T. Huang, S. Gronthos, and S. Shi, 'Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine,' J Dent Res, vol. 88, no. 9, pp. 792-806, Sep 2009, doi: 10.1177/0022034509340867. [15] W. Sonoyama et al., 'Mesenchymal stem cell-mediated functional tooth regeneration in swine,' PloS one, vol. 1, p. e79, Dec 20 2006, doi: 10.1371/journal.pone.0000079. [16] V. E. Arana-Chavez and L. F. Massa, 'Odontoblasts: the cells forming and maintaining dentine,' Int J Biochem Cell Biol, vol. 36, no. 8, pp. 1367-73, Aug 2004, doi: 10.1016/j.biocel.2004.01.006. [17] T. Tsuboi, S. Mizutani, M. Nakano, K. Hirukawa, and A. Togari, 'Fgf-2 regulates enamel and dentine formation in mouse tooth germ,' Calcif Tissue Int, vol. 73, no. 5, pp. 496-501, Nov 2003, doi: 10.1007/s00223-002-4070-2. [18] A. K. Madan and B. Kramer, 'Immunolocalization of fibroblast growth factor-2 (FGF-2) in the developing root and supporting structures of the murine tooth,' J Mol Histol, vol. 36, no. 3, pp. 171-8, Mar 2005, doi: 10.1007/s10735-005-2684-1. [19] L. Tran-Hung, S. Mathieu, and I. About, 'Role of human pulp fibroblasts in angiogenesis,' J Dent Res, vol. 85, no. 9, pp. 819-23, Sep 2006, doi: 10.1177/154405910608500908. [20] S. Mathieu, C. Jeanneau, N. Sheibat-Othman, N. Kalaji, H. Fessi, and I. About, 'Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration,' J Endod, vol. 39, no. 2, pp. 228-35, Feb 2013, doi: 10.1016/j.joen.2012.11.007. [21] F. J. Unda, A. Martin, C. Hernandez, G. Perez-Nanclares, E. Hilario, and J. Arechaga, 'FGFs-1 and -2, and TGF beta 1 as inductive signals modulating in vitro odontoblast differentiation,' Adv Dent Res, vol. 15, pp. 34-7, Aug 2001, doi: 10.1177/08959374010150010801. [22] H. Ishimatsu et al., 'Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels,' J Endod, vol. 35, no. 6, pp. 858-65, Jun 2009, doi: 10.1016/j.joen.2009.03.049. [23] C. Y. Logan and R. Nusse, 'The Wnt signaling pathway in development and disease,' Annu Rev Cell Dev Biol, vol. 20, pp. 781-810, 2004, doi: 10.1146/annurev.cellbio.20.010403.113126. [24] H. Clevers and R. Nusse, 'Wnt/beta-catenin signaling and disease,' Cell, vol. 149, no. 6, pp. 1192-205, Jun 8 2012, doi: 10.1016/j.cell.2012.05.012. [25] R. Baron and M. Kneissel, 'WNT signaling in bone homeostasis and disease: from human mutations to treatments,' Nat Med, vol. 19, no. 2, pp. 179-92, Feb 2013, doi: 10.1038/nm.3074. [26] Z. Steinhart and S. Angers, 'Wnt signaling in development and tissue homeostasis,' Development, vol. 145, no. 11, Jun 8 2018, doi: 10.1242/dev.146589. [27] M. Tamura and E. Nemoto, 'Role of the Wnt signaling molecules in the tooth,' Jpn Dent Sci Rev, vol. 52, no. 4, pp. 75-83, Nov 2016, doi: 10.1016/j.jdsr.2016.04.001. [28] A. Balic and I. Thesleff, 'Tissue Interactions Regulating Tooth Development and Renewal,' Curr Top Dev Biol, vol. 115, pp. 157-86, 2015, doi: 10.1016/bs.ctdb.2015.07.006. [29] T. Yamashiro et al., 'Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis,' Differentiation, vol. 75, no. 5, pp. 452-62, Jun 2007, doi: 10.1111/j.1432-0436.2006.00150.x. [30] S. Yokose and T. Naka, 'Lymphocyte enhancer-binding factor 1: an essential factor in odontoblastic differentiation of dental pulp cells enzymatically isolated from rat incisors,' J Bone Miner Metab, vol. 28, no. 6, pp. 650-8, Nov 2010, doi: 10.1007/s00774-010-0185-0. [31] N. Han et al., 'β-catenin enhances odontoblastic differentiation of dental pulp cells through activation of Runx2,' (in eng), PloS one, vol. 9, no. 2, p. e88890, 2014, doi: 10.1371/journal.pone.0088890. [32] W. H. Lim et al., 'Wnt signaling regulates pulp volume and dentin thickness,' Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, vol. 29, no. 4, pp. 892-901, Apr 2014, doi: 10.1002/jbmr.2088. [33] S. U. Rahman et al., 'Fibrous Topography-Potentiated Canonical Wnt Signaling Directs the Odontoblastic Differentiation of Dental Pulp-Derived Stem Cells,' ACS applied materials interfaces, vol. 10, no. 21, pp. 17526-17541, May 30 2018, doi: 10.1021/acsami.7b19782. [34] X. Lu et al., 'miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/beta-catenin signaling pathway,' Stem Cell Res Ther, vol. 10, no. 1, p. 226, Jul 29 2019, doi: 10.1186/s13287-019-1344-4. [35] A. Vijaykumar, S. H. Root, and M. Mina, 'Wnt/beta-Catenin Signaling Promotes the Formation of Preodontoblasts In Vitro,' J Dent Res, vol. 100, no. 4, pp. 387-396, Apr 2021, doi: 10.1177/0022034520967353. [36] N. Jiang et al., 'Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis,' Biomaterials, vol. 35, no. 7, pp. 2172-80, Feb 2014, doi: 10.1016/j.biomaterials.2013.11.061. [37] D. G. Moussa and C. Aparicio, 'Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration,' J Tissue Eng Regen Med, vol. 13, no. 1, pp. 58-75, Jan 2019, doi: 10.1002/term.2769. [38] S. F. Yang, K. F. Leong, Z. H. Du, and C. K. Chua, 'The design of scaffolds for use in tissue engineering. Part 1. Traditional factors,' (in English), Tissue Eng, vol. 7, no. 6, pp. 679-689, Dec 2001, doi: Doi 10.1089/107632701753337645. [39] Z. Yuan et al., 'Biomaterial selection for tooth regeneration,' Tissue Eng Part B Rev, vol. 17, no. 5, pp. 373-88, Oct 2011, doi: 10.1089/ten.TEB.2011.0041. [40] H.-Y. Tung et al., 'Construction and control of 3D porous structure based on vapor deposition on sublimation solids,' Applied Materials Today, vol. 7, pp. 77-81, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.apmt.2016.12.005. [41] H. Y. Tung, Z. Y. Guan, T. Y. Liu, and H. Y. Chen, 'Vapor sublimation and deposition to build porous particles and composites,' Nature communications, vol. 9, no. 1, p. 2564, Jul 2 2018, doi: 10.1038/s41467-018-04975-2. [42] E. Meng, P.-Y. Li, and Y.-C. Tai, 'Plasma removal of Parylene C,' Journal of Micromechanics and Microengineering, vol. 18, no. 4, p. 045004, 2008/02/22 2008, doi: 10.1088/0960-1317/18/4/045004. [43] C. Hassler, R. P. von Metzen, P. Ruther, and T. Stieglitz, 'Characterization of parylene C as an encapsulation material for implanted neural prostheses,' (in eng), J Biomed Mater Res B Appl Biomater, vol. 93, no. 1, pp. 266-74, Apr 2010, doi: 10.1002/jbm.b.31584. [44] S. Kuppusami and R. Oskouei, 'Parylene Coatings in Medical Devices and Implants: A Review,' Universal Journal of Biomedical Engineering, vol. 3, pp. 9-14, 05/01 2015, doi: 10.13189/ujbe.2015.030201. [45] Y. T. Hsu et al., 'Characterization of Mechanical Stability and Immunological Compatibility for Functionalized Modification Interfaces,' Scientific reports, vol. 9, no. 1, p. 7644, May 21 2019, doi: 10.1038/s41598-019-43999-6. [46] Y. Du, X. Chen, Y. Koh, and B. Lei, 'Facilely fabricating PCL nanofibrous scaffolds with hierarchical pore structure for tissue engineering,' Materials Letters, vol. 122, pp. 62–65, 05/01 2014, doi: 10.1016/j.matlet.2014.02.031. [47] F. C. Fierz et al., 'The morphology of anisotropic 3D-printed hydroxyapatite scaffolds,' Biomaterials, vol. 29, no. 28, pp. 3799-806, Oct 2008, doi: 10.1016/j.biomaterials.2008.06.012. [48] V. Karageorgiou and D. Kaplan, 'Porosity of 3D biomaterial scaffolds and osteogenesis,' Biomaterials, vol. 26, no. 27, pp. 5474-91, Sep 2005, doi: 10.1016/j.biomaterials.2005.02.002. [49] S. T. Chen, C. Y. Wu, and H. Y. Chen, 'Enhanced Growth Activities of Stem Cell Spheroids Based on a Durable and Chemically Defined Surface Modification Coating,' ACS applied materials interfaces, vol. 10, no. 38, pp. 31882-31891, Sep 26 2018, doi: 10.1021/acsami.8b09103. [50] S. Shi, P. G. Robey, and S. Gronthos, 'Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis,' Bone, vol. 29, no. 6, pp. 532-539, 2001/12/01/ 2001, doi: https://doi.org/10.1016/S8756-3282(01)00612-3. [51] G. T. Huang et al., 'Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model,' Tissue Eng Part A, vol. 16, no. 2, pp. 605-15, Feb 2010, doi: 10.1089/ten.TEA.2009.0518. [52] G. Laino et al., 'A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB),' Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, vol. 20, no. 8, pp. 1394-402, Aug 2005, doi: 10.1359/JBMR.050325. [53] P. Gervois et al., 'Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons,' Stem Cells Dev, vol. 24, no. 3, pp. 296-311, Feb 1 2015, doi: 10.1089/scd.2014.0117. [54] C. Gandia et al., 'Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction,' Stem cells, vol. 26, no. 3, pp. 638-45, Mar 2008, doi: 10.1634/stemcells.2007-0484. [55] B. Yu and Z. Wang, 'Effect of concentrated growth factors on beagle periodontal ligament stem cells in vitro,' Mol Med Rep, vol. 9, no. 1, pp. 235-42, Jan 2014, doi: 10.3892/mmr.2013.1756. [56] Z. Luo, D. Li, M. R. Kohli, Q. Yu, S. Kim, and W. X. He, 'Effect of Biodentinee™ on the proliferation, migration and adhesion of human dental pulp stem cells,' (in eng), J Dent, vol. 42, no. 4, pp. 490-7, Apr 2014, doi: 10.1016/j.jdent.2013.12.011. [57] S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, 'Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,' Proc Natl Acad Sci U S A, vol. 97, no. 25, pp. 13625-30, Dec 5 2000, doi: 10.1073/pnas.240309797. [58] J. Yang, G. Yuan, and Z. Chen, 'Pulp Regeneration: Current Approaches and Future Challenges,' Frontiers in physiology, vol. 7, p. 58, 2016, doi: 10.3389/fphys.2016.00058. [59] W. Luiz de Oliveira da Rosa, T. Machado da Silva, F. Fernando Demarco, E. Piva, and A. Fernandes da Silva, 'Could the application of bioactive molecules improve vital pulp therapy success? A systematic review,' (in eng), J Biomed Mater Res A, vol. 105, no. 3, pp. 941-956, Mar 2017, doi: 10.1002/jbm.a.35968. [60] P. Tayalia and D. J. Mooney, 'Controlled growth factor delivery for tissue engineering,' Adv Mater, vol. 21, no. 32-33, pp. 3269-85, Sep 4 2009, doi: 10.1002/adma.200900241. [61] F. M. Chen, J. Zhang, M. Zhang, Y. An, F. Chen, and Z. F. Wu, 'A review on endogenous regenerative technology in periodontal regenerative medicine,' Biomaterials, vol. 31, no. 31, pp. 7892-927, Nov 2010, doi: 10.1016/j.biomaterials.2010.07.019. [62] M. Suzuki, Y. Taira, C. Kato, K. Shinkai, and Y. Katoh, 'Histological evaluation of direct pulp capping of rat pulp with experimentally developed low-viscosity adhesives containing reparative dentin-promoting agents,' J Dent, vol. 44, pp. 27-36, Jan 2016, doi: 10.1016/j.jdent.2015.11.005. [63] C. A. Costa, M. F. Oliveira, E. M. Giro, and J. Hebling, 'Biocompatibility of resin-based materials used as pulp-capping agents,' (in eng), Int Endod J, vol. 36, no. 12, pp. 831-9, Dec 2003, doi: 10.1111/j.1365-2591.2003.00702.x. [64] K. Ishimoto et al., 'Topical application of lithium chloride on the pulp induces dentin regeneration,' PloS one, vol. 10, no. 3, p. e0121938, 2015, doi: 10.1371/journal.pone.0121938. [65] K. Al-Hezaimi, Z. Salameh, K. Al-Fouzan, M. Al Rejaie, and F. R. Tay, 'Histomorphometric and micro-computed tomography analysis of pulpal response to three different pulp capping materials,' J Endod, vol. 37, no. 4, pp. 507-12, Apr 2011, doi: 10.1016/j.joen.2010.11.001. [66] C. Bègue-Kirn, J. V. Ruch, A. L. Ridall, and W. T. Butler, 'Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells,' (in eng), European journal of oral sciences, vol. 106 Suppl 1, pp. 254-9, Jan 1998, doi: 10.1111/j.1600-0722.1998.tb02184.x. [67] A. Quispe-Salcedo, H. Ida-Yonemochi, M. Nakatomi, and H. Ohshima, 'Expression patterns of nestin and dentin sialoprotein during dentinogenesis in mice,' (in eng), Biomed Res, vol. 33, no. 2, pp. 119-32, Apr 2012, doi: 10.2220/biomedres.33.119. [68] I. About, D. Laurent-Maquin, U. Lendahl, and T. A. Mitsiadis, 'Nestin expression in embryonic and adult human teeth under normal and pathological conditions,' Am J Pathol, vol. 157, no. 1, pp. 287-95, Jul 2000, doi: 10.1016/S0002-9440(10)64539-7. [69] M. Kuratate, K. Yoshiba, Y. Shigetani, N. Yoshiba, H. Ohshima, and T. Okiji, 'Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate,' J Endod, vol. 34, no. 8, pp. 970-4, Aug 2008, doi: 10.1016/j.joen.2008.03.021. [70] I. About and T. A. Mitsiadis, 'Molecular aspects of tooth pathogenesis and repair: in vivo and in vitro models,' Adv Dent Res, vol. 15, pp. 59-62, Aug 2001, doi: 10.1177/08959374010150011501. [71] M. Widbiller et al., 'Histology of human teeth: Standard and specific staining methods revisited,' Arch Oral Biol, vol. 127, p. 105136, Jul 2021, doi: 10.1016/j.archoralbio.2021.105136. [72] L. Bjorndal, 'Presence or absence of tertiary dentinogenesis in relation to caries progression,' Adv Dent Res, vol. 15, pp. 80-3, Aug 2001, doi: 10.1177/08959374010150012101. [73] P. R. Cooper, Y. Takahashi, L. W. Graham, S. Simon, S. Imazato, and A. J. Smith, 'Inflammation–regeneration interplay in the dentine–pulp complex,' Journal of Dentistry, vol. 38, no. 9, pp. 687-697, 2010/09/01/ 2010, doi: https://doi.org/10.1016/j.jdent.2010.05.016. [74] A. Smith and P. Cooper, 'Chapter 32. Cellular Signaling in Dentin Repair and Regeneration,' 2015, pp. 405-417. [75] G. Chamberlain, J. Fox, B. Ashton, and J. Middleton, 'Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing,' (in eng), Stem cells, vol. 25, no. 11, pp. 2739-49, Nov 2007, doi: 10.1634/stemcells.2007-0197. [76] G. T. Huang, 'Dental pulp and dentin tissue engineering and regeneration: advancement and challenge,' Front Biosci (Elite Ed), vol. 3, pp. 788-800, Jan 1 2011, doi: 10.2741/e286. [77] Y. Zheng et al., 'Dentin Regeneration Using Deciduous Pulp Stem/Progenitor Cells,' J Dent Res, vol. 91, pp. 676-82, 06/01 2012, doi: 10.1177/0022034512449834.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80746-
dc.description.abstract背景: 活髓治療泛指施行在具有可回復性的牙髓傷害之牙齒上,以維持牙髓活性與功能的術式 [1]。其目的為給予保護性的覆蓋材料以阻絕感染、避免進一步的傷害、維持牙髓活性,進而有助於牙髓組織之癒合及修復 [2]。活髓治療的成功經常伴隨著硬組織的生成,因此鈣化組織屏障或是類牙本質的形成常被認定為牙髓再生成功的一個現象 [3],雖然該現象非治療之最終目的,但多數的實驗常用鈣化組織或類牙本質組織生成來作為牙髓組織修復或再生的判斷依據。目前臨床上可用來進行活髓治療材料的種類有幾種,如氫氧化鈣、三氧礦化物、Biodentine、其他生物陶瓷等,但綜觀各材料之特性,至今仍缺乏理想之活髓治療材料。故本研究為研發可應用於活髓治療之可攜帶生物因子之生物活性聚對二甲苯孔洞性支架。 材料及方法: 攜帶生長因子的聚對二甲苯支架 (PPxS-GFs) 通過化學氣相沉積聚合製造而成。對於支架非活體的測試包括通過電腦斷層掃描 (micro-CT) 評估是否有攜帶Wnt3a 和 FGF-2 的聚對二甲苯支架對於三維 (3-D) 顯微結構是否會有影響。另一方面將攜帶或無攜帶 Wnt3a 和 FGF-2 的支架與牙髓幹細胞 (DPSC) 一起培養,並通過Live and dead stain以及 MTT 測定來測試生物相容性。進一步透過標記骨鈣素(OCN)和牙本質唾液酸磷蛋白(DSPP)的表現,在免疫螢光染色下來確認誘導分化成牙本質母細胞的能力。活體實驗的部分,雄性Wistar大鼠的上頜第一大臼齒進行窩洞備製至牙髓暴露,暴露的牙髓分別使用玻璃離子體(對照組)、PPxS、PPxS 加生長因子(PPxs-GFs)、PPxS 加 DPSC(PPxS/DPSC)、PPxS 加生長因子和 DPSC(PPxS-GFs/DPSC)覆蓋,冠部窩洞使用玻璃離子體填補。大鼠於1、2、4、8週之時間點犧牲,後續進行電腦斷層、組織學和免疫組織化學分析。 結果與討論: PPxS 和 PPxS-GFs 擁有相近的孔徑和孔隙率。 PPxS 和 PPxS-GFs 顯示出良好的生物相容性,而添加了Wnt3a及FGF-2的PPxS對於細胞增生有著較好的效果。進一步的測試PPxS-GFs對於牙本質母細胞分化的影響,顯示出PPxS-GFs較控制組有較佳促使牙髓幹細胞分化為牙本質母細胞的能力。動物研究的Micro-CT分析顯示PPxS/DPSC、PPxS-GFs 和 PPxS-GFs/DPSC於牙髓組織下方可見礦物化組織。 組織學檢查PPxS/DPSC 4週和PPxS-GFs/DPSC 4週和8 週的組別在牙髓組織中覆髓材料下誘導了礦物化組織生成。 結論: Wnt3a 和 FGF-2 的添加不影響聚對二甲苯支架的結構及孔隙率,且聚對二甲苯支架與牙髓幹細胞之間具有良好的生物相容性。含有 Wnt3a 和 FGF-2的聚對二甲苯支架的在非活體實驗中,可誘導牙髓幹細胞分化為牙本質母細胞。 PPsX/DPSC、PPsX/GFs、PPsX-GFs/DPSC 在動物實驗中,可誘導生成覆髓材料下方的礦物化組織。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:15:04Z (GMT). No. of bitstreams: 1
U0001-1310202116492500.pdf: 77071320 bytes, checksum: 61c0a3064d0b5534c8b20965fd099948 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝……………………………………………………………………………………… i 中文摘要………………………………………………………………………………... ii ABSTRACT……………………………………………………………………………. iv CONTENTS…………………………………………………………………………….vi LIST OF FIGURES…………………………………………………………………….. ix Chapter 1 Introduction……………………………………………………………. 1 1.1 Vital pulp therapy…………………………………………………………………1 1.2 Tissue engineering……….…………………..…………………………….……...2 1.2.1 Growth factors…………………………………………...………………....3 1.2.1.1 Fibroblast growth factor-2 (FGF-2)……………………...………………3 1.2.1.2 Wnt3a………………………………………………………………….…3 1.2.2 Present tissue engineering scaffolds……………………………………….4 Chapter 2 Research Goal………………………………………………………….. 7 2.1 Research Goal………………………………………..…………………………...7 2.2 Hypothesis……………………………………………………………………… 7 Chapter 3 Materials and Methods ………………………………………………...8 3.1 Specimen Preparation……………………………………...……………...……...8 3.1.1 Primary culture of human dental pulp stem cells (DPSCs) ………………… 8 3.1.2 Porous scaffold fabrication………………………………………………..... 8 3.1.3 Three-dimensional(3-D) structure analysis…………………………………. 9 3.1.4 Cell viability and cytotoxicity test…………………………….…………...10 3.1.4.1 Biocompatibility analysis……………………………………………...10 3.1.4.2 Odontoblast differentiation………………………………...………….10 3.1.4.3 Immunofluorescence assay…………………………..………………..10 3.2 Animal model……………………………………………………...……………11 3.2.1 Experimental Animal…………………...………………………………….11 3.2.2 Experimental Grouping……………………………………..……….……..11 3.2.3 Surgical Procedure……………………………………...………………….. 12 3.3 Micro-CT Analysis………………………………………………......………….12 3.4 Histologic Assessment…………………………………………...………...……13 3.4.1 Hematoxylin-eosin stain……………………………………...………...…..13 3.4.2 Immunohistochemistry stain………………………………..……….…..…13 3.4.3 Masson's trichrome stain…………………………………………….…..…13 3.5 Statistical Analysis ……………………………………………...……………...14 Chapter 4 Results……………………………………………………...………….. 15 4.1 Scaffold analysis…………………………………………………...………….. 15 4.2 Cell viability…………………………………………………...……………….. 15 4.3 Micro-CT analysis…………………………………………………...………….. 16 4.4 Histologic assessment ………………………………………………...………... 16 4.4.1 Hematoxylin-eosin stain ………………………………………...………...16 4.4.2 Masson’s trichrome stain………………………………………...………... 17 4.4.3 Immunohistochemistry stain……………...………………………...……...17 Chapter 5 Discussion…………………………………………………...………….. 18 5.1 Scaffold, growth factor and cells…………………………………...………….. 18 5.2 Micro-CT analysis……………………………………...……………………… 20 5.3 Histologic assessment…………………………………...……………………… 20 5.6 The limitation…………………………………………………...………………. 23 Chapter 6 Conclusion…………………………………………...………………..24 REFERENCE………………………………………………...……………………..….. 25"
dc.language.isoen
dc.subject覆髓zh_TW
dc.subject生長因子zh_TW
dc.subject動物實驗zh_TW
dc.subject聚對二甲苯zh_TW
dc.subject活髓治療zh_TW
dc.subjectgrowth factoren
dc.subjectvital pulp therapyen
dc.subjectcappingen
dc.subjectparyleneen
dc.subjectanimal studyen
dc.title研發活髓治療運用之生物活性聚對二甲苯孔洞性支架zh_TW
dc.titleDevelopment of bioactive parylene porous scaffold for vital pulp therapyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳敏慧(Hsin-Tsai Liu),陳賢燁(Chih-Yang Tseng)
dc.subject.keyword活髓治療,覆髓,聚對二甲苯,動物實驗,生長因子,zh_TW
dc.subject.keywordvital pulp therapy,capping,parylene,animal study,growth factor,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202103701
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1310202116492500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
75.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved