請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80741完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞益(Ray-I Chang) | |
| dc.contributor.author | Tzu-Chieh Lin | en |
| dc.contributor.author | 林子傑 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:14:51Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-24T03:14:51Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-21 | |
| dc.identifier.citation | 1.Medical Press: https://medicalxpress.com/news/2018-03-alcohol-heart.html 2.J. Ryan and L. Howes, “Relations between alcohol consumption, heart rate, and heart rate variability in men,” Heart, vol. 88, no. 6, pp. 641–642, 2002. 3.TEXAS INSTRUMENT: https://news.ti.com/zh-tw/content-id-126456 4.tutongfei: PEPS System in Application of the Automotive, International Journal of Recent Engineering Science 5. Future Tesla models could integrate Apple CarKey with UWB tech https://appleinsider.com/articles/21/02/03/future-tesla-models-could-integrate-apple-carkey-with-uwb-tech 6.Han Jun Bae; Lynn Choi: Environment Aware Localization with BLE Fingerprinting for the Next Generation PEPS system, 2019 IEEE Wireless Communications and Networking Conference (WCNC) 7.Tech Orange: https://buzzorange.com/techorange/2021/02/03/ford-google-android/ 8.Valeo Passive entry passive start system https://www.valeo.com/en/passive-entry-passive-start-system/ 9.維基百科-心電圖 https://zh.wikipedia.org/wiki/%E5%BF%83%E7%94%B5%E5%9B%BE 10.A.D.C. Chan, M.M. Hamdy, A. Badre, V. Badee: “Wavelet distance measure for person identification using electrocardiograms”, IEEE Trans. Instrum. Meas. 57(2), 248–253 (2008) 11.Ronald Salloum; C.-C. Jay Kuo :ECG-based biometrics using recurrent neural networks, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 12.ECG-ID Database https://physionet.org/content/ecgiddb/1.0.0/ 13.MIT-BIH Database https://www.physionet.org/content/mitdb/1.0.0/ 14.Jiapu Pan; Willis J. Tompkins: A Real-Time QRS Detection Algorithm, IEEE Transactions on Biomedical Engineering ( Volume: BME-32, Issue: 3, March 1985) 15.Jose-Luis Cabra, Diego Mendez, Luis C. Trujillo: Wide Machine Learning Algorithms Evaluation Applied to ECG Authentication and Gender Recognition, ICBEA '18: Proceedings of the 2018 2nd International Conference on Biometric Engineering and Applications 16.CYBHi Database https://zenodo.org/record/2381823#.YFMddJ0zaUl 17.WF Wang, CY Yang YF Wu: SVM-based classification method to identify alcohol consumption using ECG and PPG monitoring, Personal and Ubiquitous Computing, 2018 - Springer 18.全國法規資料庫: https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=K0040013 flno=114 19.El B’charri, O., Latif, R., Elmansouri, K: ECG signal performance denoising assessment based on threshold tuning of dual-tree wavelet transform, BioMedical Engineering OnLine 2017 springer 20.H. Gholam-Hosseini, H. Nazeran and K. J. Reynolds, 'ECG noise cancellation using digital filters,' Proceedings of the 2nd International Conference on Bioelectromagnetism (Cat. No.98TH8269), Melbourne, VIC, Australia, 1998, pp. 151-152 21.Hochreiter, Sepp, and Jürgen Schmidhuber. 'Long short-term.' Neural computation 9.8 (1997): 1735-1780. 22.Cortes, C., Vapnik, V.:Support-vector networks. Mach Learn 20, 273–297 (1995). 23.Auto-association by multilayer perceptrons and singular value decomposition, Bourlard etc, 1988 24.維基百科-AutoEncoder https://en.wikipedia.org/wiki/Autoencoder 25.Shagun Sodhani,Sarath Chandar,Yoshua Bengio. “Towards Training Recurrent Neural Networks for Lifelong Learning.” arXiv:1811.07017[cs,LG] 26.James Kirkpatrick, et al. “Overcoming catastrophic forgetting in neural networks” arXiv:1612.00796[cs,LG] 27.高雄醫學大學: http://www.kmuh.org.tw/www/kmcj/data/8910/4576.htm 28.全面解析FIDO網路身分識別 https://www.ithome.com.tw/news/128566 29.AWS 模型偏移:https://docs.aws.amazon.com/zh_tw/wellarchitected/latest/machine-learning-lens/evolve.html?fbclid=IwAR2VnMB6N0k04oPtoksHO7qtyFs7t_RMbGsb_lC1sDQYvDd3F4xUxXzOG7c | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80741 | - |
| dc.description.abstract | "隨著感測器技術及相關科技的發展,物聯網正逐步成為車輛產業的一部分。本研究提出以深度學習對智慧手錶的心電圖訊息進行判斷分析之車輛『被動進入、被動啟動』 (Passive Entry Passive Start, PEPS) 系統。由於相關研究亦顯示飲酒對心電圖相關特徵有明顯的影響,故我們發想將智慧手錶作為車輛之智慧鑰匙PEPS系統,以心電圖生物特徵進行身分識別與飲酒偵測,不僅可以取代傳統鑰匙、提高安全性,同時也可以防止酒後駕車問題。由於智慧手錶與傳統醫學心電圖設備等級有差,我們首先驗證前人之研究,實驗顯示深度學習中的長短期記憶模型(Long Short-Term Memory, LSTM)對於智慧手錶心電圖辨識可有91%的準確率,確實較機器學習中的支援向量機(Support Vector Machine, SVM)的84%為佳,但LSTM模型收斂至少要30分鐘以上,雖然實驗顯示在LSTM採用增量式學習方法(Continual Learning, CL)可以使後續訓練時間下降至10分鐘左右,但犧牲了準確程度,無法配合車用系統實際場域應用的需要。故我們提出使用深度學習中的自動編碼器(Auto Encoder),模型訓練可降到5分鐘完成,辨識時再模仿LSTM以連續15個左右的心電圖波形進行群體決策(collective decision),在現有測試集上得到100%的準確率。在效能與效率上同時得到提昇。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:14:51Z (GMT). No. of bitstreams: 1 U0001-1410202116004400.pdf: 1605122 bytes, checksum: 7db696aac06fa6e13b693dc76847a27e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 # 誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 4 第二章 文獻探討 5 2.1 相關文獻回顧 5 2.2 訊號處理方法 8 2.3 機器學習方法 10 2.3.1長短期記憶模型 10 2.3.2支援向量機 12 2.3.3自動編碼器 13 2.3.4增量式學習 14 第三章 研究方法 16 3.1 資料來源 17 3.2 資料預處理 19 3.3 模型訓練與實驗方法 21 3.3.1長短期記憶模型 21 3.3.2支援向量機 22 3.3.3自動編碼器 23 3.3.4增量式學習 24 第四章 研究結果及架構應用 25 4.1實驗資料 25 4.2研究結果 25 4.3架構應用及情境 36 第五章 結論及未來展望 38 參考文獻 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心電圖 | zh_TW |
| dc.subject | 長短期記憶模型 | zh_TW |
| dc.subject | 支援向量機 | zh_TW |
| dc.subject | 自動編碼器 | zh_TW |
| dc.subject | 增量式學習 | zh_TW |
| dc.subject | Continual Learning | en |
| dc.subject | Support Vector Machine | en |
| dc.subject | Long Short-Term Memory | en |
| dc.subject | Auto Encoder | en |
| dc.subject | Electrocardiography | en |
| dc.title | 基於智慧手錶和深度學習的車輛PEPS系統設計 | zh_TW |
| dc.title | Designing a PEPS System of Vehicle based on Smart Watch and Deep Learning | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁肇隆(Hsin-Tsai Liu),張恆華(Chih-Yang Tseng),王昭男 | |
| dc.subject.keyword | 心電圖,長短期記憶模型,支援向量機,自動編碼器,增量式學習, | zh_TW |
| dc.subject.keyword | Long Short-Term Memory,Support Vector Machine,Auto Encoder,Electrocardiography,Continual Learning, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU202103725 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1410202116004400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
