請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳思節(Sz-Jie Wu) | |
| dc.contributor.author | Juo-Yu Chen | en |
| dc.contributor.author | 陳若宇 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:14:44Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2022-11-24T03:14:44Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-11-01 | |
| dc.identifier.citation | 台中區農業專訊第98期. 2017. < https://www.tdais.gov.tw/ws.php?id=12075> 行政院農業委員會. 農業知識入口網. 農漁生產地圖. 百香果. <https://kmweb.coa.gov.tw/theme_data.php?theme=production_map id=80> 何志剛. 2010. 高GABA發芽豆類篩選及促進GABA生成因子探討. 東海大學食品科學系碩士論文. 臺中. 張家瑜. 2019. γ-胺基丁酸於小鼠壓力調節功效評估及複方機能產品開發. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 臺北. 許嫚芯. 2017. 淹水逆境輔以高壓處理對提升毛豆γ-胺基丁酸含量之研究. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 臺北. 經濟部統計處. 批發、零售及餐飲業統計調查. <https://kmweb.coa.gov.tw/index.php> Scopus 索引摘要資料庫. <https://www.scopus.com/home.uri> AI‐Karaki, G.N. 1997. Barley response to salt stress at varied levels of phosphorus. J. Plant Nutr. 20(11):1635-1643. Akihiro, T., S. Koike, R. Tani, T. Tominaga, S. Watanabe, Y. Iijima, K. Aoki, D. Shibata, H. Ashihara, and C. Matsukura. 2008. Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol. 49(9):1378-1389. Altendorf, S. 2018. Minor tropical fruits. Food Outlook. FAO. http://www.fao. org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Tropical_Fruits/Documents/Minor_Tropical_Fruits_FoodOutlook_1_2018. pdf:67-75. Alves, P.L.S., J.D. Berrios, J. Pan, and J.L.R. Ascheri. 2018. Passion fruit shell flour and rice blends processed into fiber-rich expanded extrudates. CyTA-J. Food. 16(1):901-908. Anderson, M.D., T.K. Prasad, B.A. Martin, and C.R. Stewart. 1994. Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol. 105(1):331-339. Ansari, M.I. and S. Chen. 2009. Biochemical characterization of gamma-aminobutyric acid (GABA): pyruvate transaminase during rice leaf senescence. Int. J. Integr. Biol. 6(1):27-32. Ansari, M.I., S. Hasan, and S.U. Jalil. 2014. Leaf senescence and GABA shunt. Bioinformation. 10(12):734. Ashraf, M. and A. Orooj. 2006. Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J. Arid Environ. 64(2):209-220. Aurisano, N., A. Bertani, and R. Reggiani. 1995. Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Plant Cell Physiol. 36(8):1525-1529. Bai, Q., R. Yang, L. Zhang, and Z. Gu. 2013. Salt stress induces accumulation of γ–aminobutyric acid in germinated foxtail millet (Setaria italica L.). Cereal Chem. 90(2):145-149. Bailey-Serres, J. and L. Voesenek. 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59:313-339. Baldwin, B., I. Ebenezer, and C. Riva. 1990. Effects of intracerebroventricular injection of muscimol or GABA on operant feeding in pigs. Physiol. Behav. 48(3):417-421. Baum, G., S. Lev-Yadun., Y. Fridmann., T. Arazi., H. Katsnelson., M. Zik, and H. Fromm. 1996. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J. 15(12):2988-2996. Bhat, R., R. Axtell, A. Mitra, M. Miranda, C. Lock, R.W. Tsien, and L. Steinman. 2010. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl. Acad. Sci. 107(6):2580-2585. Bormann, J. 2000. The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 21(1):16-19. Bormann, J., O.P. Hamill, and B. Sakmann. 1987. Mechanism of anion permeation through channels gated by glycine and gamma‐aminobutyric acid in mouse cultured spinal neurones. J. Physiol. Paris. 385(1):243-286. Bouché, N. and H. Fromm. 2004. GABA in plants: just a metabolite? Trends Plant Sci. 9(3):110-115. Bouché, N., B.T. Lacombe, and H. Fromm. 2003. GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol. 13(12):607-610. Bowery, N. and T. Smart. 2006. GABA and glycine as neurotransmitters: a brief history. Br. J. Pharmacol. 147(S1):S109-S119. Bown, A.W. and B.J. Shelp. 1997. The metabolism and functions of γ-aminobutyric acid. Plant Physiol. 115(1):1-5. Bown, A.W., D.E. Hall, and K.B. MacGregor. 2002. Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiol. 129(4):1430-1434. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. Buddhala, C., C.C. Hsu, and J.Y. Wu. 2009. A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem. Int. 55(1-3):9-12. Bybordi, A. 2010. The influence of salt stress on seed germination, growth and yield of canola cultivars. Not. Bot. Horti. Agrobot. Cluj. Napoca. 38(1):128-133. Canteri, M.H., A. Scheer, C. Petkowicz, C. Ginies, C. Renard, and G. Wosiacki. 2010a. Physicochemical composition of the yellow passion fruit pericarp fractions and respective pectic substances. J. Food Nutr. Res. 49, 113-122. Canteri, M.H., A.P. Scheer, G. Wosiacki, C. Ginies, M. Reich, and C.M. Renard. 2010b. A comparative study of pectin extracted from passion fruit rind flours. J. Polym. Environ. 18(4):593-599. Cazarin, C.B.B., J.K. Silva, T.C. Colomeu, R.L. Zollner, and M.R. Maróstica Junior. 2014. Antioxidant capacity and chemical composition of passion fruit peel (Passiflora edulis). Cienc. Rural. 44(9):1699-1704. Chang, M.Y., S.L. Chen, C.F. Lee, and Y.M. Chen. 2001. Cold-acclimation and root temperature protection from chilling injury in chilling-sensitive mungbean (Vigna radiata L.) seedlings. Bot. Bull. Acad. Sin. 42. Chaplin, G.R. and K. Scott. 1980. Association of calcium in chilling injury susceptibility of stored avocados. HortScience. 15(4):514-515. Cheevitsopon, E. and A. Noomhorm. 2015. Effects of superheated steam fluidized bed drying on the quality of parboiled germinated brown rice. J. Food Process. Preserv. 39(4):349-356. Chen, Q., M.S. Li, W. Ding, M.M. Tao, M.R. Li, Q. Qi, Y.H. Li, J. Li, and L. Zhang. 2020. Effects of high N2/CO2 in package treatment on polyamine-derived 4-aminobutyrate (GABA) biosynthesis in cold-stored white mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 162:111093. Che‐Othman, M.H., R.P. Jacoby, A.H. Millar, and N.L. Taylor. 2020. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. 225(3):1166-1180. Cholewa, E., A.W. Bown, A.J. Cholewinski, B.J. Shelp, and W.A. Snedden. 1997. Cold-shock-stimulated γ-aminobutyric acid synthesis is mediated by an increase in cytosolic Ca2+, not by an increase in cytosolic H+. Can. J Bot. 75(3):375-382. Chung, H.J., S.H. Jang, H.Y. Cho, and S.T. Lim. 2009. Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley. LWT. 42:1712-1716. Coelho, E.M., R.G. Gomes, B.A.S. Machado, R.S. Oliveira, M. Santos Lima, L.C. Azêvedo, and M.A.U. Guez. 2017. Passion fruit peel flour-Technological properties and application in food products. Food Hydrocoll. 62:158-164. Contreras-Esquivel, J.C., C.N. Aguilar, J.C. Montanez, A. Brandelli, J.D. Espinoza-Perez, and C.M. Renard. 2010. Pectin from passion fruit fiber and its modification by pectinmethylesterase. Prev. Nutr. Food Sci. 15(1):57-66. Córdova, K.R.V., T.M.T.B. Gama, C.M.G. Winter, G.K. Neto, and R.J.S. Defreitas. 2005. Características físico-químicas casca maracujá amarelo (Passiflora edulis Flavicarpa Degener) obtida por secagem. Bol. Cent. Pesqui. Process. Aliment. 23(2). Corrêa, R.C., R.M. Peralta, C.W. Haminiuk, G.M. Maciel, A. Bracht, and I.C. Ferreira. 2016. The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp.(passion fruit). Trends Food Sci. Technol. 58:79-95. Deewatthanawong, R., P. Rowell, and C.B. Watkins. 2010. γ-Aminobutyric acid (GABA) metabolism in CO2 treated tomatoes. Postharvest Biol. Technol. 57(2):97-105. Delgado, T.C. 2013. Glutamate and GABA in appetite regulation. Front. Endocrinol. 4:103. Dellarosa, N., S. Tappi, L. Ragni, L. Laghi, P. Rocculi, and M.D. Rosa. 2016. Metabolic response of fresh-cut apples induced by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 38(B):356-364. Detanico, B.C., Â.L. Piato, J.J. Freitas, F.L. Lhullier, M.P. Hidalgo, W. Caumo, and E. Elisabetsky. 2009. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. Eur. J. Pharmacol. 607(1-3):121-125. Diana, M., J. Quílez, and M. Rafecas. 2014. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J. Funct. Foods 10:407-420. Dionisio, L., M.J. Rosa, C. Bouzat, and M. Carmen Esandi. 2011. An intrinsic GABAergic system in human lymphocytes. Neuropharmacology. 60(2-3):513-519. Duan, D.Y., W.Q. Li, X.J. Liu, H. Ouyang, P. An, D. Duan, and W. Liu. 2007. Seed germination and seedling growth of Suaeda salsa under salt stress. Ann. Bot. Fenn. 161-169. Duarte, Y., A. Chaux, N. Lopez, E. Largo, C. Ramírez, H. Nuñez, R. Simpson, and O. Vega. 2017. Effects of blanching and hot air drying conditions on the physicochemical and technological properties of yellow passion fruit (Passiflora edulis Var. Flavicarpa) by‐products. J. Food Process Eng. 40(3):e12425. Ebenezer, I. and B. Baldwin. 1990. Effect of intracerebroventricular administration of the GABAB-receptor agonist baclofen on operant feeding in satiated pigs. Br. J. Pharmacol. 101(3):559. Eshel, N., M. Bukwich, V. Rao, V. Hemmelder, J. Tian, and N. Uchida. 2015. Arithmetic and local circuitry underlying dopamine prediction errors. Nature. 525(7568):243-246. Faingold, C.L., G. Gehlbach, and D.M. Caspary. 1989. On the role of GABA as an inhibitory neurotransmitter in inferior colliculus neurons: iontophoretic studies. Brain Res. 500(1-2):302-312. Fan, L.Q., L.W. Yang, H.B. Gao, X.L. Wu, Q.P. Xia, and B.B. Gong. 2012. Effects of exogenous γ-aminobutyric acid on polyamine metabolism of melon seedlings under hypoxia stress. Yingyong Shengtai Xuebao. 23(6):1599-1606. Farid, R., Z. Rezaieyazdi, Z. Mirfeizi, M.R. Hatef, M. Mirheidari, H. Mansouri, H. Esmaelli, G. Bentley, Y. Lu, Y, Foo, and R.R. Watson. 2010. Oral intake of purple passion fruit peel extract reduces pain and stiffness and improves physical function in adult patients with knee osteoarthritis. Nutr. Res. 30(9):601-606. Flores, H.E. and P. Filner. 1985. Polyamine catabolism in higher plants: characterization of pyrroline dehydrogenase. In Polyamines in Plants. Springer. Dordrecht. Gao, H.B., Y.H. Liu, S.R. Guo, and Y.J. Sun. 2005. Effect of calcium on polyamine content and polyamines oxidase activity in muskmelon seedlings under hypoxia stress. Chin. J. Plant Ecol. 29(4):652. Gómez-Galindo, F., I. Sjöholm, A.G. Rasmusson, S. Widell, and K. Kaack. 2007. Plant stress physiology: opportunities and challenges for the food industry. Crit. Rev. Food Sci. Nutr. 47(8):749-763. Gong, X. and J.H. Liu. 2017. Detection of free polyamines in plants subjected to abiotic stresses by high-performance liquid chromatography (HPLC). Mol. Biol. 305-311. Granger, A.J., N. Mulder, A. Saunders, and B.L. Sabatini. 2016. Cotransmission of acetylcholine and GABA. Neuropharmacology. 100:40-46. Groppa, M. and M. Benavides. 2008. Polyamines and abiotic stress: recent advances. Amino acids. 34(1):35. Gut, H., P. Dominici, S. Pilati, A. Astegno, M.V. Petoukhov, D.I. Svergun, M.G. Grütter, and G. Capitani. 2009. A common structural basis for pH-and calmodulin-mediated regulation in plant glutamate decarboxylase. J. Mol. Biol. 392(2):334-351. Hernández‐Santos, B., M.Á. Vivar‐Vera, J. Rodríguez‐Miranda, E. Herman‐Lara, J.G. Torruco‐Uco, O. Acevedo‐Vendrell, and C.E. Martínez‐Sánchez. 2015. Dietary fibre and antioxidant compounds in passion fruit (Passiflora edulis f. flavicarpa) peel and depectinised peel waste. Int. J. Food Sci. 50(1):268-274. Hewajulige, I., R. Wilson Wijeratnam, R. Wijesundera, and M. Abeysekere. 2003. Fruit calcium concentration and chilling injury during low temperature storage of pineapple. J. Sci. Food Agric. 83(14):1451-1454. Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae. 2013. Global flood risk under climate change. Nat. Clim. Change. 3(9):816-821. Hulme, A. and W. Arthington. 1950. γ-Amino-butyric acid and β-alanine in plant tissues: Amino-acids of the apple fruit. Nature. 165(4201):716-717. Ichimura, K., C. Casais, S.C. Peck, K. Shinozaki, and K. Shirasu. 2006. MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. Int. J. Biol. Chem. 281(48):36969-36976. Iversen, L. 2004. GABA pharmacology-what prospects for the future? Biochem. Pharmacol. 68(8):1537-1540. Jantaro, S. and S. Kanwal. 2017. Low-molecular-weight nitrogenous compounds (GABA and polyamines) in blue-Green Algae. Green Chem. 149-169. Jin, P., H.L. Yu, F. Zhang, and Z.S. Quan. 2015. Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav. 133:146-154. Jin, Z., S.K. Mendu, and B. Birnir. 2013. GABA is an effective immunomodulatory molecule. Amino acids. 45(1):87-94. Kakkar, R.K. and Sawhney, V.K. 2002. Polyamine research in plants-a changing perspective. Physiol. Plant. 116(3):281-292. Khan, W., P.C. Bhatt, and B.P. Panda. 2015. Degradation kinetics of gamma amino butyric acid in Monascus‐fermented rice. J. Food Qual. 38(2):123-129. Kim, H.S., E.J. Lee, S.T. Lim, and J.A. Han. 2015. Self-enhancement of GABA in rice bran using various stress treatments. Food Chem. 172:657-662. Kinnersley, A.M. and F.J. Turano. 2000. Gamma aminobutyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci. 19(6):479-509. Klinchongkon, K., P. Khuwijitjaru, J. Wiboonsirikul, and S. Adachi. 2017. Extraction of oligosaccharides from passion fruit peel by subcritical water treatment. J. Food Process Eng. 40(1):e12269. Knight, H. 1999. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195:269-324. Komatsuzaki, N., J. Shima, S. Kawamoto, H. Momose, and T. Kimura. 2005. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22:497-504 Kreps, J.A., Y. Wu, H.S. Chang, T. Zhu, X. Wang, and J.F. Harper. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130(4):2129-2141. Kurkdjian, A. and J. Guern. 1989. Intracellular pH: measurement and importance in cell activity. Annu. Rev. Plant Biol. 40(1):271-303. Lambert, J.J., M.A. Cooper, R.D. Simmons, C.J. Weir, and D. Belelli. 2009. Neurosteroids: endogenous allosteric modulators of GABAA receptors. Psychoneuroendocrinology. 34:S48-S58. Lamberts, L., I.J. Joye, and J.A. Delcour. 2012. Dynamics of γ-aminobutyric acid in wheat flour bread making. Food Chem. 130(4):896-901. Lane, T. and M. Stiller. 1970. Glutamic acid decarboxylation in Chlorella. Plant Physiol. 45(5):558-562. Le, P.H., T.T. Le, and K. Raes. 2020. Effects of pH and heat treatment on the stability of γ‐aminobutyric acid (GABA) in germinated soymilk. J. Food Process. Preserv. 44(1):e14301. Lewis, B.J., K.A. Herrlinger, T.A. Craig, C.E. Mehring-Franklin, Z. Freitas, and C. Hinojosa-Laborde. 2013. Antihypertensive effect of passion fruit peel extract and its major bioactive components following acute supplementation in spontaneously hypertensive rats. J. Nutr. Biochem. 24(7):1359-1366. Li, E., X. Luo, S. Liao, W. Shen, Q. Li, F. Liu, and Y. Zou. 2018. Accumulation of γ‐aminobutyric acid during cold storage in mulberry leaves. Int. J. Food Sci. 53(12):2664-2672. Liao, J., X. Wu, Z. Xing, Q. Li, Y. Duan, W. Fang, and X. Zhu. 2017. γ-Aminobutyric acid (GABA) accumulation in tea (Camellia sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia. J. Agric. Food Chem. 65(14):3013-3018. Liao, W.C., C.Y. Wang, Y.T. Shyu, R.C. Yu, and K.C. Ho. 2013. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J. Funct. Foods. 5(3):1108-1115. Lim, K.T., J.H. Chung, J.H. Hong, J.H. Kim, E.T. Lee, and A.L. Im. 2006. Effect of air-phase germination with anion radiation and water-spraying on germination ratio, sprout growth, and GABA contents of germinated brown rice. Agric. Biosyst. Eng. 7(1):42-47. Lima, G.C., M.M. Vuolo, Â.G. Batista, N.R. Dragano, C. Solon, and M.R.M. Junior. 2016. Passiflora edulis peel intake improves insulin sensitivity, increasing incretins and hypothalamic satietogenic neuropeptide in rats on a high-fat diet. Nutr. 32(7-8):863-870. Lin, Y., H. He, Q. Huang, F. An, and H. Song. 2020. Flash extraction optimization of low-temperature soluble pectin from passion fruit peel (Passiflora edulis f. flavicarpa) and its soft gelation properties. Food Bioprod. Process. 123:409-418. Liu, K., S. Xu, W. Xuan, T. Ling, Z. Cao, B. Huang, Y. Sun, L. Fang, Z. Liu, and N. Zhao. 2007. Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci. 172(3):544-555. Liu, L.L., H.Q. Zhai, and J.M. Wan. 2005. Accumulation of γ-aminobutyric acid in giant-embryo rice groat in relation to glutamate decarboxylase activity and its gene expression during water soaking. Cereal Chem. 82:191-196. Liu, Y., G. Jia, L. Gou, L. Sun, X. Fu, N. Lan, S. Li, and X. Yin. 2013. Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacol. Biochem. Behav. 104:27-32. López-Vargas, J.H., J. Fernández-López, J.A. Pérez-Álvarez, and M. Viuda-Martos. 2013. Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Int. Food Res. J. 51(2):756-763. Macagnan, F.T., L.R. Santos, B.S. Roberto, F.A. Moura, M. Bizzani, and L.P. Silva. 2015. Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioact. Carbohydr. Diet. Fibre. 6(1):1-6. Maisont, S. and W. Narkrugsa. 2010. The effect of germination on GABA content, chemical composition, total phenolics content and antioxidant capacity of Thai waxy paddy rice. Agric. Nat. Resour. 44(5):912-923. Makino, Y., N. Soga, S. Oshita, Y. Kawagoe, and A. Tanaka. 2008. Stimulation of γ-aminobutyric acid production in vine-ripe tomato (Lycopersicon esculentum Mill.) fruits under modified atmospheres. J. Agric. Food Chem. 56(16):7189-7193. Martínez, R., P. Torres, M.A. Meneses, J.G. Figueroa, J.A. Pérez-Álvarez, and M. Viuda-Martos. 2012. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 135(3):1520-1526. McIntire, S.L., R.J. Reimer, K. Schuske, R.H. Edwards, and E.M. Jorgensen. 1997. Identification and characterization of the vesicular GABA transporter. Nature. 389(6653):870-876. Merodio, C., M.T. Muñoz, B.D. Cura, D. Buitrago, M. Escribano, and I.A. Isabel. 1998. Effect of high CO2 level on the titres of γ-aminobutyric acid, total polyamines and some pathogenesis-related proteins in cherimoya fruit stored at low temperature. J. Exp. Bot. 49(325):1339-1347. Messiaen, J. and P.V. Cutsem. 1999. Polyamines and pectins. II. Modulation of pectic-signal transduction. Planta. 208(2):247-256. Meyer, A., S. Eskandari, S. Grallath, and D. Rentsch. 2006. AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana. Int. J. Biol. Chem. 281(11):7197-7204. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25(2):239-250. Naka, Y., K. Watanabe, G. Sagor, M. Niitsu, M.A. Pillai, T. Kusano, and Y. Takahashi. 2010. Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol. Biochem. 48(7):527-533. Nascimento, E.M., A. Mulet, J.L.R. Ascheri, C.W.P. Carvalho, and J.A. Cárcel. 2016. Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. J. Food Eng. 170:108-118. Nayyar, H., K.A.U.R Satwinder, S. Kumar, K.J. Singh, and K.K. Dhir. 2005. Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot. Bull. Acad. Sinica. 46. Occena-Po, L.G. 2006. Banana, mango, and passion fruit. Handbook of Fruits and Fruit Processing. 635. Oh, S.H. 2003. Stimulation of γ-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. BMB Reports. 36(3):319-325. Ohtsubo, K., K. Suzuki, Y. Yasui, and T. Kasumi. 2005. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J. Food Compos. Anal. 18(4):303-316. Ohtsubo, S., S. Asano, K, Sato, and I. Matsumoto. 2000. Enzymatic production of γ-aminobutyric acid using rice (Oryza sativa) germ. Food Sci. Technol. 6(3):208-211. Oliveira, D.A., M. Angonese, C. Gomes, and S.R. Ferreira. 2016. Valorization of passion fruit (Passiflora edulis sp.) by-products: sustainable recovery and biological activities. J. Supercrit. Fluids. 111:55-62. Ozarowski, M. and B. Thiem. 2013. Progress in micropropagation of Passiflora spp. to produce medicinal plants: a mini-review. Rev. Bras. Farmacogn. 23(6):937-947. Popovich, P.G. and E.E. Longbrake. 2008. Can the immune system be harnessed to repair the CNS? Nat. Rev. Neurosci. 9(6):481-493. Provart, N.J., P. Gil, W. Chen, B. Han, H.S. Chang, X. Wang, and T. Zhu. 2003. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol. 132(2):893-906. Queiroz, M.S.R., D.I. Janebro, M.A.L. Cunha, J. Santos Medeiros, A.U. Sabaa-Srur, F. Margareth Fatima, and S.C. Santos. 2012. Effect of the yellow passion fruit peel flour (Passiflora edulis f. flavicarpa deg.) in insulin sensitivity in type 2 diabetes mellitus patients. Nutr. 11(1):1-7. Quinn, P.J. 1988. Effects of temperature on cell membranes. Symp. Soc. Exp. Biol. 237-258. Ramputh, A.I. and A.W. Bown. 1996. Rapid [gamma]-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 111(4):1349-1352. Reggiani, R., N. Aurisano, M. Mattana, and A. Bertani. 1993. ABA induces 4-aminobutyrate accumulation in wheat seedlings. Phytochemistry. 34(3):605-609. Renault, H., V. Roussel, A. El Amrani, M. Arzel, D. Renault, A. Bouchereau, A, and C. Deleu. 2010. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10(1):1-16. Roberts, R.C. and C.E. Ribak. 1987. GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J. Comp. Neurol. 258(2):267-280. Rodriguez-Amaya, D.B. 2003. Passion fruit. Tropical and Subtropical Fruits. 321-332. Rodriguez-Amaya, D.B. 2012. Acerola, cashew apple, cherimoya and pitanga. Tropical and subtropical fruits. Roth, F.C. and A. Draguhn. 2012. GABA metabolism and transport: effects on synaptic efficacy. Neural Plast. 2012. Rothan, C., S. Duret, C. Chevalier, and P. Raymond. 1997. Suppression of ripening-associated gene expression in tomato fruits subjected to a high CO2 concentration. Plant Physiol. 114(1):255-263. Sadami, O., A. Satoshi, S. Kazuhito, and M. Isao. 2000. Enzymatic production of caminobutyric acid using rice (Oryza sativa) germ Food Sci. Technol. Res. 6:208-211. Saikusa, T., T. Horino, and Y. Mori. 1994. Distribution of free amino acids in the rice kernel and kernel fractions and the effect of water soaking on the distribution J. Agric. Food Chem. 42:1122-1125 Sasagawa, A., Y. Naiki, S. Nagashima, M. Yamakura, A. Yamazaki, and A. Yamada. 2006. Process for producing brown rice with increased accumulation of GABA using high pressure treatment and properties of GABA-increased brown rice. J. Appl. Glycosci. 53:27-33. Sasidharan, R. and L.A. Voesenek. 2015. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169(1):3-12. Schwartz, M. and R. Shechter. 2010. Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol. 6(7):405. Seixas, F.L., D.L. Fukuda, F.R. Turbiani, P.S. Garcia, L.O. Carmen, S. Jagadevan, and M.L. Gimenes. 2014. Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocoll. 38:186-192. Seki, M., M. Narusaka, H. Abe, M. Kasuga, K. Yamaguchi-Shinozaki, P. Carninci, Y. Hayashizaki, and K. Shinozaki. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell. 13(1):61-72. Shelp, B.J., C.S. Walton, W.A. Snedden, L.G. Tuin, I.J. Oresnik, and D.B. Layzell. 1995. Gaba shunt in developing soybean seeds is associated with hypoxia. Physiol. Plant. 94:219-228. Shelp, B.J., G.G. Bozzo, C.P. Trobacher, A. Zarei, K.L. Deyman, and C.J. Brikis. 2012. Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci. 193:130-135. Shen, W., K. Nada, and S. Tachibana. 2000. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol. 124(1):431-440. Shiu, M.S., Y.T. Shyu, and S.J. Wu. 2020. Flooding stress and high-pressure treatment enhance the GABA content of the vegetable soybean (Glycine max Merr.). Agric. 10(5):175. Silva, F.H.L., A.P. Viana, E.A. Santos, J.C.O. Freitas, D.L. Rodrigues, and A.T. Amaral Júnior. 2017. Prediction of genetic gains by selection indexes and REML/BLUP methodology in a population of sour passion fruit under recurrent selection. Acta Scientiarum. Agronomy. 39(2):183-190. Slocum, R.D. and H.E. Flores. 1991. Biochemistry and physiology of polyamines in plants. CRC press. Soltani, N., H. Qiu, M. Aleksic, Y. Glinka, F. Zhao, R. Liu, Y. Li, N. Zhang, R. Chakrabarti, and T. Ng. 2011. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc. Natl. Acad. Sci. 108(28):11692-11697. Souza, C.B., M. Jonathan, S.M.I. Saad, H.A. Schols, and K. Venema. 2018. Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioact. Carbohydr. Diet. Fibre. 16:90-99. Souza, C.G., T.H.S. Rodrigues, L.M.A. Silva, P.R.V. Ribeiro, and E.S. Brito. 2017. Sequential extraction of flavonoids and pectin from yellow passion fruit rind using pressurized solvent or ultrasound. J. Sci. Food Agric. 98(4):1362-1368. Srisang, N., W. Varanyanond, S. Soponronnarit, and S. Prachayawarakorn. 2011. Effects of heating media and operating conditions on drying kinetics and quality of germinated brown rice. J. Food Eng. 107(3-4):385-392. Streeter, J.G. and J.F. Thompson. 1972. Anaerobic accumulation of γ-aminobutyric acid and alanine in radish leaves (Raphanus sativus. L.). Plant Physiol. 49(4):572-578. Takahashi, Y., T. Sasanuma, and T. Abe. 2013. Accumulation of gamma-aminobutyrate (GABA) caused by heat-drying and expression of related genes in immature vegetable soybean (edamame). Breed. Sci. 63(2):205-210. Techo, J., S. Soponronnarit, S. Devahastin, L.S. Wattanasiritham, R. Thuwapanichayanan, and S. Prachayawarakorn. 2019. Effects of heating method and temperature in combination with hypoxic treatment on γ‐aminobutyric acid, phenolics content and antioxidant activity of germinated rice. Int. J. Food Sci. 54(4):1330-1341. Teng, J., W. Zhou, Z. Zeng, W. Zhao, Y. Huang, and X. Zhang. 2017. Quality components and antidepressant-like effects of GABA green tea. Food Funct. 8(9):3311-3318. Thuwapanichayanan, R., U. Yoosabai, D. Jaisut, S. Soponronnarit, and S. Prachayawarakorn. 2015. Enhancement of γ-aminobutyric acid in germinated paddy by soaking in combination with anaerobic and fluidized bed heat treatment. Food Bioprod. Process. 95:55-62. Tian, J., J. Yong, H. Dang, and D.L. Kaufman. 2011. Oral GABA treatment downregulates inflammatory responses in a mouse model of rheumatoid arthritis. Autoimmun. 44(6):465-470. Tiansawang, K., P. Luangpituksa, W. Varanyanond, and C. Hansawasdi. 2016. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Sci. Technol. 36:313-321. Tong, J.C., I.R. Mackay, J. Chin, R.H.P. Law, K. Fayad, M.J. Rowley. 2002. Enzymatic characterization of a recombinant isoform hybrid of glutamic acid decarboxylase (rGAD67/65) expressed in yeast. J. Biotechnol. 97:183-190. Tsukatani, T. and K. Matsumoto. 2005. Sequential fluorometric quantification of γ-aminobutyrate and l-glutamate using a single line flow-injection system with immobilized-enzyme reactors. Anal. Chim. Acta. 546(2):154-160. Tsushida, T. and T. Murai. 1987a. Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic conditions. Agr. Biol. Chem. 51(11):2865-2871. Tsushida, T., T. Murai, M. Omori, and J. Okamoto. 1987b. Production of a new type tea containing a high level of gamma-aminobutyric acid. J. Agric. Chem. Soc. Jpn. 61(7):817-822 Vezzani, A., S. Balosso, and T. Ravizza. 2008. The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 22(6):797-803. Viuda-Martos, M., Y. Ruiz-Navajas, A. Martin-Sánchez, E. Sánchez-Zapata, J. Fernández-López, E. Sendra, E. Sayas-Barberá, C. Navarro, and J. Pérez-Álvarez. 2012. Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. J. Food Eng. 110(2):220-224. Vuolo, M.M., G.C. Lima, Â.G. Batista, C.B.B. Carazin, D.E. Cintra, M.A. Prado, and M.R.M. Júnior. 2020. Passion fruit peel intake decreases inflammatory response and reverts lipid peroxidation and adiposity in diet-induced obese rats. Nutr. Res. 76:106-117. Wafford, K.A. 2005. GABAA receptor subtypes: any clues to the mechanism of benzodiazepine dependence? Curr. Opin. Pharmacol. 5(1):47-52. Wallace, W., J. Secor, and L.E. Schrader. 1984. Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol. 75(1):170-175. Wang, C.Y. 1990. Chilling injury of horticultural crops. CRC Press. Wang, S.F., R.Q. Yang, and Z.X. Gu. 2014. Cultivar Selection and culture condition optimization for γ-amino butyric acid (GABA) accumulation in germinating soybean under hypoxia stress. Food Sci. 2014:21. Watson, R.R., S. Zibadi, H. Rafatpanah, F. Jabbari, R. Ghasmi, J. Ghafari, H. Afrasiabi, L.Y. Foo, and R. Faridhosseini. 2008. Oral administration of the purple passion fruit peel extract reduces wheeze and cough and improves shortness of breath in adults with asthma. Nutr. Res. 28(3):166-171. Wheeler, D.W., A.J. Thompson, F. Corletto, J. Reckless, J.C. Loke, N. Lapaque, A.J. Grant, P. Mastroeni, D.J. Grainger, and C.L. Padgett. 2011. Anaesthetic impairment of immune function is mediated via GABAA receptors. PloS One. 6(2):e17152. Woodrow, P., L.F. Ciarmiello, M.G. Annunziata, S. Pacifico, F. Iannuzzi, A. Mirto, L. D'Amelia, E. Dell'Aversana, S. Piccolella, and A. Fuggi. 2017. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol. Plant. 159(3):290-312. Wosch, L., D.C. Imig, A.C. Cervi, B.B. Moura, J.M. Budel, and C.A. Moraes Santos. 2015. Comparative study of Passiflora taxa leaves: I. A morpho-anatomic profile. Rev. Bras. Farmacogn. 25(4):328-343. Wu, C., Y. Huang, X. Lai, R. Lai, W. Zhao, M. Zhang, and W. Zhao. 2014. Study on quality components and sleep-promoting effect of GABA Maoyecha tea. J. Funct. Foods. 7:180-190. Wu, Q.Y., S.Z. Ma, W.W. Zhang, K.B. Yao, L. Chen, F. Zhao, and Y.Q. Zhuang. 2018. Accumulating pathways of γ-aminobutyric acid during anaerobic and aerobic sequential incubations in fresh tea leaves. Food Chem. 240:1081-1086. Xing, S.G., Y.B. Jun, Z.W. Hau, and L.Y. Liang. 2007. Higher accumulation of γ-aminobutyric acid induced by salt stress throug……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80738 | - |
| dc.description.abstract | "百香果 (Passiflora edulis),為熱帶美洲的一種本土植物,常種植於熱帶或亞熱帶氣候區,人們通常取之內部種子與內果皮作食用,但食用後留下的大量果殼對於環境會造成影響。γ-胺基丁酸 (Gamma-aminobutyric acid, GABA),為哺乳動物中樞神經系統中,最主要的抑制性神經傳導物質,可調控食慾以及調節免疫,同時具有抗憂鬱和抗焦慮之功效。許多研究發現,以逆境給予植物壓力,能使GABA生成量大幅增加,本研究使用百香果殼「台農1號」進行缺氧逆境處理,提升其GABA含量。將百香果殼進行真空處理、真空後填充CO2處理以及真空後填充N2處理,三者在不同時間點皆能提升GABA之含量,並以真空處理靜置4天之百香果殼有最高含量之GABA含量。逆境處理改以40℃作為風乾百香果殼之溫度,較以20℃及60℃有更高的GABA含量,另外,考量經濟效益及方便性,續以真空處理進行試驗,並探討百香果殼在經過真空處理下不同貯藏天數其GABA變化與其生化作用機制。以未真空處理百香果殼並於冷藏靜置3天會顯著生成1683.36±143.36 mg·100 g-1之GABA,與Control組相比提升28.80%;以真空處理百香果殼並於冷藏靜置4天會顯著生成更高的GABA含量,可達2139.25±26.69 mg·100 g-1,與Control組相比提升63.68%。經過未真空處理及真空處理後,Glutamic acid含量分別下降40.49%及66.70%,GAD活性也同樣於第3天 (0.0233±0.0040 U·mg-1) 及第4天 (0.1351±0.0025 U·mg-1) 有高活性。使GABA含量下降可能是由於GABA-T之作用,未真空處理及真空處理之GABA-T (Ala) 及GABA (Glu) 活性皆會從第1天上升至第5天,另外,未真空處理及真空處理之多胺含量,會於GABA含量生成最多的前一天 (即第2天及第3天) 有最多的多胺含量,而氧化多胺形成GABA的DAO酵素則分別在第3天 (0.0005 U·mg-1) 及第4天 (0.0037 U·mg-1) 有最高的活性。在本研究中,未真空處理組主要透過DAO氧化多胺生成GABA,而真空處理組除了透過DAO作用外,同時也透過GAD轉化Glutamic acid生成GABA。總結所述,真空處理具有提高百香果殼中GABA含量之效果,進而成為具有機能性之水果副產物,期望能提供百香果殼副產物更多利用價值。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:14:44Z (GMT). No. of bitstreams: 1 U0001-1410202120582700.pdf: 6806236 bytes, checksum: 4d5033234a5897430c75bb0e8c1a1b58 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 謝誌 II 中文摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XI 第一章、前言 1 第二章、文獻回顧 2 第一節、百香果 2 1. 百香果介紹 2 2. 百香果產業現況 6 3. 百香果加工與利用 9 第二節、γ-胺基丁酸 13 1. γ-胺基丁酸介紹 13 2. γ-胺基丁酸生理功能 14 3. γ-胺基丁酸生合成路徑 17 4. γ-胺基丁酸富化 19 第三章、研究動機與目的 28 第四章、試驗架構 29 第五章、材料與方法 30 第一節、試驗材料 30 第二節、試驗藥品 30 1. GABA含量及其相關酵素分析 30 2. 多胺含量分析 31 3. 蛋白質定量 31 第三節、儀器與設備 32 第四節、缺氧處理 33 第五節、GABA及Glutamic acid之萃取與分析 34 第六節、GAD及GABA-T之萃取與分析 36 第七節、多胺之萃取與分析 37 第八節、蛋白質定量 38 第九節、統計分析 38 第六章、結果與討論 39 第一節、GABA及Glutamic acid檢測方法確立 39 1. GABA標準品之檢量線 39 2. Glutamic acid標準品之檢量線 40 第二節、多胺檢測方法確立 41 第三節、不同風乾溫度處理下百香果殼中GABA含量變化 43 第四節、不同缺氧條件處理百香果殼中GABA含量變化 46 第五節、真空處理對百香果殼儲藏期間之變化 49 1. GABA含量 49 2. Glutamic acid含量 51 3. GAD活性 55 4. GABA-T活性 60 5. PAO和DAO活性 68 6. 多胺含量 73 第七章、結論 79 參考資料 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 百香果殼 | zh_TW |
| dc.subject | γ-胺基丁酸 | zh_TW |
| dc.subject | 真空處理 | zh_TW |
| dc.subject | 麩胺酸脫羧酶 | zh_TW |
| dc.subject | 二胺氧化酶 | zh_TW |
| dc.subject | diamine oxidase | en |
| dc.subject | Passion fruit peel | en |
| dc.subject | vacuum treatment | en |
| dc.subject | glutamine decarboxylase | en |
| dc.subject | γ-aminobutyric acid | en |
| dc.title | 提升百香果殼中γ-胺基丁酸含量之研究 | zh_TW |
| dc.title | Research on Enhancing γ-aminobutyric acid Content in Passion Fruit Peel | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐源泰(Hsin-Tsai Liu),劉育姍(Chih-Yang Tseng) | |
| dc.subject.keyword | 百香果殼,γ-胺基丁酸,真空處理,麩胺酸脫羧酶,二胺氧化酶, | zh_TW |
| dc.subject.keyword | Passion fruit peel,γ-aminobutyric acid,vacuum treatment,glutamine decarboxylase,diamine oxidase, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202103732 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-11-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1410202120582700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
