Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorYung-Ling Chenen
dc.contributor.author陳詠鈴zh_TW
dc.date.accessioned2022-11-24T03:14:18Z-
dc.date.available2021-11-04
dc.date.available2022-11-24T03:14:18Z-
dc.date.copyright2021-11-04
dc.date.issued2021
dc.date.submitted2021-10-24
dc.identifier.citation[1]X.-X. Yu, M. A. Taylor, J. H. Perepezko, and L. D. Marks, 'Competition between thermodynamics, kinetics and growth mode in the early-stage oxidation of an equimolar CoCrFeNi alloy,' Acta Materialia, vol. 196, pp. 651-659, 2020, doi: 10.1016/j.actamat.2020.06.056. [2]B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, 'Microstructural development in equiatomic multicomponent alloys,' Materials Science and Engineering: A, vol. 375-377, pp. 213-218, 2004, doi: 10.1016/j.msea.2003.10.257. [3]B. Cantor, 'Multicomponent and High Entropy Alloys,' Entropy, vol. 16, no. 9, pp. 4749-4768, 2014, doi: 10.3390/e16094749. [4]Y. Wang, M. Zhang, J. Jin, P. Gong, and X. Wang, 'Oxidation behavior of CoCrFeMnNi high entropy alloy after plastic deformation,' Corrosion Science, vol. 163, 2020, doi: 10.1016/j.corsci.2019.108285. [5]Y.-K. Kim, Y.-A. Joo, H. S. Kim, and K.-A. Lee, 'High temperature oxidation behavior of Cr-Mn-Fe-Co-Ni high entropy alloy,' Intermetallics, vol. 98, pp. 45-53, 2018, doi: 10.1016/j.intermet.2018.04.006. [6]G. R. Holcomb, J. Tylczak, and C. Carney, 'Oxidation of CoCrFeMnNi High Entropy Alloys,' Jom, vol. 67, no. 10, pp. 2326-2339, 2015, doi: 10.1007/s11837-015-1517-2. [7]S. Abbaszadeh, A. Pakseresht, H. Omidvar, and A. Shafiei, 'Investigation of the High-Temperature Oxidation Behavior of the Al0.5CoCrFeNi High Entropy Alloy,' Surfaces and Interfaces, vol. 21, 2020, doi:10.1016/j.surfin.2020.100724. [8]J.-W. Yeh, 'Alloy Design Strategies and Future Trends in High-Entropy Alloys,' Jom, vol. 65, no. 12, pp. 1759-1771, 2013, doi: 10.1007/s11837-013-0761-6. [9]M. M. Ali, S. S. Abd ElMoamen, M. A. H. Gepreel, H. A. Ahmed, and F. A. Elrefaie, 'High temperature oxidation of non equi-atomic Al5Cr12Fe35Mn28Ni20 high entropy alloy,' Materials Research Express, vol. 8, no. 3, 2021, doi: 10.1088/2053-1591/abeab9. [10]J.-W. Yeh, 'Recent progress in high-entropy alloys,' European Journal of Control, vol. 33, pp. 633-648, 2006, doi: 10.3166/acsm.31.633-648. [11]M. P. Agustianingrum, U. Lee, and N. Park, 'High-temperature oxidation behaviour of CoCrNi medium-entropy alloy,' Corrosion Science, vol. 173, 2020, doi: 10.1016/j.corsci.2020.108755. [12]中國鋼鐵公司. '第一熱軋鋼帶生產流程.' [13]J.-K. Chang, C.-S. Lin, W.-J. Cheng, I. H. Lo, and W.-R. Wang, 'Oxidation resistant silane coating for hot-dip galvanized hot stamping steel,' Corrosion Science, vol. 164, 2020, doi: 10.1016/j.corsci.2019.108307. [14]N. Choi, N. Park, J.-k. Kim, A. V. Karasev, P. G. Jönsson, and J. H. Park, 'Influence of Manufacturing Conditions on Inclusion Characteristics and Mechanical Properties of FeCrNiMnCo Alloy,' Metals, vol. 10, no. 10, 2020, doi: 10.3390/met10101286. [15]M. Laurent-Brocq et al., 'Insights into the phase diagram of the CrMnFeCoNi high entropy alloy,' Acta Materialia, vol. 88, pp. 355-365, 2015, doi: 10.1016/j.actamat.2015.01.068. [16]W. F. Smith, B.J.Clark and J. Maisel, Eds. Structure and Properties of Engineering Alloys. 1993. [17]D. B. Wei et al., 'Study on the oxidation of stainless steels 304 and 304L in humid air and the friction during hot rolling,' Wear, vol. 267, no. 9-10, pp. 1741-1745, 2009, doi: 10.1016/j.wear.2008.11.030. [18]G. A. Salishchev et al., 'Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system,' Journal of Alloys and Compounds, vol. 591, pp. 11-21, 2014, doi: 10.1016/j.jallcom.2013.12.210. [19]S.-W. KE and C.-J. WANG, Corrosion and its prevention. Quanhua Book Co., Ltd., 2016. [20]W. Kai, W. L. Jang, R. T. Huang, C. C. Lee, H. H. Hsieh, and C. F. Du, 'Air Oxidation of FeCoNi-Base Equi-Molar Alloys at 800~1000◦ °C,' Oxidation of Metals, vol. 63, no. 3-4, pp. 169-192, 2005, doi: 10.1007/s11085-004-3198-z. [21]D.-H. JHUANG, Failure Analysis. 2017. [22]G. Laplanche, U. F. Volkert, G. Eggeler, and E. P. George, 'Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy,' Oxidation of Metals, vol. 85, no. 5-6, pp. 629-645, 2016, doi: 10.1007/s11085-016-9616-1. [23]Y.-m. Chiang, D. P. Birnie, and W. D. Kingery, Ceramic materials Matériaux céramiques. New York : J. Wiley, 1997. [24]X. Yibin, M. Yamazaki, and P. Villars, '無機材料數據庫,探索材料:Jpn.J.Appl.Phys.50(2011)11RH02,' 2010. [Online]. [25]C. Xu and W. Gao, 'Pilling-Bedworth ratio for oxidation of alloys,' Materials Research Innovations, vol. 3, no. 4, pp. 231-235, 2016, doi: 10.1007/s100190050008. [26]鄭福本, 陳偉昇, 宋建群, 開物, and 開執中, '鎳基超合金 Hastelloy X 銲件在 950℃ 濕空氣環境之恆溫及循環氧化行為研究,' Journal of Chinese Corrosion Engineering, vol. 32, no. 4, pp. 1-10, 2018. [27]G. BAYER, 'THERMAL EXPANSION OF OXIDE COAMPOUNDS WITH SPINEL STRUCTURE,' thermolchimica acta, 1971. [28]W. Kai et al., 'Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700–900 °C,' Corrosion Science, vol. 121, pp. 116-125, 2017, doi: 10.1016/j.corsci.2017.02.008. [29]'Ellingham_diagrams.' [30]J.-J. Yang et al., 'Improvement in oxidation behavior of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy superalloys by minor Nb addition,' Journal of Alloys and Compounds, vol. 825, 2020, doi: 10.1016/j.jallcom.2020.153983. [31]N. Birks, G. H. Meier, and F. S. Pettit, 'Mechanisms of oxidation,' in Introduction to the High-Temperature Oxidation of Metals, 2006, ch. 3, pp. 39-74. [32]W.-M. Choi, Y. H. Jo, S. S. Sohn, S. Lee, and B.-J. Lee, 'Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study,' npj Computational Materials, vol. 4, no. 1, 2018, doi: 10.1038/s41524-017-0060-9. [33]D. Gaertner, J. Kottke, G. Wilde, S. V. Divinski, and Y. Chumlyakov, 'Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys,' Journal of Materials Research, vol. 33, no. 19, pp. 3184-3191, 2018. [34]M. Vaidya, K. G. Pradeep, B. S. Murty, G. Wilde, and S. V. Divinski, 'Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys,' Acta Materialia, vol. 146, pp. 211-224, 2018, doi: 10.1016/j.actamat.2017.12.052. [35]D. Gaertner, J. Kottke, Y. Chumlyakov, F. Hergemöller, G. Wilde, and S. V. Divinski, 'Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high-entropy alloys: Kinetic hints towards a low-temperature phase instability of the solid-solution?,' Scripta Materialia, vol. 187, pp. 57-62, 2020, doi: 10.1016/j.scriptamat.2020.05.060. [36]E. J. Kautz et al., 'Element redistributions during early stages of oxidation in a Ni38Cr22Fe20Mn10Co10 multi-principal element alloy,' Scripta Materialia, vol. 194, 2021, doi: 10.1016/j.scriptamat.2020.10.051. [37]X.-x. Yu et al., 'In Situ Observations of Early Stage Oxidation of Ni-Cr and Ni-Cr-Mo Alloys,' Corrosion, vol. 74, no. 9, pp. 939-946, 2018, doi: 10.5006/2807. [38]E. Osei-Agyemang and G. Balasubramanian, 'Surface oxidation mechanism of a refractory high-entropy alloy,' npj Materials Degradation, vol. 3, no. 1, 2019, doi: 10.1038/s41529-019-0082-5. [39]C. E. R. d. Carvalhoa, G. M. d. C. , A. B. C. *, and E. H. R. , 'High Temperature Oxidation Behavior of AISI 304 and AISI 430 Stainless Steels,' Materials Research Express, vol. 9, no. 4, pp. 393-397, 2006. [40]H. Chen et al., 'Oxidation behavior of Fe-20Cr-25Ni-Nb austenitic stainless steel in high-temperature environment with small amount of water vapor,' Corrosion Science, vol. 145, pp. 90-99, 2018, doi: 10.1016/j.corsci.2018.09.016. [41]A. M. Huntz et al., 'Oxidation of AISI 304 and AISI 439 stainless steels,' Materials Science and Engineering: A, vol. 447, no. 1-2, pp. 266-276, 2007, doi: 10.1016/j.msea.2006.10.022. [42]Z. Tong, H. Liu, J. Jiao, W. Zhou, Y. Yang, and X. Ren, 'Laser additive manufacturing of CrMnFeCoNi high entropy alloy: Microstructural evolution, high-temperature oxidation behavior and mechanism,' Optics Laser Technology, vol. 130, 2020, doi: 10.1016/j.optlastec.2020.106326. [43]R. Gawel, Ł. Rogal, J. Dąbek, M. Wójcik-Bania, and K. Przybylski, 'High temperature oxidation behaviour of non-equimolar AlCoCrFeNi high entropy alloys,' Vacuum, vol. 184, 2021, doi: 10.1016/j.vacuum.2020.109969. [44]Q. S. Chen et al., 'Microstructure and corrosion characteristics of CrCuFeMoNi HEA coatings with different compositions in high-temperature and high-pressure water,' Materials Research Express, vol. 6, no. 8, 2019, doi: 10.1088/2053-1591/ab19ed. [45]R. A. RAPP, 'The High Temperature Oxidation of Metals Forming Cation-Diffusing Scales ' METALLURGICAL TRANSACTIONS A, vol. 15A, pp. 765-782, 1984. [46]王. 杜正恭, 蔡淑月, '電子微探儀,' Instruments Today, vol. 170, pp. 69-76, 2009, doi: 10.29662/IT.200906.0007. [47]鮑忠興 and 劉思謙, 近代穿透式電子顯微鏡實務(第二版). 滄海書局, 108. [48]D. A. Porter and K. E. Easterling, 'Phase Transformations in Metals and Alloys ' Springer-Science+Business Media, B.Y. , 1992, doi: 10.1007/978-1-4899-3051-4 [49]A. Petric and H. Ling, 'Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures,' Journal of the American Ceramic Society, vol. 90, no. 5, pp. 1515-1520, 2007, doi: 10.1111/j.1551-2916.2007.01522.x. [50]A. Nicholas Grundy, Bengt Hallstedt, and L. J. Gauckler, 'Assessment of the Mn-O System,' Journal of Phase Equilibria and Diffusion, vol. 24, no. 1, 2003. [51]D. A.Jones, Principles and prevention of corrosion 1996. [52]H. Okamoto, 'Mn-O (Manganese-Oxygen),' Journal of Phase Equilibria and Diffusion, vol. 28, no. 3, pp. 307-308, 2007/06/01 2007, doi: 10.1007/s11669-007-9061-6. [53]R. B. Nair, K. Selvam, H. S. Arora, S. Mukherjee, H. Singh, and H. S. Grewal, 'Slurry erosion behavior of high entropy alloys,' Wear, vol. 386-387, pp. 230-238, 2017, doi: 10.1016/j.wear.2017.01.020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80727-
dc.description.abstract"高熵合金起初被設計為含有等莫耳或接近等莫耳比例的多主要成分合金,其擁有高混合熵可提供穩定性以形成大量無序的固溶狀態。作為設計新穎的合金,有寬廣的成分範圍與多元素可潛在符合應用需求,在高溫下仍有足夠的機械強度、韌性與熱穩定性。自2004年Cantor et al.與Yeh et al.發表相關研究,使高熵合金的研究成指數性增長,成為現今熱門研究的主題。若此材料應用於高溫,無可避免地會經歷高溫氧化,表面氧化使得底材損失,降低底材的使用效率和壽命,並增加後續去除氧化層的製程成本,大幅限制其在高溫氧化之應用。 本研究使用真空感應熔煉50 公斤級的大型鑄材,熱軋至原厚的20%,接著進行均質化處理後得到成分分佈均勻的FeCoNiCrMnx(x=1,0.3)高熵合金。探討兩種合金於1050 ℃持溫25分鐘到24小時的短期至長期高溫氧化,且用示差熱掃描儀估算合金熔點與硬度試驗得知氧化層與基材的硬度以搭配解釋氧化特性,由刮痕試驗可知氧化數小時的氧化層有較佳附著性。在兩合金的短期氧化動力學皆為線性;長期氧化皆遵循拋物線性,FeCoNiCrMn0.3有較低的氧化速率常數,表示氧化相對較慢,其可有效減緩氧化速率因素可能為降低錳元素含量(7 at%)、保有鉻含量(23 at%),仍可維持緩慢擴散與晶格扭曲效應及在氧化層內層形成薄且連續緻密的Cr2O3保護層。經由OM、SEM、EPMA、XRD、EBSD和TEM分析氧化層表面與橫截面形貌、氧化相與成元素分佈結果,可知氧化層外層為富錳的Mn3O4;氧化層內層為富鉻的Cr2O3;Cr2O3兩側為含有一些錳與鉻的MnCr2O4; MnCr2O4來自Mn3O4與Cr2O3形成擴散偶與Cr2O3做為元素擴散阻礙層。底材靠近界面形成錳與鉻的匱乏,使剩餘元素填補,且隨氧化時間增加,氧化層受熱應力與成長應力導致剝落與再氧化。故Mn及Cr的氧化物是決定氧化行為的主導因素。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:14:18Z (GMT). No. of bitstreams: 1
U0001-1510202121331800.pdf: 12912875 bytes, checksum: 6d2b9033789911da144c5ddbebb30344 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 i ABSTRACT ii 目錄 iv 圖目錄 viii 表目錄 xiv 第一章 前言 1 第二章 文獻回顧 3 2.1 高熵合金簡介 3 2.1.1高熵合金起源 3 2.1.2 高熵合金定義 4 2.1.3 高熵合金之混合熵 4 2.1.4 高熵合金之效應 6 2.2 熱軋製程 9 2.2.1鑄造缺陷 10 2.2.2 熱軋 11 2.2.3 均質化熱處理 13 2.3 高溫氧化 13 2.3.1氧化機制 14 2.3.2氧化熱力學 21 2.3.3氧化動力學 23 2.3.4 n-type 氧化層 26 2.3.5 p-type 氧化層 27 2.3.6 元素擴散行為 28 2.4初期高溫氧化 31 2.5 長期高溫氧化 38 2.6 非等莫爾高熵合金的高溫氧化 45 第三章 實驗方法及步驟 49 3.1 實驗方法與流程 49 3.1.1實驗方法 49 3.2實驗步驟 50 3.2.1合金熔煉 50 3.2.2合金熱軋與均質化處理 51 3.2.3高溫氧化實驗 51 3.3.4高溫氧化實驗瓶頸 52 3.2.5橫截面試片製備 53 3.3 微結構觀察與成分分析 54 3.3.1 光學顯微鏡 54 3.3.2 掃描式電子顯微鏡 54 3.3.3 能量散佈光譜儀 55 3.3.4 電子微探儀 55 3.3.5 X光繞射儀 56 3.3.6聚焦離子束與電子束顯微系統 56 3.3.7 穿透式電子顯微鏡 57 3.4 氧化層附著性測試 57 3.4.1 刮痕試驗儀 57 3.5 硬度測試 58 3.5.1 奈米壓痕儀 58 3.5.2 洛氏硬度機 58 3.6 合金熔點量測 59 3.6.1 同步熱分析儀 59 第四章 實驗結果與討論 60 4.1 FeCoNiCrMnx高熵合金分析 60 4.1.1 合金成分與相的表徵 60 4.1.2 合金熔點的熱分析 62 4.2 FeCoNiCrMn高熵合金短期高溫氧化 64 4.2.1 氧化動力學TGA分析 64 4.2.2 表面形貌與成分分析 65 4.2.3 氧化層橫截面SEM觀測 68 4.2.4 橫截面EBSD觀測 71 4.3 熱軋製程的加熱均溫區高溫氧化模擬 73 4.4 FeCoNiCrMn高熵合金長期高溫氧化 81 4.4.1 氧化動力學TGA分析 81 4.4.2 氧化物表面形貌與成分分析 82 4.4.3 XRD繞射分析 85 4.4.4 OM、SEM、EPMA橫截面觀測與成分分析 87 4.4.5 EBSD、TEM氧化層相鑑定 103 4.5 FeCoNiCrMn0.3高熵合金長期高溫氧化 111 4.5.1氧化層表面形貌與成分分析 111 4.5.2 XRD繞射分析 113 4.5.3 OM、SEM、EPMA橫截面觀測與成分分析 115 4.6 FeCoNiCrMnX高熵合金與其氧化層的機械特性 124 4.6.1 合金硬度試驗 124 4.6.2 氧化層奈米壓痕試驗 125 4.6.3 氧化層附著性試驗 126 第五章 結論 128 第六章 未來展望 130 參考文獻 131
dc.language.isozh-TW
dc.subject高熵合金zh_TW
dc.subject長期高溫氧化zh_TW
dc.subject短期高溫氧化zh_TW
dc.subject氧化動力學zh_TW
dc.subject非等莫耳zh_TW
dc.subjectlong-term high-temperature oxidationen
dc.subjectshort-term high-temperature oxidationen
dc.subjectoxidation kineticsen
dc.subjecthigh entropy alloysen
dc.subjectnon-isomolaren
dc.title"FeCoNiCrMnx (x=1,0.3) 高熵合金之1050 ℃氧化行為 "zh_TW
dc.title"Oxidation Behavior of FeCoNiCrMnx(x=1,0.3) High Entropy Alloys at 1050 ℃ "en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏鴻威(Hsin-Tsai Liu),葉宗洸(Chih-Yang Tseng),李岳聯,蔡文達
dc.subject.keyword高熵合金,氧化動力學,短期高溫氧化,長期高溫氧化,非等莫耳,zh_TW
dc.subject.keywordhigh entropy alloys,oxidation kinetics,short-term high-temperature oxidation,long-term high-temperature oxidation,non-isomolar,en
dc.relation.page134
dc.identifier.doi10.6342/NTU202103770
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-1510202121331800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved