Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80712
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬(Chun-Pin Lin)
dc.contributor.authorChih-Ying Chenen
dc.contributor.author陳芝穎zh_TW
dc.date.accessioned2022-11-24T03:13:45Z-
dc.date.available2021-11-03
dc.date.available2022-11-24T03:13:45Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-20
dc.identifier.citation[1] Niinomi, M. (2008). Metallic biomaterials. Journal of Artificial Organs, 11(105). [2] Wang, K. (1996). The use of titanium for medical applications in the USA. Materials Science and Engineering: A, 213(1-2), 134-137. [3] 馮聖偉(2014)”科技大觀園生醫材料(六):牙科植體發展新境界”,網址: https://scitechvista.nat.gov.tw/c/skYD.htm/ [4] Rack, H.J. Qazi, J.I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering: C, 26(8), 1269-1277. [5] 昇基事業(2019)“淺談橫跨數千年的植牙發展歷史”,網址: https://sunriser.com.tw/2019/dental-implant-history/ [6] Michael, M. (1999). Dental Implant Materials: Commercially Pure Titanium and Titanium Alloys. Journal of Prosthodontics, 8(1), 40-43. [7] Min-Su, L. Yong-Taek, H. Tea-Sung, J. (2019). Global and local strain rate sensitivity of commercially pure titanium. Journal of Alloys and Compounds, 803(30), 711-720. [8] Nicolas, S. Brigitte, G. Michele, L. Francis, D (2002). Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials, 23(9), 1995-2002. [9] Cao, F. Chandran, R. Pankaj, K. (2017). New approach to achieve high strength powder metallurgy Ti-6Al-4V alloy through accelerated sintering at β-transus temperature and hydrogenation-dehydrogenation treatment. Scripta Materialia, 130(15), 22-26. [10] Emília, D. Francielly, M. Larissa, F. Ana, I. Ronaldo, S. Carlos, N. (2020). Comparison of the wettability and corrosion resistance of two biomedical Ti alloys free of toxic elements with those of the commercial ASTM F136 (Ti–6Al–4V) alloy. Journal of Materials Research and Technology, 9(6), 16329-16338. [11] Kamel, S. (2018). One-stage vs two-stage implant placement: A systematic review and meta-analysis. British Journal of Oral And Maxillofacial Surgery, 56(10), e25. [12] Gheisari, R. Eatemadi, H. Alavian, A. (2017). Comparison of the Marginal Bone Loss in One-stage versus Two-stage Implant Surgery. Journal of Dentistry, 18(4): 272-276. [13] Bonomi, S., Settembrini, F. (2013). One-Stage and Two-Stage Approaches in Implant-Based Breast Reconstruction. Plastic And Reconstructive Surgery, 131(6), 923e-924e. [14] Byrne, G. (2010). Outcomes of One-Stage Versus Two-Stage Implant Placement. The Journal Of The American Dental Association, 141(10), 1257-1258. [15] Tamal Kanti, P. Nilgunj, R. Panihati. Sodpur. Kolkata. (2015). Fundamentals and history of implant dentistry. J Int Clin Dent Res Organ, 7, 6-12. [16] Balshi, T.J. Wolfinger, G.J. (1997). Immediate loading of Brånemark implants in edentulous mandibles: a preliminary report. Implant Dentistry, 6(2), 83-88. [17] Dieter D., B. Vivianne, C. Daniel, B. (2016). Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontology 2000, 73(1), 22-40. [18] Lütjering, G. Williams, J.C. Gysler,A. (2000). Microstructure and mechanical properties of titanium alloys. Microstructure And Properties, Chapter 1, 1-77. [19] Kuroda, D. Niinomi,M. Morinaga, M. Kato, Y. Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering: A. 243(1-2), 244-249. [20] Lütjering, G. James, C. Williams. (2007). Titanium. Springer Science Business Media. P4-8. [21] 燕敏(2001) “新型鈦金屬鑄造用包埋材之合成及性質Study on Synthesis and Properties of New-type Investment for Titanium Casting” 中山醫學大學,牙醫學系暨碩士班,研究計畫。 [22] 全國能源信息平台(2019) ”鈦合金的構造用途及分類” 網址: https://kknews.cc/zh-tw/news/2ykozly.html. [23] Carlos, N.E. Daniel, J.F. Celso, R.S. Jochen, R. (2015). Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants. Dental Materials, 31(2), e1-e13. [24] Kozelskaya, A., Bolbasov, E., Golovkin, A., Mishanin, A., Viknianshchuk, A., Shesterikov, E. et al. (2018). Modification of the Ceramic Implant Surfaces from Zirconia by the Magnetron Sputtering of Different Calcium Phosphate Targets: A Comparative Study. Materials, 11(10), 1949. [25] 王茂生、歐耿良、黃大森 (2013) “創新功能性表面功能化處理於人工牙根之應用”,牙橋11(2):8。 [26] Kurup, A. Dhatrak, P. Khasnis, N. (2021). Surface modification techniques of titanium and titanium alloys for biomedical dental applications: A review. Materialstoday Proceedings, 39(1), 84-90. [27] 白馨,呂炫堃(2007) “鈦金屬植體微電弧電漿氧化表面處理技術與骨組織的關係-小型文獻回顧The Relationship between the Bone Response and Surface Modification of Ti Implants by micro-arc oxidation-a mini-review” 中華牙醫學雜誌(中文版),26(2),106-113。 [28] Subramani, K. Mathew, R.T. Pachauri, P. (2018). Chapter 6 - Titanium surface modification techniques for dental implants—From microscale to nanoscale. Emerging Nanotechnologies in Dentistry (Second Edition) Micro and Nano Technologies, 99-124. [29] 林煒峻(2015) “利用原子層沉積技術改質牙科植體表面及其表現之研究Research on the Dental Implant Surface Properties and Performances Using Atomic Layer Deposition Technique” 國立臺灣大學臨床牙醫學研究所,碩士論文。 [30] Jemat, A. Ghazali, M. J. Razali, M. Otsuka, Y. (2015). Surface Modifications and Their Effects on Titanium Dental Implants. BioMed Research International, 791725, 11. [31] 陳玫秀(2003) “利用低溫電漿化學改質鈦金屬表面Chemical Modification of Titanium Surface by Glow Discharge” 臺北醫學大學牙醫學系,碩士論文。 [32] Chouirfaa, H. Bouloussab, H. Migonneya, V. Falentin-Daudré, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83(1), 37-54. [33] 王茂生、歐耿良、黃大森 (2013) “創新功能性表面功能化處理於人工牙根之應用”,牙橋11(2):8。 [34] Conrads, H. Schmidt, M. (2000). Plasma generation and plasma sources. Plasma generation and plasma sources, 9(4), 411. [35] Kaseem, M. Fatimah, S. Nashrah, N. Young Gun, K. (2021). Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Progress in Materials Science, 117, 100735. [36] 陳克紹,曹永偉編譯(1986) '薄膜技術',全華科技圖書。 [37] Cargill, P. (2007). Fundamentals of Plasma Physics. Plasma Physics And Controlled Fusion, 49(2), 197-197. [38] Khelifa, F., Ershov, S., Habibi, Y., Snyders, R., Dubois, P. (2016). Free-Radical-Induced Grafting from Plasma Polymer Surfaces. Chemical Reviews, 116(6), 3975-4005. [39] Steckelmacher, W. (1993). Film deposition by plasma techniques. Vacuum, 44(10), 1069. [40] Special Issue on Plasma-Based Surface Modification and Treatment Technologies. (2006). IEEE Transactions on Plasma Science, 34(4), 1050-1051. [41] Vohrer, U., Müller, M., Oehr, C. (1998). Glow-discharge treatment for the modification of textiles. Surface And Coatings Technology, 98(1-3), 1128-1131. [42] Cargill, P. (2007). Fundamentals of Plasma Physics. Plasma Physics And Controlled Fusion, 49(2), 197-197. [43] Khelifa, F., Ershov, S., Habibi, Y., Snyders, R., Dubois, P. (2016). Free-Radical-Induced Grafting from Plasma Polymer Surfaces. Chemical Reviews, 116(6), 3975-4005. [44] Rostami, S. (1998). Polymer surfaces - from physics to technology. Surface Engineering, 14(4), 291-291. [45] Utracki, L. (1993). PLASMA DEPOSITION, TREATMENT, AND ETCHING OF POLYMERS edited by R. d'Agostino Academic Press, Inc., Boston 528 pages, hard cover, 1990. Materials and Manufacturing Processes, 8(3), 385-390. [46] Morent, R. Nathalie, D.G. Tim, D. Peter, D. Christophe, L. (2011). Plasma Surface Modification of Biodegradable Polymers: A Review. Plasma Processes and Polymers, 8(3), 171-190. [47] David, B.G. Pascal, B. (2009). Molecular dynamics for low temperature plasma–surface interaction studies. Journal of Physics D: Applied Physics, 42(19). [48] 廖淑娟、張嘉玓、陳克紹(2014)”微弧氧化前處理及冷電漿接枝聚合表面改質鈦金屬其生物適應性之研究”,真空科技 27(3)。 [49] Steckelmacher, W. 1993. Film deposition by plasma techniques. Vacuum. 44(10), 1069. [50] Chu, P.K. Chen, J.Y. Wang, L.P. Huang, N. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 36(5-6), 143-206. [51] 吳耀庭、黃曉鳳、溫俊祥。2004。電漿表面處理在生醫材料上之應用。工業材料雜誌,212期。 [52] 陳克紹、陳素真、洪翠禪、廖淑娟。2009。表面電漿改質技術在生物醫學工程之應用。化工技術,17(8):106-121。 [53] 廖淑娟、莊清硯、章浩宏、林文澧、林俊彬(2017)”電漿聚合沈積對二甲苯薄膜及固定生長因子BMP-2改善 316L 不鏽鋼迷你骨釘之生物適應性”,真空科技30(1)。 [54] Zhao, Y. Kelvin W.K., Y. Paul, K.C. (2014). Functionalization of biomedical materials using plasma and related technologies. Applied Surface Science, 310(15), 11-18. [55] Enas, M.A. (2015), Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105-121. [56] 林鴻儒(2018),'神奇的水膠” 科學發展,542期,66-72頁。 [57] 洪翠禪。2007。材料表面的冷電漿聚合及表面接枝聚合水膠在生物醫學的應用。大同大學材料工程學系碩士論文。 [58] Mehrdad, H. Amir, A. Pedram, R. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60(15), 1638-1649. [59] Jianping, D. Lifu, W. Lianying, L. Wantai, Y. (2009). Developments and new applications of UV-induced surface graft polymerizations. Progress in Polymer Science, 34(2), 156-193. [60] Chen, K., Chang, S., Feng, C., Lin, W., Liao, S. (2018). Plasma Deposition and UV Light Induced Surface Grafting Polymerization of NIPAAm on Stainless Steel for Enhancing Corrosion Resistance and Its Drug Delivery Property. Polymers, 10(9), 1009. [61] Janne Virtanen. 2000. Thermal Properties of Poly(N-isopropylacrylamide)-g-poly (ethylene oxide) in Aqueous Solutions: Influence of the Number and Distribution of the Grafts. Macromolecules. 33(16):5970-5975. [62] 周瑞玲、周澄興、鄒國鳳、楊均威(2013),”感溫性水膠對蛋白質吸收和釋放行為之探討 The Study of protein Absorption and Release Behaviors of Thermally Sensitive Hydrogel”健康管理學刊第十一卷第二期,138-147頁。 [63] Ko-Shao, C. Jui-Che, T. Chih-Wei, C. Mu-Rong, Y. Jen-Ming, Y. (2002). Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface. Materials Science and Engineering: C, 20(1-2), 203-208. [64] Special Issue on Plasma-Based Surface Modification and Treatment Technologies. (2006). IEEE Transactions On Plasma Science, 34(4), 1050-1051. [65] Chen, K., Chang, S., Feng, C., Lin, W., Liao, S. (2018). Plasma Deposition and UV Light Induced Surface Grafting Polymerization of NIPAAm on Stainless Steel for Enhancing Corrosion Resistance and Its Drug Delivery Property. Polymers, 10(9), 1009. [66] KUZUYA, M. (2006). Novel Pharmaceutical and Biomedical Applications of Plasma Techniques. YAKUGAKU ZASSHI, 126(7), 439-454. [67] Pattanaik, B., Pawar, S., Pattanaik, S. (2012). Biocompatible implant surface treatments. Indian Journal Of Dental Research, 23(3), 398. [68] Rosen, V. (2009). BMP2 signaling in bone development and repair. Cytokine Growth Factor Reviews, 20(5-6), 475-480. [69] Xiaoting, Y. Ganlin, S. Xuan, W. Ying, Z. Yu, C. (2018). The Preparation and Medical Applications of Chitosan Microspheres. Current Organic Chemistry, 22(7), pp. 720-733(14). [70] Thomas, C. Shindu. Harshita. Pawan, K.M. Sushama, T. (2015). Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Current Pharmaceutical Design, 21(42), pp. 6165-6188(24). [71] Xu, X. Yan, H. Yonghui, D. Jiacan, S. (2021). Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Advanced Functional Materials, 31(19), 2009432. [72] Singh, B.N. Shankar, S. Srivastava, R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), Pages 1807-1821. [73] Wolfram, S. (2013). Effects of Green Tea and EGCG on Cardiovascular and Metabolic Health. Journal of the American College of Nutrition, 26(4), Pages 373S-388S. [74] Elena, V. Giovanni, L. Mihai, T. Antonio, C. (2012). Chlorhexidine (CHX) in dentistry: State of the art. Minerva Stomatologica, 61(9):399-419. [75] Fwu‐Long, M. Shin‐Shing, S. Chih‐Kang, P. (2005). Characterization of ring‐opening polymerization of genipin and pH‐dependent cross‐linking reactions between chitosan and genipin. Journal of Polymer Science: Part A: Polymer Chemistry, 43(10),1985-2000. [76] Muzzarelli, Riccardo A.A. (2009). Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 77(1), 1-9. [77] Bigi, A. Cojazzi, G. Panzavolta, S. Roveri, N. Rubini, K. (2002). Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 23(24), 4827-4832. [78] Ko-Shao, C. Shu-Ju, C. Chi-Kuang, F. Win-Li, L. Shu-Chuan, Liao. (2018). Plasma Deposition and UV Light Induced Surface Grafting Polymerization of NIPAAm on Stainless Steel for Enhancing Corrosion Resistance and Its Drug Delivery Property. Polymers, 10(1009), 1-12. [79] Hung-Che, C. Tsong-Rong, Y. Ko-Shao, C. (2009). Detecting cells on the surface of a silver electrode quartz crystal microbalance using plasma treatment and graft polymerization. Colloids and Surfaces B: Biointerfaces, 73(2), 244-249. [80] Goujon, M. Belmonte, T. Henrion, G. (2004). OES and FTIR diagnostics of HMDSO/O2 gas mixtures for SiOx deposition assisted by RF plasma. Surface and Coatings Technology, 188-189,756-761. [81] Kim, S., Park, S. and Kim, S., (2003). Swelling behavior of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and chitosan. Reactive and Functional Polymers, 55(1), 53-59. [82] Janne Virtanen. (2000). Thermal Properties of Poly(N-isopropylacrylamide)-g-poly (ethylene oxide) in Aqueous Solutions: Influence of the Number and Distribution of the Grafts. Macromolecules. 33(16):5970-5975. [83] Soon Eon, B. Jiyeon, C. Yoon Ki, J. Kwideok, P. Dong Keun, H. (2012). Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. Journal of Controlled Release. [84] Xufeng, N. Qingling, F. Mingbo, W. Xiaodong, G. Qixin, Z. (2009). In vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polymer Degradation and Stability, 94(2), 176-182. [85] Da, L. Hai, Y. Hongliang, H. Fenping, S. Xiaoyuan, W. Jianli, W. Xietao, C. Qingqing, W. Guping, T. (2007). FGF Receptor-mediated Gene Delivery using Ligands Coupled to Polyethylenimine. Journal of Biomaterials Applications, 22(2), 163-180. [86] Yuh-Shyan, T. Yu-Hung, C. Pai-Chiao, C. Hsin-Tzu, T. Ai-Li, S. Tzong-Shin, T. Chao-Liang, W. (2013). TGF- β1 Conjugated to Gold Nanoparticles Results in Protein Conformational Changes and Attenuates the Biological Function. Small, No.12, 2119–2128. [87] Moreno-Vásquez, M.J. Valenzuela-Buitimea, E.L. Plascencia-Jatomea, MEncinas-Encinas, J.C. Rodríguez-Félix, F. Sánchez-Valdes, S. Rosas-Burgos, E.C. Ocano-Higuera, V. M. Graciano-Verdugo, A.Z. (2017). Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydrate Polymers, 155, 117-127. [88] Pho, Q. Hsieh, M. Wu, X. Chin, T. (2016). Synthesis of PLGA microparticles of EGCG by a doulble emulsion-solvent technique and their anti-inflammatory effect to activated BV-2 cells by lipopolysaccharide. Bioeng. Biotechnol. 10th World Biomaterials Congress. [89] Akram, Z. Aati, S. Ngo, H. Fawzy, A. (2021). pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface. Journal of Nanobiotechnology, 19(43), 1-16. [90] Lustriane, C. Dwivany, F. M. Suendo, V. Reza, M. (2018). Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J Plant Biotechnol, 45(1), 36-44.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80712-
dc.description.abstract"近年來人工植牙是牙科臨床上治療缺牙的優先選擇,相對於傳統式牙橋植牙過程是不需要修磨前後健康的牙齒,因此對於植牙體材料首要需求是具有良好的生物相容性與骨整合效果。目前植牙主要的植體材料為鈦金屬,因鈦金屬具高強度的機械性質、化學穩定性及生物相容性等優點,然而臨床上植體植入後病患所需骨整合時間較長,且不當照護也可能導致植牙失敗,為了縮短骨整合的時間並使植體具有抗菌的效果,對植體進行表面改質技術以增加植體與骨組織的整合性,達到「即拔、即種、即用」的優點。本研究使用鈦金屬作為基材,先以低溫電漿化學氣相法沉積有機矽胺烷(六甲基二矽胺烷Hexamethyldisilazane, HMDSZ)膜,使基材表面形成一層有機矽胺烷類的保護界面層來預防金屬離子釋出,再使用氧氣電漿活化表面形成含氧極性基團來提高表面親水性,接著利用UV光接枝聚合技術將不同比例之N-異丙基丙烯醯胺(N-isopropylacrylamide, NIPAAm)/甲基丙烯酸羥乙酯(2-Hydroxyethyl methacrylate, HEMA)/氫氧基磷灰石(hydroxyapatite, HAp)單體聚合成感溫性複合式水膠,為調整複合式感溫性水膠之相轉變溫度來作為藥物釋放載體,最後以天然交聯劑京尼平(Genipin)交聯固定三種不同生長因子骨塑型蛋白2 (Bone Morphogenetic Proteins, BMP2)、成纖維細胞生長因子(fibroblast growth factor,FGF)、轉化生長因子-β1 (Transforming Growth Factor Beta1, TGF-β1)及三種不同抗菌分子兒茶素(Epigallocatechin-3-gallate, EGCG)、氯己定(Chlorhexidine gluconate, CHX)、幾丁聚醣(Chitosan, CTS)。實驗結果分析使用表面潤濕性分析(Water contact angle, WCA)、傅立葉轉換紅外線光譜(Fourier-transform infrared spectroscopy, FTIR)、掃描式電子顯微鏡(Field-emission scanning electron microscope, FE-SEM)、能量色散X射線(EDS)及X射線光電子能譜儀(X-ray Photoelectron Spectroscope, XPS)來分析材料表面之官能基組成、表面形貌與元素組成。利用水膠降解性測試、膨潤率(Swelling ratio)、藥物釋放測試(Drug release test)來觀察複合式感溫性水膠對於溫度與藥物釋放速率的影響。最後進行細胞存活試驗(Alamar blue cell viability assay)、鹼性磷酸酶活性表現定性分析(Alkaline phosphatase activity analysis, ALP)與鈣生成量定性測試(Induced calcification tissue staining analysis)以及抗菌試驗,來觀察鈦金屬之生物相容性、抗菌性能與骨細胞之鈣化磷化情形。由實驗結果顯示,經HMDSZ電漿沉積不同時間處理後,處理時間越長其水接觸角角度越大,而經由氧氣電漿處理後明顯下降改善其表面親水性。表面化學鍵結分析是利用傅立葉轉換紅外線光譜儀而測得,由實驗結果可發現,鈦金屬基材經過不同電漿處理並以UV光接枝聚合複合式水膠後,出現官能基有Si(CH3)2、C=O、N-H、C-O、-OH等,並以掃描式電子顯微鏡觀察鈦金屬試片其經由不同表面改質後之表面形貌變化。而由材料生物相容性分析的結果觀察得知,經過不同表面處理製備後的鈦金屬基材皆具有良好之細胞存活率,且經抗菌測試結果表明,表面改質後具有良好的抗菌效果,期許鈦金屬植體能夠達到具備促進骨整合效果與抗菌效應,並應用於骨科牙科之研究。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:13:45Z (GMT). No. of bitstreams: 1
U0001-1710202119211000.pdf: 7099004 bytes, checksum: 319be05b7a25540342fab8c6bd377a9b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v 總目錄 vii 圖目錄 xi 表目錄 xiv 第一章 前言 - 1 - 1.1研究背景 - 1 - 1.2研究目的 - 2 - 第二章 文獻回顧 - 5 - 2.1 植牙體發展歷史 - 5 - 2.2 植牙體-介紹 - 6 - 2.2.1 植牙體的材質與種類 - 6 - 2.2.2 植牙體手術過程與流程 - 8 - 2.3 骨整合的機制 - 8 - 2.4 鈦金屬植牙體 - 9 - 2.4.1鈦金屬基本性質 - 9 - 2.4.2 鈦金屬應用於牙科的發展 - 10 - 2.4.3鈦金屬植牙體相關表面改質技術 - 11 - 2.5 電漿介紹 - 12 - 2.5.1電漿原理介紹 - 12 - 2.5.2低溫電漿表面處理技術與原理 - 13 - 2.5.3 低溫電漿表面處理的優點 - 15 - 2.5.4低溫電漿表面處理在生醫材料上的應用 - 16 - 2.6 水膠(Hydrogel)介紹 - 17 - 2.6.1 水膠類型 - 18 - 2.6.2水膠合成方式 - 19 - 2.7 UV光表面接枝聚合 - 19 - 2.8 異丙基丙烯醯胺(N-isopropylacrylamid, NIPAAm) - 20 - 2.9表面生醫功能性分子固定 - 21 - 2.9.1生長因子介紹 - 21 - 2.9.2抗菌分子介紹 - 22 - 第三章 實驗方法與步驟 - 24 - 3.1實驗架構 - 24 - Part1: 電漿化學氣相沉積法 - 24 - Part2: 接枝聚合複合式感溫性水膠固定生長因子及抗菌分子 - 24 - 3.2實驗流程圖 - 27 - 3.3實驗材料與藥品 - 28 - 3.3.1 實驗基材製備 - 28 - 3.3.2 實驗基材與藥品 - 28 - 3.4實驗步驟 - 30 - 3.4.1 HMDSZ 電漿表面沉積處理 - 30 - 3.4.2 氧氣電漿表面活化處理 - 31 - 3.4.3 UV光接枝聚合複合式感溫性水膠 - 32 - 3.4.4 表面交聯固定生物分子 - 33 - 3.5實驗分析與儀器設備 - 34 - 3.5.1 表面特性分析 - 34 - 3.5.1.1 表面潤濕性測試 - 34 - 3.5.1.2 傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) - 36 - 3.5.1.3 分析型場發掃描式電子顯微鏡 (Analytical field emission scanning electron microscope, FE-SEM) - 37 - 3.5.1.4 X射線光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) - 38 - 3.5.1.5 膨潤率分析(Swelling Ratio) - 39 - 3.5.1.6 藥物釋放測試(Drug release test) - 40 - 3.5.1.7 生物降解性測試 - 41 - 3.5.2 體外生物相容性測試 - 42 - 3.5.2.1 材料細胞存活率試驗 - 42 - 3.5.2.2 鹼性磷酸酶活性(alkaline phosphatase,ALP)表現定性分析 - 44 - 3.5.2.3 鈣生成量定性測試 - 45 - 3.5.2.4 抗菌效果測試 - 46 - 第四章 結果與討論 - 47 - 4.1第一部分: 鈦金屬試片表面特性分析 - 47 - 4.1.1 水接觸角 - 47 - 4.1.2 傅立葉轉換紅外線光譜(FTIR) - 50 - 4.1.3 掃描電子顯微鏡(FE-SEM ) - 57 - 4.1.4 能量散射光譜儀(EDS) - 60 - 4.1.5 表面化學組成分析(XPS) - 63 - 4.1.6 膨潤率 - 78 - 4.1.7 藥物釋放 - 81 - 4.1.8 生物降解性測試 - 83 - 4.2第二部分: 生物相容性測試 - 85 - 4.2.1 材料細胞毒性測試 - 85 - 4.2.2 經表面改質後骨整合能力測試—鹼性磷酸酶活性表現定性定量分析 - 89 - 4.2.3 經表面改質後骨整合能力測試—鈣生成量定性測定 - 93 - 4.2.4 抗菌測試 - 95 - 第五章 結論 - 100 - 參考文獻 - 102 -"
dc.language.isozh-TW
dc.subject抗菌zh_TW
dc.subject鈦金屬人工牙根zh_TW
dc.subject低溫電漿zh_TW
dc.subject複合式感溫性水膠zh_TW
dc.subject骨整合zh_TW
dc.subjectThermosensitive composite hydrogelen
dc.subjectTitanium dental implanten
dc.subjectOsseointegrationen
dc.subjectLow-temperature plasma treatmentsen
dc.subjectAntibacterialen
dc.title以低溫電漿於鈦金屬植牙體上進行多功能性表面改質對骨整合及抗菌之效應zh_TW
dc.titleEffect of Low-Temperature plasma treatment on Osseointegration and Antibacterial of Titanium dental implanten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖淑娟(Hsin-Tsai Liu),章浩宏(Chih-Yang Tseng),陳文章,劉緒宗
dc.subject.keyword鈦金屬人工牙根,低溫電漿,複合式感溫性水膠,骨整合,抗菌,zh_TW
dc.subject.keywordTitanium dental implant,Low-temperature plasma treatments,Thermosensitive composite hydrogel,Osseointegration,Antibacterial,en
dc.relation.page111
dc.identifier.doi10.6342/NTU202103798
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1710202119211000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved