Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8070
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟(Guo-Dung J. Su)
dc.contributor.authorChia-Hsing Linen
dc.contributor.author林家興zh_TW
dc.date.accessioned2021-05-20T00:48:42Z-
dc.date.available2021-12-31
dc.date.available2021-05-20T00:48:42Z-
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-01-21
dc.identifier.citationREFERENCE
[1] D. Wang, C. Watkins, and H. Xie, 'MEMS Mirrors for LiDAR: A review,' Micromachines (Basel), vol. 11, no. 5, Apr 27 2020, doi: 10.3390/mi11050456.
[2] S. Royo and M. Ballesta-Garcia, 'An Overview of Lidar Imaging Systems for Autonomous Vehicles,' Applied Sciences, vol. 9, no. 19, 2019, doi: 10.3390/app9194093.
[3] T. Raj, F. H. Hashim, A. B. Huddin, M. F. Ibrahim, and A. Hussain, 'A Survey on LiDAR Scanning Mechanisms,' Electronics, vol. 9, no. 5, 2020, doi: 10.3390/electronics9050741.
[4] S.-H. Chung, S.-W. Lee, S.-K. Lee, and J.-H. Park, 'LIDAR system with electromagnetic two-axis scanning micromirror based on indirect time-of-flight method,' Micro and Nano Systems Letters, vol. 7, no. 1, 2019, doi: 10.1186/s40486-019-0082-9.
[5] G. Kim and Y. Park, 'LIDAR pulse coding for high resolution range imaging at improved refresh rate,' Opt Express, vol. 24, no. 21, pp. 23810-23828, Oct 17 2016, doi: 10.1364/OE.24.023810.
[6] F. Schwarz et al., 'Resonant 1D MEMS mirror with a total optical scan angle of 180° for automotive LiDAR,' presented at the MOEMS and Miniaturized Systems XIX, 2020.
[7] N. Radwell, A. Selyem, L. Mertens, M. P. Edgar, and M. J. Padgett, 'Hybrid 3D ranging and velocity tracking system combining multi-view cameras and simple LiDAR,' Sci Rep, vol. 9, no. 1, p. 5241, Mar 27 2019, doi: 10.1038/s41598-019-41598-z.
[8] L. A. Eldada, E.-H. Lee, S. He, G. Kim, J. Eom, and Y. Park, 'Design and implementation of 3D LIDAR based on pixel-by-pixel scanning and DS-OCDMA,' presented at the Smart Photonic and Optoelectronic Integrated Circuits XIX, 2017.
[9] K. Kuzmenko et al., '3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors,' Opt Express, vol. 28, no. 2, pp. 1330-1344, Jan 20 2020, doi: 10.1364/OE.383243.
[10] R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, 'Three-dimensional single-photon imaging through obscurants,' Opt Express, vol. 27, no. 4, pp. 4590-4611, Feb 18 2019, doi: 10.1364/OE.27.004590.
[11] Y. Takashima et al., 'Development of coaxial 3D-LiDAR systems using MEMS scanners for automotive applications,' presented at the Optical Data Storage 2018: Industrial Optical Devices and Systems, 2018.
[12] J. Tachella et al., 'Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,' Nat Commun, vol. 10, no. 1, p. 4984, Nov 1 2019, doi: 10.1038/s41467-019-12943-7.
[13] X. Zhou, G. Li, J. Huddleston, and A. A. Chesworth, 'Precision optical components for lidar systems developed for autonomous vehicles,' presented at the Next-Generation Optical Communication: Components, Sub-Systems, and Systems VII, 2018.
[14] C. I. Rablau, A.-S. Poulin-Girard, and J. A. Shaw, 'Lidar: a new self-driving vehicle for introducing optics to broader engineering and non-engineering audiences,' presented at the Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019, 2019.
[15] G. Kim and Y. Park, 'Independent Biaxial Scanning Light Detection and Ranging System Based on Coded Laser Pulses without Idle Listening Time,' Sensors (Basel), vol. 18, no. 9, Sep 4 2018, doi: 10.3390/s18092943.
[16] A. McCarthy et al., 'Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,' Opt Express, vol. 21, no. 7, pp. 8904-15, Apr 8 2013, doi: 10.1364/OE.21.008904.
[17] B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, 'Single chip lidar with discrete beam steering by digital micromirror device,' Opt Express, vol. 25, no. 13, pp. 14732-14745, Jun 26 2017, doi: 10.1364/OE.25.014732.
[18] M. J. Sun et al., 'Single-pixel three-dimensional imaging with time-based depth resolution,' Nat Commun, vol. 7, p. 12010, Jul 5 2016, doi: 10.1038/ncomms12010.
[19] M. J. Sun and J. M. Zhang, 'Single-Pixel Imaging and Its Application in Three-Dimensional Reconstruction: A Brief Review,' Sensors (Basel), vol. 19, no. 3, Feb 11 2019, doi: 10.3390/s19030732.
[20] G. Zhou, Z. H. Lim, Y. Qi, and G. Zhou, 'Single-Pixel MEMS Imaging Systems,' Micromachines (Basel), vol. 11, no. 2, Feb 20 2020, doi: 10.3390/mi11020219.
[21] K. Dholakia et al., 'Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera,' presented at the Optical Trapping and Optical Micromanipulation XIII, 2016.
[22] D. Wang, L. Thomas, S. Koppal, Y. Ding, and H. Xie, 'A Low-Voltage, Low-Current, Digital-Driven MEMS Mirror for Low-Power LiDAR,' IEEE Sensors Letters, vol. 4, no. 8, pp. 1-4, 2020, doi: 10.1109/lsens.2020.3006813.
[23] R. Moss et al., 'Low-cost compact MEMS scanning ladar system for robotic applications,' presented at the Laser Radar Technology and Applications XVII, 2012.
[24] M. D. Turner, G. W. Kamerman, B. L. Stann, J. F. Dammann, and M. M. Giza, 'Progress on MEMS-scanned ladar,' presented at the Laser Radar Technology and Applications XXI, 2016.
[25] M. D. Turner, G. W. Kamerman, A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, 'UAV-borne lidar with MEMS mirror-based scanning capability,' presented at the Laser Radar Technology and Applications XXI, 2016.
[26] G. W. Kamerman et al., 'A compact 3D lidar based on an electrothermal two-axis MEMS scanner for small UAV,' presented at the Laser Radar Technology and Applications XXIII, 2018.
[27] C. Zhu, M. J. Hobbs, M. P. Grainger, and J. R. Willmott, 'Design and realization of a wide field of view infrared scanning system with an integrated micro-electromechanical system mirror,' Appl Opt, vol. 57, no. 36, pp. 10449-10457, Dec 20 2018, doi: 10.1364/AO.57.010449.
[28] X. Lee, C. Wang, Z. Luo, and S. Li, 'Optical design of a new folding scanning system in MEMS-based lidar,' Optics Laser Technology, vol. 125, 2020, doi: 10.1016/j.optlastec.2019.106013.
[29] A. McCarthy et al., 'Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,' Opt Express, vol. 21, no. 19, pp. 22098-113, Sep 23 2013, doi: 10.1364/OE.21.022098.
[30] S. D. Johnson, D. B. Phillips, Z. Ma, S. Ramachandran, and M. J. Padgett, 'A light-in-flight single-pixel camera for use in the visible and short-wave infrared,' Opt Express, vol. 27, no. 7, pp. 9829-9837, Apr 1 2019, doi: 10.1364/OE.27.009829.
[31] M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, 'Lidar system with nonmechanical electrowetting-based wide-angle beam steering,' Opt Express, vol. 27, no. 4, pp. 4404-4415, Feb 18 2019, doi: 10.1364/OE.27.004404.
[32] K. Ito et al., 'System Design and Performance Characterization of a MEMS-Based Laser Scanning Time-of-Flight Sensor Based on a 256 $\times$ 64-pixel Single-Photon Imager,' IEEE Photonics Journal, vol. 5, no. 2, pp. 6800114-6800114, 2013, doi: 10.1109/jphot.2013.2247586.
[33] M. J. R. Heck, 'Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,' Nanophotonics, vol. 6, no. 1, pp. 93-107, 2017, doi: 10.1515/nanoph-2015-0152.
[34] J. Zhou and K. Qian, 'Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror,' Appl Opt, vol. 58, no. 5, pp. A283-A290, Feb 10 2019, doi: 10.1364/AO.58.00A283.
[35] P. K. Choudhury and C.-H. Lee, 'Simultaneous Enhancement of Scanning Area and Imaging Speed for a MEMS Mirror Based High Resolution LiDAR,' IEEE Access, vol. 8, pp. 52113-52120, 2020, doi: 10.1109/access.2020.2979326.
[36] X. Lee and C. Wang, 'Optical design for uniform scanning in MEMS-based 3D imaging lidar,' Appl Opt, vol. 54, no. 9, pp. 2219-23, Mar 20 2015, doi: 10.1364/AO.54.002219.
[37] X. Zhang, S. J. Koppal, R. Zhang, L. Zhou, E. Butler, and H. Xie, 'Wide-angle structured light with a scanning MEMS mirror in liquid,' Opt Express, vol. 24, no. 4, pp. 3479-87, Feb 22 2016, doi: 10.1364/OE.24.003479.
[38] CBC Geospatial Consulting, Inc., “Terrestrial LiDAR 3D Laser Scanning”, 2018, http://www.cbcgeospatial.com/terrestrial-lidar.html”
[39] Kathleen Hagen, “U.S. Airborne LiDAR Market Top Impacting Factors”, 2016, https://medium.com/@kathleenhagen2/u-s-airborne-lidar-market-top-impacting-factors-b19def6781c4
[40] “Advanced Driver Assistance Systems (ADAS)”, 2019, https://www.youtube.com/watch?v=514-AnwOeGc app=desktop
[41] Alan Ohnsman, “Lidar Pioneer Velodyne Debuts $100 Auto Safety Sensor As Self-Driving Cars’ Pace To Market Slows”, 2020, https://www.forbes.com/sites/alanohnsman/2020/01/07/lidar-pioneer-velodyne-debuts-100-auto-safety-sensor-as-self-driving-cars-pace-to-market-slows/?sh=47b819ae6cbc
[42] Junko Yoshida, “Lidar Tech Today, Lidar Vendors Tomorrow”, 2018, https://www.eetimes.com/lidar-tech-today-lidar-vendors-tomorrow/
[43] Bharat Lohani, “Surveillance system based on Flash LiDAR”, 2013, https://www.researchgate.net/publication/261333968_Surveillance_system_based_on_Flash_LiDAR
[44] Quanergy Systems, Inc., https://quanergy.com/products/s3/
[45] Velodyne, Inc., https://velodynelidar.com/products/
[46] Infineon, Inc., https://www.infineon.com/
[47] A. Bauer, E. M. Schiesser, and J. P. Rolland, 'Starting geometry creation and design method for freeform optics,' Nat Commun, vol. 9, no. 1, p. 1756, May 1 2018, doi: 10.1038/s41467-018-04186-9.
[48] T. Yang, G. F. Jin, and J. Zhu, 'Automated design of freeform imaging systems,' Light Sci Appl, vol. 6, no. 10, p. e17081, Oct 2017, doi: 10.1038/lsa.2017.81.
[49] A. Bauer and J. P. Rolland, 'Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics,' Opt Express, vol. 23, no. 22, pp. 28141-53, Nov 2 2015, doi: 10.1364/OE.23.028141.
[50] K. Fuerschbach, J. P. Rolland, and K. P. Thompson, 'Theory of aberration fields for general optical systems with freeform surfaces,' Opt Express, vol. 22, no. 22, pp. 26585-606, Nov 3 2014, doi: 10.1364/OE.22.026585.
[51] Y. Zhong and H. Gross, 'Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory,' Opt Express, vol. 25, no. 9, pp. 10016-10030, May 1 2017, doi: 10.1364/OE.25.010016.
[52] T. Gong, G. Jin, and J. Zhu, 'Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces,' Opt Express, vol. 25, no. 9, pp. 10663-10676, May 1 2017, doi: 10.1364/OE.25.010663.
[53] R. Tang, B. Zhang, G. Jin, and J. Zhu, 'Multiple surface expansion method for design of freeform imaging systems,' Opt Express, vol. 26, no. 3, pp. 2983-2994, Feb 5 2018, doi: 10.1364/OE.26.002983.
[54] T. Yang, J. Zhu, and G. Jin, 'Starting configuration design method of freeform imaging and afocal systems with a real exit pupil,' Appl Opt, vol. 55, no. 2, pp. 345-53, Jan 10 2016, doi: 10.1364/AO.55.000345.
[55] X. Wu, J. Zhu, T. Yang, and G. Jin, 'Transverse image translation using an optical freeform single lens,' Appl Opt, vol. 54, no. 28, pp. E55-62, Oct 1 2015, doi: 10.1364/AO.54.000E55.
[56] C. Chen, 'Methods of solving aspheric singlets and cemented doublets with given primary aberrations,' Appl Opt, vol. 53, no. 29, pp. H202-12, Oct 10 2014, doi:
[57] Robert Fischer, “Optical System Design, Second Edition”, McGraw-Hill Education, ISBN-13 : 978-0071472487, 2008
[58] Eugene Hecht, “Optics”, Pearson, ISBN-13 : 978-0133977226, 2015
[59] Zemax, Inc., https://www.zemax.com/
[60] Veljko Milanovi, “DEVICE FOR OPTICAL IMAGING, TRACKING, AND POSITION MEASUREMENT WITH ASCANNING MEMS MIRROR”, United States Patent, US 8.427,657 B2, 2013
[61] Yew Kwang Low, “WIDE FIELD - OF - VIEW LIDAR OPTICAL ASSEMBLY AND SYSTEM”, United States Patent, US 2020/0096643 A1, 2020
[62] Yew Kwang Low,” MEMS mirror with extended field of view useful for vehicle lidar”, United States Patent, US 2020/0150244 A1, 2020
[63] J. Zhou and K. Qian, 'Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror,' Appl Opt, vol. 58, no. 5, pp. A283-A290, Feb 10 2019, doi: 10.1364/AO.58.00A283.
[64] C. Zhu, M. J. Hobbs, M. P. Grainger, and J. R. Willmott, 'Design and realization of a wide field of view infrared scanning system with an integrated micro-electromechanical system mirror,' Appl Opt, vol. 57, no. 36, pp. 10449-10457, Dec 20 2018, doi: 10.1364/AO.57.010449.
[65] X. Lee, C. Wang, Z. Luo, and S. Li, 'Optical design of a new folding scanning system in MEMS-based lidar,' Optics Laser Technology, vol. 125, 2020, doi: 10.1016/j.optlastec.2019.106013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8070-
dc.description.abstractLight Detection and Ranging (LiDAR)傳感器技術是自動化運輸的主要推動力。透過融合LiDAR的傳感器數據、雷達以及相機鏡頭就可以全面而穩健的感知周圍環境。但是,現今的LiDAR解決方案大多非常複雜且成本高昂,且無法有效的實現大視場的掃描,因此無法廣泛的應用到車輛與機器人中。
我們模擬並演示了完整的LiDAR系統,並透過將微機電反射鏡(MEMS mirror)加入掃瞄系統中,實現低成本、小體積、大視場掃描的LiDAR系統。首先,應用ZEMAX OpticStudio光學模擬軟體設計整個LiDAR掃描系統,包含準直透鏡、MEMS mirror、反射訊號接收透鏡,並在掃描擴角光學上設計一組非球面的光學系統,達到擴大光達掃描角度的目的。雷射光束經過此組廣角透鏡後掃描角度可以擴大4倍,達到100度。廣角透鏡的distortion控制在3%以下,讓掃描畫面更接近真實情況。第二,為了演示低成本、小體積MEMS掃描光達,使用了模組化雷射測距儀(LRF)並加入MEMS mirror。整個系統架設在自行設計與製作的支撐具上。完整的LiDAR掃描儀原型體積小於150mm*50mm*30mm。重量小於250公克。在2 klux的自然光環境中對於wide-angle LiDAR進行測量分析,最大的誤差為4.1cm,因此誤差為2%以內。最後使用自行撰寫的影像處理程式,將掃描數據轉換為3D點雲圖,生成的圖像證明了LiDAR的完整功能。
zh_TW
dc.description.abstractLight Detection and Ranging (LiDAR) sensor technology will become the main driving force for automated transportation. Through the fusion of LiDAR sensor data, radar and camera lens, the surrounding environment can be fully and robustly sensed. However, most of today's LiDAR solutions are very complex and costly, and cannot effectively achieve large field of view scanning, so they cannot be widely used in vehicles and robots.
We simulated and demonstrated a complete LiDAR system, and by adding Microelectromechanical Systems(MEMS) mirror to the scanning system, we created a low-cost, small size, and large field of view scanning LiDAR system. First, use ZEMAX OpticStudio optical simulation software to design the entire LiDAR scanning system, including collimating lens, MEMS mirror, and reflection signal receiving lens. And design a group of aspherical optical systems on the scanning angle expansion optics to achieve the purpose of expanding the scanning angle of light. After the laser beam passes through this group of wide-angle lenses, the scanning angle can be expanded 4 times to 100 degrees. The distortion of the wide-angle lens is controlled below 3%, making the scanned image closer to the real situation. Second, in order to demonstrate low-cost, small-volume MEMS scanning LiDAR, an OEM module laser rangefinder (LRF) was used and MEMS mirror was added. The entire system is erected on a self-designed and manufactured support. The complete prototype of LiDAR scanner is less than 150mm*50mm*30mm. The weight is less than 250 grams. In the 2 klux natural light environment for wide-angle LiDAR measurement and analysis, the maximum error is 4.1cm, so the error is within 2%. Finally, a self-written image processing program was used to convert the scanned data into a 3D point cloud image, and the generated image proved the complete function of LiDAR.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:48:42Z (GMT). No. of bitstreams: 1
U0001-2001202115073600.pdf: 5433358 bytes, checksum: 2c61b6131601d00eacd466d22f0b8661 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Time-of-Flight principle 1
1.2 Basics of LiDAR imaging 4
1.3 LiDAR applications 10
1.3.1 Terrestrial LiDAR 11
1.3.2 Airborne LiDAR 12
1.3.3 Urban Planning 13
1.3.4 Autonomous vehicles 14
Chapter 2 Principle of LiDAR 17
2.1 LiDAR architecture overview 17
2.1.1 Single point detection 17
2.1.2 Image strategies 19
2.1.3 Light source 19
2.1.4 Photodetectors 22
2.2 Beam deflection mechanisms 25
2.2.1 Non-scanning LiDAR 28
2.2.2 OPA scanners 30
2.2.3 Motorized optomechanical scanner 33
2.2.4 MEMS scanner 35
2.3 Wide angle scanning lens 38
2.3.1 Optical Angle Amplification System 40
2.3.2 Optical design method 40
Chapter 3 Design and Simulation of the Wide-angle MEMS LiDAR System 44
3.1 Wave length selection 46
3.2 Laser diode collimation 47
3.3 Laser scanning system 52
3.4 Wide angle scanning lens 54
3.5 Receiver lens design 60
3.6 Compare wide-angle LiDAR with patents and papers 64
Chapter 4 Experimental Setup and Data Processing 67
4.1 Material used for the experiment 68
4.2 Experimental setup 70
4.3 Generate point-cloud diagram 78
4.4 Compare system structure with papers 83
Chapter 5 Conclusion 86
REFERENCE 87
dc.language.isoen
dc.title應用微機電反射鏡之廣角光達系統設計與實現zh_TW
dc.titleDesign and realization of a wide field-of-view LiDAR system with a micro mirroren
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡睿哲(Jui-Che Tsai),李翔傑(HSIANG-CHIEH LEE)
dc.subject.keyword光達,飛行時間,光學系統設計,雷射,廣角掃描,廣角透鏡,可攜式,微機電鏡,點雲圖,zh_TW
dc.subject.keywordLiDAR,time of flight,optical system design,laser,wide-angle scanning,wide-angle lens,portable,MEMS mirror,point cloud diagram,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202100101
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-01-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2001202115073600.pdf5.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved