請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80620完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 逄愛君(Ai-Chun Pang) | |
| dc.contributor.author | Chih-Yi Tsai | en |
| dc.contributor.author | 蔡芝逸 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:10:57Z | - |
| dc.date.available | 2021-11-09 | |
| dc.date.available | 2022-11-24T03:10:57Z | - |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | [1] Amazon ECS anywhere. https://aws.amazon.com/tw/ecs/anywhere. [2] An AI services platform. https://github.com/benkajaja/simulator. [3] gingonic.https://gin-gonic.com. [4] Kube Edge. https://kubeedge.io. [5] tensorflow. https://www.tensorflow.org. [6] wondershaper. https://packages.debian.org/stable/net/wondershaper. [7] J. Chen and X. Ran. Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8):1655–1674, 2019. [8] N. Hudson, H. Khamfroush, and D. E. Lucani. Qos-aware placement of deep learning services on the edge with multiple service implementations. In 2021 International Conference on Computer Communications and Networks (ICCCN), pages 1–8, 2021. [9] Z. Lin, S. Bi, and Y.-J. A. Zhang. Optimizing ai service placement and computation offloading in mobile edge intelligence systems. In GLOBECOM 2020 2020 IEEE Global Communications Conference, pages 1–7, 2020. [10] L. Liu, H. Li, and M. Gruteser. Edge assisted real-time object detection for mobile augmented reality. In The 25th Annual International Conference on Mobile Computing and Networking, MobiCom ’19, New York, NY, USA, 2019. Association for Computing Machinery. [11] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti. A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys Tutorials, 16(3):1617–1634, 2014. [12] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deepdecision: A mobile deep learning framework for edge video analytics. In IEEE INFOCOM - 2018 IEEE Conference on Computer Communications, pages 1421–1429, 2018. [13] X. Xie and K.-H. Kim. Source compression with bounded dnn perception loss for iot edge computer vision. In The 25th Annual International Conference on Mobile Computing and Networking, MobiCom ’19, New York, NY, USA, 2019. Association for Computing Machinery. [14] L. Yala, P. A. Frangoudis, and A. Ksentini. Latency and availability driven vnf placement in a mec-nfv environment. In 2018 IEEE Global Communications Conference (GLOBECOM), pages 1–7, 2018. [15] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri. Hetero-edge: Orchestration of realtime vision applications on heterogeneous edge clouds. In IEEE INFOCOM - 2019 IEEE Conference on Computer Communications, pages 1270–1278, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80620 | - |
| dc.description.abstract | 近年來,隨著影片分享需求的提升以及基礎網路設施的革新,加速了影音串流平台的普及化。不過這些平台並不能支援行車紀錄器,若可以及時地蒐集行車紀錄器的影像,我們便可以提供一些創新的應用服務,像是即時街景與停車格搜尋。而且,我們還可以搭配AI模型,對這些影像進行分析。若是能將AI服務部署在具有一定計算能力的車載裝置上,我們就可以在裝置上先進行初步的分析,並依據分析結果來決定是否要上傳到雲端,藉此來降低網路資源的消耗。不過,車機裝置會隨著時間移動,造成網路狀況不穩定,增加影像傳輸的時間,在這種情況下就比較適合先將一部份的影片分析工作放在車載裝置進行處理。然而受限於車載裝置的運算能力,當工作量太多時,每個影片進行分析的耗時可能會超過上傳到雲端進行處理的時間。因此,要如何依據不同的環境適當的分配雲端伺服器以及車載裝置的工作量,便是個關鍵的挑戰。我們觀察並分析可能影響AI服務時間的參數,並依據這些觀察,自行設計一套任務卸載算法。最後,我們實作了一個即時影像分析平台,提供多種AI服務,並搭配我們的任務卸載算法,能同時權衡網路狀態以及運算能力。在實驗結果中,我們的算法可以降低20-60\%的處理時間。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:10:57Z (GMT). No. of bitstreams: 1 U0001-2110202122270900.pdf: 1261225 bytes, checksum: 0676e440e259e00232d95e52c0353563 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements ii 摘要iii Abstract iv Contents vi List of Figures viii List of Tables ix 1 Introduction 1 2 Problem description 4 3 Related work 6 4 System Architecture and Implementation 8 4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 System component . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2.3 AI services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2.3.1 Bus stop detection . . . . . . . . . . . . . . . . . . . . 11 4.2.3.2 Visual navigation . . . . . . . . . . . . . . . . . . . . 12 4.3 Time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3.1 GPU supporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3.2 Concurrent tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3.3 Available bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 DSTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 Evaluation 17 5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 Evaluation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2.1 Job completion time . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2.2 Resource consumption . . . . . . . . . . . . . . . . . . . . . . . . 20 6 Conclusion 25 References 26 | |
| dc.language.iso | en | |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 雲霧計算 | zh_TW |
| dc.subject | 任務卸載 | zh_TW |
| dc.subject | AI | en |
| dc.subject | task offloading | en |
| dc.subject | cloud-fog computing | en |
| dc.title | 基於雲霧端架構之人工智慧服務延遲敏感任務卸載機制 | zh_TW |
| dc.title | Delay-Sensitive Task Offloading for AI-Based Services in Edge-Cloud Orchestration | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊清智(Hsin-Tsai Liu),邱德泉(Chih-Yang Tseng),曾學文,林心鵬 | |
| dc.subject.keyword | 雲霧計算,任務卸載,人工智慧, | zh_TW |
| dc.subject.keyword | cloud-fog computing,task offloading,AI, | en |
| dc.relation.page | 27 | |
| dc.identifier.doi | 10.6342/NTU202103999 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2110202122270900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
