Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80615Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃誌川(Jr-Chuan Huang) | |
| dc.contributor.author | En-Ru Liu | en |
| dc.contributor.author | 劉恩如 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:10:49Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-24T03:10:49Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-22 | |
| dc.identifier.citation | Aber, J. D., Nadelhoffer, K. J., Steudler, P., Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39(6), 378-386. http://www.jstor.org/stable/1311067 Ågren, A., Buffam, I., Jansson, M., Laudon, H. (2007). Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. Journal of Geophysical Research: Biogeosciences, 112(G3), n/a-n/a. Ahearn, D. S., Sheibley, R. W., Dahlgren, R. A., Anderson, M., Johnson, J., Tate, K. W. (2005). Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 313(3-4), 234-247. Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., et al. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53-60. Bergström, S. (1976). Development and Application of a conceptual runoff model for scandinavian catchments (Vol. 134 pp.). Berman, T., Bronk, D. A. (2003). Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquatic Microbial Ecology, 31(3), 279-305. https://www.int-res.com/abstracts/ame/v31/n3/p279-305/ Brookshire, E. N. J., Valett, H. M., Thomas, S. A., Webster, J. R. (2007). Atmospheric N deposition increases organic N loss from temperate forests. Ecosystems, 10(2), 252-262. https://doi.org/10.1007/s10021-007-9019-x Canfield, D. E., Glazer, A. N., Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. Science, 330(6001), 192. http://science.sciencemag.org/content/330/6001/192.abstract Chang, C.-T., Wang, L.-J., Huang, J.-C., Liu, C.-P., Wang, C.-P., Lin, N.-H., et al. (2017). Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate. Advances in Water Resources, 103, 44-50. http://www.sciencedirect.com/science/article/pii/S0309170816307254 Cohn, T. A., Caulder, D. L., Gilroy, E. J., Zynjuk, L. D., Summers, R. M. (1992). The validity of a simple statistical model for estimating fluvial constituent loads: An Empirical study involving nutrient loads entering Chesapeake Bay. Water Resources Research, 28(9), 2353-2363. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92WR01008 Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., et al. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014. http://science.sciencemag.org/content/323/5917/1014.abstract Corriveau, J., Chambers, P. A., Culp, J. M. (2013). Seasonal variation in nutrient export along streams in the northern great plains. Water, Air, Soil Pollution, 224(7). Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., et al. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104-108. https://doi.org/10.1038/nature20150 Dai, M., Yin, Z., Meng, F., Liu, Q., Cai, W.-J. (2012). Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Current Opinion in Environmental Sustainability, 4(2), 170-178. https://www.sciencedirect.com/science/article/pii/S1877343512000358 Dawson, J. J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M., Malcolm, I. A. (2008). Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry, 90(1), 93-113. http://www.jstor.org/stable/40343619 del Giorgio, P. A., Cole, J. J. (1998). Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29(1), 503-541. https://doi.org/10.1146/annurev.ecolsys.29.1.503 Dick, J. J., Tetzlaff, D., Birkel, C., Soulsby, C. (2014). Modelling landscape controls on dissolved organic carbon sources and fluxes to streams. Biogeochemistry, 122(2-3), 361-374. Drake, T. W., Raymond, P. A., Spencer, R. G. M. (2018). Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 3(3), 132-142. https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lol2.10055 Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., Fenner, N. (2001). Export of organic carbon from peat soils. Nature, 412(6849), 785-785. https://doi.org/10.1038/35090628 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889. http://science.sciencemag.org/content/320/5878/889.abstract Graham, M. H. (2003). Confronting muticollinearity in ecological multiple regression. 84(11), 2809-2815. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/02-3114 Hamon, W. R. (1963). Estimating potential evapotranspiration. Transactions of the American Society of Civil Engineers, 128(1), 324-338. https://ascelibrary.org/doi/abs/10.1061/TACEAT.0008673 He, B., Kanae, S., Oki, T., Hirabayashi, Y., Yamashiki, Y., Takara, K. (2011). Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Research, 45(8), 2573-2586. https://www.sciencedirect.com/science/article/pii/S0043135411000674 Hedin, L. O., Armesto, J. J., Johnson, A. H. (1995). Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology, 76(2), 493-509. http://www.jstor.org/stable/1941208 Ho, C.-P. (2013). Spatial variability of soil organic carbon and related. National Pingtung University of Science Technology, Available from Airiti AiritiLibrary database. (2013) Huang, J. C., Lee, T. Y., Lin, T. C., Hein, T., Lee, L. C., Shih, Y. T., et al. (2016). Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. Biogeosciences, 13(6), 1787-1800. https://bg.copernicus.org/articles/13/1787/2016/ Inamdar, S. P., Mitchell, M. J. (2006). Hydrologic and topographic controls on storm-event exports of dissolved organic carbon (DOC) and nitrate across catchment scales. 42(3). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005WR004212 Kooijman, A., Sparrius, L., Sevink, J. (2010). Nutrient cycling. In (pp. 139-156). Kroeger, K. D., Cole, M. L., Valiela, I. (2006). Groundwater-transported dissolved organic nitrogen exports from coastal watersheds. Limnology and Oceanography, 51(5), 2248-2261. https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.2006.51.5.2248 Lee, L. C., Hsu, T. C., Lee, T. Y., Shih, Y. T., Lin, C. Y., Jien, S. H., et al. (2019). Unusual roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Sci Rep, 9(1), 1574. https://www.ncbi.nlm.nih.gov/pubmed/30733531 Lee, T. Y., Lee, L. C., Huang, J. C., Jien, S. H., Hein, T., Zehetner, F., et al. (2017). The dynamics and export of dissolved organic carbon from subtropical small mountainous rivers during typhoon and non-typhoon periods. Biogeosciences Discuss., 2017, 1-34. https://www.biogeosciences-discuss.net/bg-2017-105/ Legendre, P., Legendre, L. (1998) Numerical ecology. In: Vol. 20: Elsevier, New York, NY. Lin, T. C., Shaner, P. J. L., Wang, L. J., Shih, Y. T., Wang, C. P., Huang, G. H., Huang, J. C. (2015). Effects of mountain tea plantations on nutrient cycling at upstream watersheds. Hydrol. Earth Syst. Sci., 19(11), 4493-4504. https://hess.copernicus.org/articles/19/4493/2015/ Lindström, G., Johansson, B., Persson, M., Gardelin, M., Bergström, S. (1997). Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201(1), 272-288. https://www.sciencedirect.com/science/article/pii/S0022169497000413 Liu, Q. (1997). Variation partitioning by partial redundancy analysis (RDA). Environmetrics, 8(2), 75-85. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-095X%28199703%298%3A2%3C75%3A%3AAID-ENV250%3E3.0.CO%3B2-N Lu, M.-C., Chang, C.-T., Lin, T.-C., Wang, L.-J., Wang, C.-P., Hsu, T.-C., Huang, J.-C. (2017). Modeling the terrestrial N processes in a small mountain catchment through INCA-N: A case study in Taiwan. Science of The Total Environment, 593-594, 319-329. http://www.sciencedirect.com/science/article/pii/S004896971730699X Ludwig, W., Probst, J.-L., Kempe, S. (1996). Predicting the oceanic input of organic carbon by continental erosion. 10(1), 23-41. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/95GB02925 Lutz, B. D., Bernhardt, E. S., Roberts, B. J., Mulholland, P. J. (2011). Examining the coupling of carbon and nitrogen cycles in Appalachian streams: the role of dissolved organic nitrogen. 92(3), 720-732. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/10-0899.1 Matiatos, I., Wassenaar, L. I., Monteiro, L. R., Venkiteswaran, J. J., Gooddy, D. C., Boeckx, P., et al. (2021). Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Communications Earth Environment, 2(1), 52. https://doi.org/10.1038/s43247-021-00121-x McDowell, W. H., Magill, A. H., Aitkenhead-Peterson, J. A., Aber, J. D., Merriam, J. L., Kaushal, S. S. (2004). Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. Forest Ecology and Management, 196(1), 29-41. https://www.sciencedirect.com/science/article/pii/S0378112704001902 Meybeck, M., Vörösmarty, C. J. G. C. N. (1999). Global transfer of carbon by rivers. 37, 18-19. Milliman, J. D., Syvitski, J. P. M. (1992). Geomorphic/Tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100(5), 525-544. https://doi.org/10.1086/629606 Moore, S., Gauci, V., Evans, C. D., Page, S. E. (2011). Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences, 8(4), 901-909. https://bg.copernicus.org/articles/8/901/2011/ Nash, J. E., Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. https://www.sciencedirect.com/science/article/pii/0022169470902556 Neff, J. C., Chapin, F. S., Vitousek, P. M. (2003). Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Frontiers in Ecology and the Environment, 1(4), 205-211. http://www.jstor.org/stable/3868065 Olker, J. H., Kovalenko, K. E., Ciborowski, J. J., Brady, V. J., Johnson, L. B. (2016). Watershed land use and local habitat: Implications for habitat assessment. Wetlands, 36(2), 311-321. Parajka, J., Merz, R., Blöschl, G. (2007). Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrological Processes, 21(4), 435-446. https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.6253 Perakis, S. S., Hedin, L. O. (2002). Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 415(6870), 416-419. Perakis, S. S., Hedin, L. O. (2007). State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds. Journal of Geophysical Research: Biogeosciences, 112(G2). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JG000276 Perron, M. A. C., Richmond, I. C., Pick, F. R. (2021). Plants, water quality and land cover as drivers of Odonata assemblages in urban ponds. Science of The Total Environment, 773, 145467. https://www.sciencedirect.com/science/article/pii/S0048969721005350 Raymond, P. A. (2005). The age of the Amazon's breath. Nature, 436(7050), 469-470. https://doi.org/10.1038/436469a Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6, 597. Review Article. https://doi.org/10.1038/ngeo1830 Runkel, R. L., Crawford, C. G., Cohn, T. A. (2004). Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers (4-A5). Retrieved from http://pubs.er.usgs.gov/publication/tm4A5 Seitzinger, S. P., Sanders, R. W. (1997). Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Marine Ecology Progress Series, 159, 1-12. https://www.int-res.com/abstracts/meps/v159/p1-12/ Shih, Y. T., Chen, P. H., Lee, L. C., Liao, C. S., Jien, S. H., Shiah, F. K., et al. (2018). Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river. Hydrol Earth Syst Sci, 22(12), 6579-6590. https://www.ncbi.nlm.nih.gov/pubmed/31105411 Sipler, R. E., Bronk, D. A. (2015). Biogeochemistry of marine dissolved organic matter (Second Edition). In D. A. Hansell C. A. Carlson (Eds.), (pp. 127-232). Boston: Academic Press. Taylor, P. G., Townsend, A. R. (2010). Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature, 464(7292), 1178-1181. https://doi.org/10.1038/nature08985 Vanderbilt, K. L., Lajtha, K., Swanson, F. J. (2003). Biogeochemistry of unpolluted forested watersheds in the Oregon Cascades: temporal patterns of precipitation and stream nitrogen fluxes. Biogeochemistry, 62(1), 87-117. https://doi.org/10.1023/A:1021171016945 Varanka, S., Luoto, M. (2012). Environmental determinants of water quality in boreal rivers based on partitioning methods. River Research and Applications, 28(7), 1034-1046. Vega, M., Pardo, R., Barrado, E., Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581-3592. http://www.sciencedirect.com/science/article/pii/S0043135498001389 Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Technical report: Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7(3), 737-750. http://www.jstor.org/stable/2269431 Vitousek, P. M., Hättenschwiler, S., Olander, L., Allison, S. (2002). Nitrogen and nature. 31 %J AMBIO: A Journal of the Human Environment(2), 97-101, 105. https://doi.org/10.1579/0044-7447-31.2.97 Wohl, E., Dwire, K., Sutfin, N., Polvi, L., Bazan, R. (2012). Mechanisms of carbon storage in mountainous headwater rivers. Nat Commun, 3, 1263. https://www.ncbi.nlm.nih.gov/pubmed/23232393 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80615 | - |
| dc.description.abstract | "水中溶解性有機碳(dissolved organic carbon, DOC)、溶解性有機氮(dissolved organic nitrogen, DON)和硝酸鹽(NO3-)濃度的耦合關係可以透過被動碳載體假說、DON釋放假說及間接碳控制假說來描述,且這些假說各自有不同的適用情境。營養鹽傳輸受到諸多因素調控,如土地利用、地景因子及逕流狀況,且可能存在著空間和時間上的變異。為了解環境特徵與生物地球化學循環之間的關聯,本研究監測北台灣的小型山地集水區中19個採樣點之營養鹽輸出,再依營養鹽濃度特徵做分類,符合被動碳載體假說者有13個採樣點,其餘6個採樣點則歸屬於間接碳控制假說,兩組分別運用冗餘分析(redundancy analysis, RDA)釐清營養鹽傳輸與其控制因子之關聯。 本研究區DOC的單位面積輸出量約為1.75 ton-C km-2 yr-1,而DON與NO3-則為 0.53 和1.7 ton-N km-2 yr-1。將環境參數分為土地利用、地景、水文共三組進行RDA,在DOC的部分,水文為主要控制因子;DON與NO3-的解釋變量也是由水文佔大宗,但地景與土地利用的交互作用明顯提升,尤其是在符合間接碳控制假說的集水區。本研究建議探討集水區營養鹽輸出時應考量不同因子間的交互作用,將有助於釐清集水區中營養鹽傳輸的控制因子。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:10:49Z (GMT). No. of bitstreams: 1 U0001-2210202110000100.pdf: 8995816 bytes, checksum: 458244e197818f815123c3a8dba7d5b2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Contents 1. Introduction 1 2. Literature Review 5 2.1. Carbon Cycle in the Environment 5 2.2. Nitrogen Cycle in the Environment 11 2.3. Coupling of Carbon and Nitrogen Cycles 14 2.4. Statistical Analysis on Nutrient Transport 16 2.5. SMRs in Taiwan 18 3. Materials and Methods 19 3.1. Study Area 19 3.2. Sampling and Data Collection 23 3.2.1. Water Sampling and Analysis 23 3.2.2. Climatic Data 24 3.3. Streamflow Simulation 26 3.4. Flux Calculation 28 3.5. Environmental Variables 30 3.6. Statistical Analysis 32 3.6.1. Principal Component Analysis 32 3.6.2. Redundancy Analysis 34 4. Result 36 4.1. Streamflow Simulation 36 4.2. Riverine Nutrient Concentration and Export 39 4.2.1. Nutrient Concentration 39 4.2.2. Nutrient Export 41 4.2.3. Carbon-Nitrogen coupling 52 4.3. Statistical Analysis 59 4.3.1. Correlation Coefficient Matrix 59 4.3.2. PCA of Environmental Variables 61 4.3.3. Variance Partitioning—RDA 63 5. Discussion 67 5.1. Nutrient export in SMRs 67 5.2. Hypotheses verification 69 5.3. Influences of Variables and Their Interactive Effects on Nutrient Export 69 6. Conclusion 75 7. Reference 77 8. Appendix 83 | |
| dc.language.iso | en | |
| dc.subject | 營養鹽傳輸 | zh_TW |
| dc.subject | 碳氮耦合關係 | zh_TW |
| dc.subject | 生物地球化學 | zh_TW |
| dc.subject | 土地利用 | zh_TW |
| dc.subject | 冗餘分析 | zh_TW |
| dc.subject | redundancy analysis | en |
| dc.subject | nutrient transport | en |
| dc.subject | biogeochemistry | en |
| dc.subject | land use | en |
| dc.subject | carbon-nitrogen coupling | en |
| dc.title | 亞熱帶山區河流營養鹽濃度和化學計量比對人為影響的反應 | zh_TW |
| dc.title | Responses of nutrient concentration and stoichiometric ratios to human disturbance in subtropical mountainous rivers | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林登秋(Hsin-Tsai Liu),李宗祐(Chih-Yang Tseng) | |
| dc.subject.keyword | 營養鹽傳輸,碳氮耦合關係,生物地球化學,土地利用,冗餘分析, | zh_TW |
| dc.subject.keyword | nutrient transport,carbon-nitrogen coupling,biogeochemistry,land use,redundancy analysis, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202104014 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-22 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
| Appears in Collections: | 地理環境資源學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2210202110000100.pdf Access limited in NTU ip range | 8.78 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
