請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80607完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周美吟(Mei-Yin Chou) | |
| dc.contributor.author | Chiao-Yu Chang | en |
| dc.contributor.author | 張喬寓 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:10:36Z | - |
| dc.date.available | 2022-04-30 | |
| dc.date.available | 2022-11-24T03:10:36Z | - |
| dc.date.copyright | 2021-11-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | [1] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 321(5888):554-557, 2008. [2] M. Hong, Z. G. Chen, L. Yang, Y. C. Zou, M. S. Dargusch, H. Wang, and J. Zou. Realizing zT of 2.3 in Ge1− x− ySbxInyTe via reducing the phase‐transition temperature and introducing resonant energy doping. Advanced materials, 30(11):1705942, 2018. [3] L. Wu, X. Li, S. Wang, T. Zhang, J. Yang, W. Zhang, L. Chen, and J. Yang. Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Materials, 9(1):e343-e343, 2017. [4] G. J. Snyder and E. S. Toberer. Complex thermoelectric materials. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 101-110, 2011. [5] T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig. Disorder-induced localization in crystalline phase-change materials. Nature materials, 10(3):202-208, 2011. [6] F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, and R. Mazzarello. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science, 358(6369):1423-1427, 2017. [7] J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I. T. Witting, A. Faghaninia, Y. Chen, and A. Jain. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2(5):976-987, 2018. [8] X. Xu, L. Xie, Q. Lou, D. Wu, and J. He. Boosting the Thermoelectric Performance of Pseudo‐Layered Sb2Te3(GeTe)n via Vacancy Engineering. Advanced Science, 5(12):1801514, 2018. [9] M. Hong, W. Lyv, M. Li, S. Xu, Q. Sun, J. Zou, and Z.-G. Chen. Rashba effect maximizes thermoelectric performance of GeTe derivatives. Joule, 4(9):2030-2043, 2020. [10] M. Hong, Y. Wang, W. Liu, S. Matsumura, H. Wang, J. Zou, and Z. G. Chen. Arrays of planar vacancies in superior thermoelectric Ge1−x−yCdxBiyTe with band convergence. Advanced Energy Materials, 8(30):1801837, 2018. [11] J. Dong, F.-H. Sun, H. Tang, J. Pei, H.-L. Zhuang, H.-H. Hu, B.-P. Zhang, Y. Pan, and J.-F. Li. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environmental Science, 12(4):1396-1403, 2019. [12] E. Levin, M. Besser, and R. Hanus. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials. Journal of Applied Physics, 114(8):083713, 2013. [13] K. S. Bayikadi, R. Sankar, C. T. Wu, C. Xia, Y. Chen, L.-C. Chen, K.-H. Chen, and F.-C. Chou. Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control. Journal of Materials Chemistry A, 7(25):15181-15189, 2019. [14] S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, and K. Biswas. High thermoelectric performance and enhanced mechanical stability of p-type Ge1–xSbxTe. Chemistry of Materials, 27(20):7171-7178, 2015. [15] M. Hong, J. Zou, and Z. G. Chen. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Advanced materials, 31(14):1807071, 2019. [16] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei. GeTe thermoelectrics. Joule, 4(5):986-1003, 2020. [17] Z. Liu, W. Gao, W. Zhang, N. Sato, Q. Guo, and T. Mori. High power factor and enhanced thermoelectric performance in Sc and Bi codoped GeTe: Insights into the hidden role of rhombohedral distortion degree. Advanced Energy Materials, 10(42):2002588, 2020. [18] D. Di Sante, P. Barone, R. Bertacco, and S. Picozzi. Electric control of the giant Rashba effect in bulk GeTe. Advanced materials, 25(4):509-513, 2013. [19] K. S. Bayikadi, et al., unpublished. [20] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 6(1):15-50, 1996. [21] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16):11169, 1996. [22] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3):1758, 1999. [23] P. E. Blöchl. Projector augmented-wave method. Physical review B, 50(24):17953, 1994. [24] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical review B, 45(23):13244, 1992. [25] P. E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 49(23):16223, 1994. [26] Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, and I. Tanaka. Band structure diagram paths based on crystallography. Computational Materials Science, 128, 140-184, 2017. [27] A. Togo and I. Tanaka. Spglib: a software library for crystal symmetry search. arXiv preprint arXiv:1808.01590, 2018. [28] G. Henkelman, A. Arnaldsson, and H. Jónsson. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3):354-360, 2006. [29] P. Bauer Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Müller, and R. P. Hermann. Lattice dynamics and structure of GeTe, SnTe and PbTe. physica status solidi (b), 250(7):1300-1307, 2013. [30] T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto. Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films, 370(1-2):258-261, 2000. [31] T. Chattopadhyay and J. Boucherle. Neutron diffraction study on the structural phase transition in GeTe. Journal of Physics C: Solid State Physics, 20(10):1431, 1987. [32] S.-J. Sun, K.-H. Lin, S.-P. Ju, and J.-Y. Li. Electronic and structural properties of ultrathin tungsten nanowires and nanotubes by density functional theory calculation. Journal of Applied Physics, 116(13):133704, 2014. [33] L. Zhang, N. Miao, J. Zhou, J. Mi, and Z. Sun. Insight into the role of W in amorphous GeTe for phase-change memory. Journal of Alloys and Compounds, 738, 270-276, 2018. [34] C. Peng, F. Rao, L. Wu, Z. Song, Y. Gu, D. Zhou, H. Song, P. Yang, and J. Chu. Homogeneous phase W–Ge–Te material with improved overall phase-change properties for future nonvolatile memory. Acta materialia, 74, 49-57, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80607 | - |
| dc.description.abstract | 日常生活中,大量的能量以廢熱的形式不斷地被排放到大氣中,造成能源的浪費也嚴重影響地球環境,而熱電效應的應用是有望能解決廢熱問題的方式之一,且不會排放二氧化碳,能夠達成節能減碳的目的,其中鍺碲化合物(GeTe compound),經由多篇文獻證實具有良好的熱電優值(zT),其在立方相的高對稱性,以及菱形晶相中的能帶對齊(band convergence)及拉什巴效應(Rashba effect)等,使其成為非常有趣且有前景的材料。 本研究透過第一原理計算,以理論的方式,研究並探討鎢摻雜之碲化鍺。我們首先討論鎢摻雜的生成能,結果顯示其具有非常高的生成能,表示鎢較難在碲化鍺晶體中生成缺陷,但鍺空缺(Ge vacancies)的存在能夠大幅地降低鎢缺陷生成能,且鎢缺陷的存在亦能造成鍺空缺產生以及促進另一個鎢缺陷的生成。接著我們發現鎢的摻雜能夠與鍺及碲形成鍵結,並在原本碲化鍺的能隙中引入大量的能態,進一步的探討發現這些能態的電子密度分布集中在鎢原子附近,為相當局域化(localized)的能態。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:10:36Z (GMT). No. of bitstreams: 1 U0001-2210202116055100.pdf: 4112502 bytes, checksum: d807e98307e532b3038cfb8b11819386 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Thermoelectric materials 1 1.2 Germanium telluride 3 Chapter 2 Computational Details 6 Chapter 3 Electronic Structure of GeTe 8 3.1 Crystal structure 8 3.2 Electronic band structure investigations 9 Chapter 4 Properties of W-Doped GeTe 12 4.1 Energetics analysis 12 4.1.1 Formation energies of Wi and Ws 12 4.1.2 Formation energies considering Ge vacancies 13 4.1.3 Second W in the presence of Ge vacancies 16 4.1.4 Formation energies of Ge vacancies 18 4.2 Structural relaxation 19 4.3 Electronic structure 20 4.3.1 Density of states of W-doped GeTe 21 4.3.2 Band structures of W-doped GeTe 25 4.3.3 Spin-polarization analysis 28 4.3.4 The role of vacancy 29 4.4 Charge density analyses 32 4.4.1 Charge density difference 32 4.4.2 Band-gap states 33 4.5 Conclusion 35 Appendix 37 A.1 First Brillouin zone of c- and r-GeTe 37 A.2 The non-spin-polarized band structure of c- and r-GeTe 38 A.3 The spin-polarized band structure of c- and r-GeTe 39 A.4 The spin-polarized DOS of c- and r-GeTe 40 References 41 | |
| dc.language.iso | en | |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 第一原理 | zh_TW |
| dc.subject | 熱電材料 | zh_TW |
| dc.subject | 鎢摻雜 | zh_TW |
| dc.subject | 鍺化碲 | zh_TW |
| dc.subject | 能帶結構 | zh_TW |
| dc.subject | tungsten doping | en |
| dc.subject | density-functional theory | en |
| dc.subject | band structure | en |
| dc.subject | first-principles | en |
| dc.subject | thermoelectric material | en |
| dc.subject | germanium telluride | en |
| dc.title | 鎢摻雜之碲化鍺第一原理研究 | zh_TW |
| dc.title | First-Principles Studies of W-Doped GeTe | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏金明(Hsin-Tsai Liu),林麗瓊(Chih-Yang Tseng) | |
| dc.subject.keyword | 第一原理,熱電材料,鎢摻雜,鍺化碲,能帶結構,密度泛函理論, | zh_TW |
| dc.subject.keyword | first-principles,thermoelectric material,tungsten doping,germanium telluride,band structure,density-functional theory, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU202104037 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2210202116055100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
