Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80600
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorMing-Yang Chenen
dc.contributor.author陳名揚zh_TW
dc.date.accessioned2022-11-24T03:10:25Z-
dc.date.available2021-11-04
dc.date.available2022-11-24T03:10:25Z-
dc.date.copyright2021-11-04
dc.date.issued2021
dc.date.submitted2021-10-25
dc.identifier.citation[1] Ni, Y.; Zheng, S.; Nie, K., Morphology and Thermal Properties of Inorganic–Organic Hybrids Involving Epoxy Resin and Polyhedral Oligomeric Silsesquioxanes. Polymer 2004, 45 (16), 5557-5568. [2] Liu, Y.; Zheng, S.; Nie, K., Epoxy Nanocomposites with Octa(Propylglycidyl Ether) Polyhedral Oligomeric Silsesquioxane. Polymer 2005, 46 (25), 12016-12025. [3] Boinard, P.; Banks, W. M.; Pethrick, R. A., Changes in the Dielectric Relaxations of Water in Epoxy Resin as a Function of the Extent of Water Ingress in Carbon Fibre Composites. Polymer 2005, 46 (7), 2218-2229. [4] Liu, H.; Uhlherr, A.; Bannister, M. K., Quantitative Structure–Property Relationships for Composites: Prediction of Glass Transition Temperatures for Epoxy Resins. Polymer 2004, 45 (6), 2051-2060. [5] Wang, C.-S.; Shieh, J.-Y., Phosphorus-Containing Epoxy Resin for an Electronic Application. Journal of Applied Polymer Science 1999, 73 (3), 353-361. [6] Saba, N.; Jawaid, M.; Alothman, O. Y.; Paridah, M. T.; Hassan, A., Recent Advances in Epoxy Resin, Natural Fiber-Reinforced Epoxy Composites and Their Applications. Journal of Reinforced Plastics and Composites 2015, 35 (6), 447-470. [7] Ho, T.-H.; Wang, C.-S., Modification of Epoxy Resin with Siloxane Containing Phenol Aralkyl Epoxy Resin for Electronic Encapsulation Application. European Polymer Journal 2001, 37 (2), 267-274. [8] Teh, P. L.; Mariatti, M.; Akil, H. M.; Yeoh, C. K.; Seetharamu, K. N.; Wagiman, A. N. R.; Beh, K. S., The Properties of Epoxy Resin Coated Silica Fillers Composites. Materials Letters 2007, 61 (11), 2156-2158. [9] Zhang, Z.; Zhang, W.; Li, D.; Sun, Y.; Wang, Z.; Hou, C.; Chen, L.; Cao, Y.; Liu, Y., Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method. International Journal of Molecular Sciences 2015, 16 (1). [10] Dagdag, O.; El Harfi, A.; Essamri, A.; El Gouri, M.; Chraibi, S.; Assouag, M.; Benzidia, B.; Hamed, O.; Lgaz, H.; Jodeh, S., Phosphorous-Based Epoxy Resin Composition as an Effective Anticorrosive Coating for Steel. International Journal of Industrial Chemistry 2018, 9 (3), 231-240. [11] Yeh, J.-M.; Huang, H.-Y.; Chen, C.-L.; Su, W.-F.; Yu, Y.-H., Siloxane-Modified Epoxy Resin–Clay Nanocomposite Coatings with Advanced Anticorrosive Properties Prepared by a Solution Dispersion Approach. Surface and Coatings Technology 2006, 200 (8), 2753-2763. [12] Toldy, A.; Szolnoki, B.; Marosi, G., Flame Retardancy of Fibre-Reinforced Epoxy Resin Composites for Aerospace Applications. Polymer Degradation and Stability 2011, 96 (3), 371-376. [13] Carter, J. T.; Emmerson, G. T.; Faro, C. L.; McGrail, P. T.; Moore, D. R., The Development of a Low Temperature Cure Modified Epoxy Resin System for Aerospace Composites. Composites Part A: Applied Science and Manufacturing 2003, 34 (1), 83-91. [14] Mangalgiri, P. D., Composite Materials for Aerospace Applications. Bulletin of Materials Science 1999, 22 (3), 657-664. [15] Guadagno, L.; Raimondo, M.; Vittoria, V.; Vertuccio, L.; Naddeo, C.; Russo, S.; De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V., Development of Epoxy Mixtures for Application in Aeronautics and Aerospace. RSC Advances 2014, 4 (30), 15474-15488. [16] Singh, Y.; Singh, J.; Sharma, S.; Lam, T.-D.; Nguyen, D.-N., Fabrication and Characterization of Coir/Carbon-Fiber Reinforced Epoxy Based Hybrid Composite for Helmet Shells and Sports-Good Applications: Influence of Fiber Surface Modifications on the Mechanical, Thermal and Morphological Properties. Journal of Materials Research and Technology 2020, 9 (6), 15593-15603. [17] Tong, Y., Application of New Materials in Sports Equipment. IOP Conference Series: Materials Science and Engineering 2019, 493, 012112. [18] Zhang, X.; Wang, P.; Neo, H.; Lim, G.; Malcolm, A. A.; Yang, E.-H.; Yang, J., Design of Glass Fiber Reinforced Plastics Modified with Cnt and Pre-Stretching Fabric for Potential Sports Instruments. Materials Design 2016, 92, 621-631. [19] Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K., Recent Development of Biobased Epoxy Resins: A Review. Polymer-Plastics Technology and Engineering 2018, 57 (3), 133-155. [20] Razack, N. A.; Varghese, L. A., The Effect of Various Hardeners on the Mechanical and Thermal Properties of Epoxy Resin. International Journal of Engineering Research Technology (IJERT) 2014, 3 (1), 2662-2665. [21] Prolongo, S. G.; del Rosario, G.; Ureña, A., Comparative Study on the Adhesive Properties of Different Epoxy Resins. International Journal of Adhesion and Adhesives 2006, 26 (3), 125-132. [22] Chiu, Y.-C.; Chou, I. C.; Tseng, W.-C.; Ma, C.-C. M., Preparation and Thermal Properties of Diglycidylether Sulfone Epoxy. Polymer Degradation and Stability 2008, 93 (3), 668-676. [23] Ellis, B., Chemistry and Technology of Epoxy Resins. Springer: 1993. [24] Parker, S.; Reit, R.; Abitz, H.; Ellson, G.; Yang, K.; Lund, B.; Voit, W. E., High-Tg Thiol-Click Thermoset Networks Via the Thiol-Maleimide Michael Addition. Macromolecular Rapid Communications 2016, 37 (13), 1027-1032. [25] Lin, C. H.; Yang, K. Z.; Leu, T. S.; Lin, C. H.; Sie, J. W., Synthesis, Characterization, and Properties of Novel Epoxy Resins and Cyanate Esters. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (11), 3487-3502. [26] Jia, Q. M.; Zheng, M.; Zhu, Y. C.; Li, J. B.; Xu, C. Z., Effects of Organophilic Montmorillonite on Hydrogen Bonding, Free Volume and Glass Transition Temperature of Epoxy Resin/Polyurethane Interpenetrating Polymer Networks. European Polymer Journal 2007, 43 (1), 35-42. [27] Zhang, Z.; Liang, G.; Wang, J.; Ren, P., Epoxy/Poss Organic–Inorganic Hybrids: Viscoelastic, Mechanical Properties and Micromorphologies. Polymer Composites 2007, 28 (2), 175-179. [28] Allaoui, A.; El Bounia, N.-E., How Carbon Nanotubes Affect the Cure Kinetics and Glass Transition Temperature of Their Epoxy Composites? – a Review. Express Polymer Letters 2009, 3 (9), 588-594. [29] Jasim, K. A.; Fadhil, R. N.; Shaban, A. H.; Jaafar, H. I.; Maiyaly, B. K.; Aleabi, S. H.; Salman, E. M., The Effects of Copper Additives on the Glass Transition Temperature and Hardness for Epoxy Resin. Progress in Industrial Ecology, an International Journal 2019, 13 (2), 163-172. [30] Jin, F.-L.; Park, S.-J., Thermal Properties of Epoxy Resin/Filler Hybrid Composites. Polymer Degradation and Stability 2012, 97 (11), 2148-2153. [31] Liang, M.; Wong, K. L., Study of Mechanical and Thermal Performances of Epoxy Resin Filled with Micro Particles and Nanoparticles. Energy Procedia 2017, 110, 156-161. [32] Sinh, L. H.; Son, B. T.; Trung, N. N.; Lim, D.-G.; Shin, S.; Bae, J.-Y., Improvements in Thermal, Mechanical, and Dielectric Properties of Epoxy Resin by Chemical Modification with a Novel Amino-Terminated Liquid-Crystalline Copoly(Ester Amide). Reactive and Functional Polymers 2012, 72 (8), 542-548. [33] Hsiue, G.-H.; Wei, H.-F.; Shiao, S.-J.; Kuo, W.-J.; Sha, Y.-A., Chemical Modification of Dicyclopentadiene-Based Epoxy Resins to Improve Compatibility and Thermal Properties. Polymer Degradation and Stability 2001, 73 (2), 309-318. [34] Yu, Y.; Zhang, Z.; Gan, W.; Wang, M.; Li, S., Effect of Polyethersulfone on the Mechanical and Rheological Properties of Polyetherimide-Modified Epoxy Systems. Industrial Engineering Chemistry Research 2003, 42 (14), 3250-3256. [35] Yoon, T. H.; Priddy Jr, D. B.; Lyle, G. D.; McGrath, J. E., Mechanical and Morphological Investigations of Reactive Polysulfone Toughened Epoxy Networks. Macromolecular Symposia 1995, 98 (1), 673-686. [36] Hodgkin, J. H.; Simon, G. P.; Varley, R. J., Thermoplastic Toughening of Epoxy Resins: A Critical Review. Polymers for Advanced Technologies 1998, 9 (1), 3-10. [37] Yang III, J. Part I: Synthesis of Aromatic Polyketones Via Soluble Precursors Derived from Bis (a-Amininitrile) S; Part Ii: Modifications of Epoxy Resins with Functional Hyperbranched Poly (Arylene Ester) S. Virginia Tech, 1998. [38] Pan, G.; Du, Z.; Zhang, C.; Li, C.; Yang, X.; Li, H., Synthesis, Characterization, and Properties of Novel Novolac Epoxy Resin Containing Naphthalene Moiety. Polymer 2007, 48 (13), 3686-3693. [39] Nguyen, H. T. H.; Qi, P.; Rostagno, M.; Feteha, A.; Miller, S. A., The Quest for High Glass Transition Temperature Bioplastics. Journal of Materials Chemistry A 2018, 6 (20), 9298-9331. [40] Kaji, M.; Ogami, K.; Endo, T., Synthesis of a Bifunctional Epoxy Monomer Containing Anthracene Moiety and Properties of Its Cured Polymer with Phenol Novolac. Journal of Applied Polymer Science 1999, 72 (7), 953-959. [41] Hua, R. E. N.; Jianzhong, S. U. N.; Binjie, W. U.; Qiyun, Z., Synthesis and Curing Properties of a Novel Novolac Curing Agent Containing Naphthyl and Dicyclopentadiene Moieties. Chinese Journal of Chemical Engineering 2007, 15 (1), 127-131. [42] Wang, C.-S.; Lee, M.-C., Synthesis, Characterization, and Properties of Multifunctional Naphthalene-Containing Epoxy Resins Cured with Cyanate Ester. Journal of Applied Polymer Science 1999, 73 (9), 1611-1622. [43] Wan, J.; Bu, Z.-Y.; Xu, C.-J.; Li, B.-G.; Fan, H., Preparation, Curing Kinetics, and Properties of a Novel Low-Volatile Starlike Aliphatic-Polyamine Curing Agent for Epoxy Resins. Chemical Engineering Journal 2011, 171 (1), 357-367. [44] Liu, Y.; Du, Z.; Zhang, C.; Li, C.; Li, H., Curing Behavior and Thermal Properties of Multifunctional Epoxy Resin with Methylhexahydrophthalic Anhydride. Journal of Applied Polymer Science 2007, 103 (3), 2041-2048. [45] Xiong, X.; Guo, X.; Ren, R.; Zhou, L.; Chen, P., A Novel Multifunctional Glycidylamine Epoxy Resin Containing Phthalide Cardo Structure: Synthesis, Curing Kinetics and Dynamic Mechanical Analysis. Polymer Testing 2019, 77, 105917. [46] Bajpai, A.; Davidson, J. R.; Robert, C., Studies on the Modification of Commercial Bisphenol-a-Based Epoxy Resin Using Different Multifunctional Epoxy Systems. Applied Mechanics 2021, 2 (2). [47] Hadipeykani, M.; Aghadavoudi, F.; Toghraie, D., A Molecular Dynamics Simulation of the Glass Transition Temperature and Volumetric Thermal Expansion Coefficient of Thermoset Polymer Based Epoxy Nanocomposite Reinforced by Cnt: A Statistical Study. Physica A: Statistical Mechanics and its Applications 2020, 546, 123995. [48] Zhang, W.; Wang, Z.; Lv, S.; Zhan, W.; Bai, G.; Zhou, A.; Sui, G.; Yang, X., Molecular Simulation of Different Structure Dopamine-Modified Graphene Oxide and Its Effects on Thermal and Mechanical Properties of the Epoxy Resin System. Polymer 2021, 212, 123120. [49] Bahlakeh, G.; Ghaffari, M.; Saeb, M. R.; Ramezanzadeh, B.; De Proft, F.; Terryn, H., A Close-up of the Effect of Iron Oxide Type on the Interfacial Interaction between Epoxy and Carbon Steel: Combined Molecular Dynamics Simulations and Quantum Mechanics. The Journal of Physical Chemistry C 2016, 120 (20), 11014-11026. [50] Lin, P.-H.; Khare, R., Molecular Simulation of Cross-Linked Epoxy and Epoxy−Poss Nanocomposite. Macromolecules 2009, 42 (12), 4319-4327. [51] Radue, M. S.; Jensen, B. D.; Gowtham, S.; Klimek-McDonald, D. R.; King, J. A.; Odegard, G. M., Comparing the Mechanical Response of Di-, Tri-, and Tetra-Functional Resin Epoxies with Reactive Molecular Dynamics. Journal of Polymer Science Part B: Polymer Physics 2018, 56 (3), 255-264. [52] Koehler, M. G.; Hopfinger, A. J., Molecular Modelling of Polymers: 5. Inclusion of Intermolecular Energetics in Estimating Glass and Crystal-Melt Transition Temperatures. Polymer 1989, 30 (1), 116-126. [53] Cypcar, C. C.; Camelio, P.; Lazzeri, V.; Mathias, L. J.; Waegell, B., Prediction of the Glass Transition Temperature of Multicyclic and Bulky Substituted Acrylate and Methacrylate Polymers Using the Energy, Volume, Mass (Evm) Qspr Model. Macromolecules 1996, 29 (27), 8954-8959. [54] Camelio, P.; Cypcar, C. C.; Lazzeri, V.; Waegell, B., A Novel Approach toward the Prediction of the Glass Transition Temperature: Application of the Evm Model, a Designer Qspr Equation for the Prediction of Acrylate and Methacrylate Polymers. Journal of Polymer Science Part A: Polymer Chemistry 1997, 35 (13), 2579-2590. [55] Jin, K.; Luo, H.; Wang, Z.; Wang, H.; Tao, J., Composition Optimization of a High-Performance Epoxy Resin Based on Molecular Dynamics and Machine Learning. Materials Design 2020, 194, 108932. [56] Higuchi, C.; Horvath, D.; Marcou, G.; Yoshizawa, K.; Varnek, A., Prediction of the Glass-Transition Temperatures of Linear Homo/Heteropolymers and Cross-Linked Epoxy Resins. ACS Applied Polymer Materials 2019, 1 (6), 1430-1442. [57] Kang, H.; Lee, J. H.; Choe, Y.; Lee, S. G., Prediction of Lap Shear Strength and Impact Peel Strength of Epoxy Adhesive by Machine Learning Approach. Nanomaterials 2021, 11 (4). [58] Biovia, D. S., Materials Studio. R2 (Dassault Systèmes BIOVIA, San Diego 2017. [59] Fayet, G.; Rotureau, P., How to Use Qspr-Type Approaches to Predict Properties in the Context of Green Chemistry. Biofuels, Bioproducts and Biorefining 2016, 10 (6), 738-752. [60] Van Krevelen, D. W.; Te Nijenhuis, K., Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Elsevier: 2009. [61] Bicerano, J., Prediction of Polymer Properties. cRc Press: 2002. [62] Sampson, J. R., Adaptation in Natural and Artificial Systems (John H. Holland). Society for Industrial and Applied Mathematics: 1976. [63] Friedman, J. H., Multivariate Adaptive Regression Splines. The Annals of Statistics 1991, 19 (1), 1-67. [64] Rogers, D.; Hopfinger, A. J., Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. Journal of Chemical Information and Computer Sciences 1994, 34 (4), 854-866. [65] Tack, J. L.; Ford, D. M., Thermodynamic and Mechanical Properties of Epoxy Resin Dgebf Crosslinked with Detda by Molecular Dynamics. J Mol Graph Model 2008, 26 (8), 1269-1275. [66] Gou, J.; Minaie, B.; Wang, B.; Liang, Z.; Zhang, C., Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites. Computational Materials Science 2004, 31 (3), 225-236. [67] Tack, J. L.; Ford, D. M., Thermodynamic and Mechanical Properties of Epoxy Resin Dgebf Crosslinked with Detda by Molecular Dynamics. Journal of Molecular Graphics and Modelling 2008, 26 (8), 1269-1275. [68] Morrill, J. A.; Jensen, R. E.; Madison, P. H.; Chabalowski, C. F., Prediction of the Formulation Dependence of the Glass Transition Temperatures of Amine-Epoxy Copolymers Using a Qspr Based on the Am1 Method. Journal of Chemical Information and Computer Sciences 2004, 44 (3), 912-920. [69] Danieley, N. D.; Long Jr, E. R., Effects of Curing on the Glass Transition Temperature and Moisture Absorption of a Neat Epoxy Resin. Journal of Polymer Science: Polymer Chemistry Edition 1981, 19 (10), 2443-2449. [70] Skourlis, T. P.; McCullough, R. L., An Experimental Investigation of the Effect of Prepolymer Molecular Weight and Stoichiometry on Thermal and Tensile Properties of Epoxy Resins. Journal of Applied Polymer Science 1996, 62 (3), 481-490. [71] Min, B. G.; Hodgkin, J. H.; Stachurski, Z. H., The Dependence of Fracture Properties on Cure Temperature in a Dgeba/Dds Epoxy System. Journal of Applied Polymer Science 1993, 48 (7), 1303-1312. [72] Odian, G., Principles of Polymerization. John Wiley Sons: 2004. [73] Zhang, Z.; Mo, Z.; Zhang, H.; Zhang, Y.; Na, T.; An, Y.; Wang, X.; Zhao, X., Miscibility and Hydrogen-Bonding Interactions in Blends of Carbon Dioxide/Epoxy Propane Copolymer with Poly(P-Vinylphenol). Journal of Polymer Science Part B: Polymer Physics 2002, 40 (17), 1957-1964. [74] Dell'Erba, I. E.; Williams, R. J. J., Homopolymerization of Epoxy Monomers Initiated by 4-(Dimethylamino)Pyridine. Polymer Engineering Science 2006, 46 (3), 351-359. [75] Schut, J.; Bolikal, D.; Khan, I. J.; Pesnell, A.; Rege, A.; Rojas, R.; Sheihet, L.; Murthy, N. S.; Kohn, J., Glass Transition Temperature Prediction of Polymers through the Mass-Per-Flexible-Bond Principle. Polymer 2007, 48 (20), 6115-6124. [76] Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S., Advanced Polyimide Materials: Syntheses, Physical Properties and Applications. Progress in Polymer Science 2012, 37 (7), 907-974.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80600-
dc.description.abstract環氧樹脂以其優異的綜合性能在許多領域中得到廣泛應用,為了滿足各領域的應用標準,耐高溫環氧樹脂的開發儼然成為重要的問題。本研究導入電腦模擬技術對耐高溫環氧樹脂的胺類固化劑進行研發,選擇最具代表性的環氧單體DGEBA作為主要系統,尋找具備耐高溫特性的新型固化劑設計方案。我們收集了近二十年來以環氧單體DGEBA及胺類固化劑為主要材料的實驗文獻,透過定量結構性質關係(Quantitative structure-property relationships)技術來建立理論計算值與實驗數據的擬合式,並對其進行基因演算法的分析及材料使用的觀察,得出胺類固化劑分子結構影響環氧樹脂整體Tg值的關鍵因素為分子結構對稱性、分子量、固化劑中氮、氧、硫原子及芳香環數目。藉由這些關鍵因素來提出一系列可能具備耐高溫特性的基團並用於設計新型固化劑,其中觀察到在以蒽環(Anthracene)及萘環(naphthalene)進行結構改質時可以最顯著的提升Tg值;此外,碸基(Sulfone)及醯胺基(Amido)作為連接官能基時,對整體Tg提升也會有明顯的效果,約略提升5~10 K。後續對於所設計的新型固化劑用於環氧樹脂的理論計算Tg值代入擬合式來進行預測,值得注意的是,在新型設計的固化劑中,以非工業級固化劑PABP為參考對象時,可得到最高的預測實驗Tg值在含蒽環及不含蒽環的情況下分別為674 K及598 K,兩者皆遠遠超越我們在文獻收集中最高的530 K。透過本研究對於關鍵因素的探討並將其用於設計新型固化劑的設計策略,達到加速材料開發及降低開發成本的可能性,期許能作為實驗學者在未來研究上的參考依據,並且促進該領域的蓬勃發展。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:10:25Z (GMT). No. of bitstreams: 1
U0001-2210202118104600.pdf: 9771747 bytes, checksum: 49567d7cbef53b7bee6ca67f3e81ed8b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要-i ABSTRACT-ii 目錄-iii 圖目錄-iv 表目錄-v 第1章 前言-1 第2章 模擬方法-7 2.1  數據收集-7 2.2  定量結構性質關係:QSPR(Quantitative Structure–Property Relationships)技術-7 2.3  基因演算法(Genetic Algorithm)-9 第3章 結果與討論-11 3.1  DGEBA系統的實驗文獻Tg值與理論計算關係-11 3.2  影響環氧樹脂玻璃轉移溫度之重要參數-18 3.3  設計耐高溫新型固化劑-21 第4章 結論-31 第5章 參考文獻-33 附件一 計算模組Synthia中Tg計算式之相關參數物理意義-38 附件二 各個重要參數與實驗Tg值之關係圖-41 附件三 不含蒽的新型固化劑分子結構及預測Tg值-43 附件四-含蒽的新型固化劑分子結構及預測Tg值-68
dc.language.isozh-TW
dc.subject基因演算法zh_TW
dc.subject耐高溫環氧樹脂zh_TW
dc.subject定量結構性質關係zh_TW
dc.subject玻璃轉移溫度zh_TW
dc.subjectHigh-temperature resistant epoxy resinen
dc.subjectGlass transition temperatureen
dc.subjectQuantitative structure-property relationshipsen
dc.subjectGenetic algorithmen
dc.title運用基因演算法設計應用於耐高溫環氧樹脂之新型固化劑zh_TW
dc.titleDesign of Novel Curing Agents for High Temperature Resistant Epoxy Resins by Genetic Algorithmen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童世煌(Hsin-Tsai Liu),韓錦鈴(Chih-Yang Tseng),陳錦文,蘭宜康
dc.subject.keyword耐高溫環氧樹脂,玻璃轉移溫度,基因演算法,定量結構性質關係,zh_TW
dc.subject.keywordHigh-temperature resistant epoxy resin,Glass transition temperature,Genetic algorithm,Quantitative structure-property relationships,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202104049
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2210202118104600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved