Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80596
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩燁(Rita P.-Y. Chen)
dc.contributor.authorChih-Hsuan Leeen
dc.contributor.author李至璿zh_TW
dc.date.accessioned2022-11-24T03:10:19Z-
dc.date.available2021-11-03
dc.date.available2022-11-24T03:10:19Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-22
dc.identifier.citationAbdallah, A., Wang, P., Richt, J. A., Sreevatsan, S. (2012). Y145Stop is sufficient to induce de novo generation prions using protein misfolding cyclic amplification. Prion, 6(1), 81-88. https://doi.org/10.4161/pri.6.1.18493 Alper, T., Cramp, W. A., Haig, D. A., Clarke, M. C. (1967). Does the agent of scrapie replicate without nucleic acid? Nature, 214(5090), 764-766. https://doi.org/10.1038/214764a0 Chandler, R. L. (1961). Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet, 277(7191), 1378-1379. https://doi.org/10.1016/S0140-6736(61)92008-6 Choi, J. K., Cali, I., Surewicz, K., Kong, Q., Gambetti, P., Surewicz, W. K. (2016). Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc. Natl. Acad. Sci. U.S.A., 113(48), 13851-13856. https://doi.org/10.1073/pnas.1610716113 Donne, D. G., Viles, J. H., Groth, D., Mehlhorn, I., James, T. L., Cohen, F. E., Prusiner, S. B., Wright, P. E., Dyson, H. J. (1997). Structure of the recombinant full-length hamster prion protein PrP(29–231): The N terminus is highly flexible. Proc. Natl. Acad. Sci. U.S.A., 94(25), 13452-13457. https://doi.org/10.1073/pnas.94.25.13452 Fitzpatrick, A. W. P., Falcon, B., He, S., Murzin, A. G., Murshudov, G., Garringer, H. J., Crowther, R. A., Ghetti, B., Goedert, M., Scheres, S. H. W. (2017). Cryo-EM structures of tau filaments from Alzheimer's disease. Nature, 547(7662), 185-190. https://doi.org/10.1038/nature23002 Gajdusek, D. C., Gibbs, C. J., Alpers, M. (1966). Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature, 209(5025), 794-796. https://doi.org/10.1038/209794a0 Glynn, C., Sawaya, M. R., Ge, P., Gallagher-Jones, M., Short, C. W., Bowman, R., Apostol, M., Zhou, Z. H., Eisenberg, D. S., Rodriguez, J. A. (2020). Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat. Struct. Mol. Biol., 27(5), 417-423. https://doi.org/10.1038/s41594-020-0403-y Gremer, L., Schölzel, D., Schenk, C., Reinartz, E., Labahn, J., Ravelli, R. B. G., Tusche, M., Lopez-Iglesias, C., Hoyer, W., Heise, H., Willbold, D., Schröder, G. F. (2017). Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science, 358(6359), 116-119. https://doi.org/10.1126/science.aao2825 Griffith, J. S. (1967). Nature of the scrapie agent: Self-replication and scrapie. Nature, 215(5105), 1043-1044. https://doi.org/10.1038/2151043a0 Hadlow, W. J. (1959). Scrapie and Kuru. Lancet, 274(7097), 289-290. https://doi.org/10.1016/S0140-6736(59)92081-1 He, S., Scheres, S. H. W. (2017). Helical reconstruction in RELION. J. Struct. Biol., 198(3), 163-176. https://doi.org/10.1016/j.jsb.2017.02.003 Helmus, J. J., Surewicz, K., Apostol, M. I., Surewicz, W. K., Jaroniec, C. P. (2011). Intermolecular alignment in Y145Stop human prion protein amyloid fibrils probed by solid-state NMR spectroscopy. J. Am. Chem. Soc., 133(35), 13934-13937. https://doi.org/10.1021/ja206469q Helmus, J. J., Surewicz, K., Nadaud, P. S., Surewicz, W. K., Jaroniec, C. P. (2008). Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proc. Natl. Acad. Sci. U.S.A., 105(17), 6284-6289. https://doi.org/10.1073/pnas.0711716105 Jones, E. M., Surewicz, K., Surewicz, W. K. (2006). Role of N-terminal familial mutations in prion protein fibrillization and prion amyloid propagation in vitro. J. Biol. Chem., 281(12), 8190-8196. https://doi.org/10.1074/jbc.M513417200 Jones, E. M., Surewicz, W. K. (2005). Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids. Cell, 121(1), 63-72. https://doi.org/10.1016/j.cell.2005.01.034 Kitamoto, T., Iizuka, R., Tateishi, J. (1993). An amber mutation of prion protein in Gerstmann-Sträussler syndrome with mutant PrP plaques. Biochem. Biophys. Res. Commun., 192(2), 525-531. https://doi.org/10.1006/bbrc.1993.1447 Kocisko, D. A., Priola, S. A., Raymond, G. J., Chesebro, B., Lansbury, P. T., Jr., Caughey, B. (1995). Species specificity in the cell-free conversion of prion protein to protease-resistant forms: A model for the scrapie species barrier. Proc. Natl. Acad. Sci. U.S.A., 92(9), 3923-3927. https://doi.org/10.1073/pnas.92.9.3923 Kundu, B., Maiti, N. R., Jones, E. M., Surewicz, K. A., Vanik, D. L., Surewicz, W. K. (2003). Nucleation-dependent conformational conversion of the Y145Stop variant of human prion protein: Structural clues for prion propagation. Proc. Natl. Acad. Sci. U.S.A., 100(21), 12069-12074. https://doi.org/10.1073/pnas.2033281100 Millhauser, G. L. (2007). Copper and the prion protein: Methods, structures, function, and disease. Annu. Rev. Phys. Chem., 58(1), 299-320. https://doi.org/10.1146/annurev.physchem.58.032806.104657 Moore, R. A., Herzog, C., Errett, J., Kocisko, D. A., Arnold, K. M., Hayes, S. F., Priola, S. A. (2006). Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation. Protein Sci., 15(3), 609-619. https://doi.org/10.1110/ps.051822606 Oesch, B., Westaway, D., Wälchli, M., McKinley, M. P., Kent, S. B. H., Aebersold, R., Barry, R. A., Tempst, P., Teplow, D. B., Hood, L. E., Prusiner, S. B., Weissmann, C. (1985). A cellular gene encodes scrapie PrP 27-30 protein. Cell, 40(4), 735-746. https://doi.org/10.1016/0092-8674(85)90333-2 Pan, K. M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R. J., Cohen, F. E. (1993). Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U.S.A., 90(23), 10962. https://doi.org/10.1073/pnas.90.23.10962 Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science, 216(4542), 136-144. https://doi.org/10.1126/science.6801762 Prusiner, S. B. (1991). Molecular biology of prion diseases. Science, 252(5012), 1515-1522. https://doi.org/10.1126/science.1675487 Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., Wüthrich, K. (1996). NMR structure of the mouse prion protein domain PrP(121–231). Nature, 382(6587), 180-182. https://doi.org/10.1038/382180a0 Rudd, P. M., Endo, T., Colominas, C., Groth, D., Wheeler, S. F., Harvey, D. J., Wormald, M. R., Serban, H., Prusiner, S. B., Kobata, A., Dwek, R. A. (1999). Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc. Natl. Acad. Sci. U.S.A., 96(23), 13044. https://doi.org/10.1073/pnas.96.23.13044 Rudd, P. M., Wormald, M. R., Wing, D. R., Prusiner, S. B., Dwek, R. A. (2001). Prion glycoprotein: Structure, dynamics, and roles for the sugars. Biochemistry, 40(13), 3759-3766. https://doi.org/10.1021/bi002625f Scheres, S. H. (2012). RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol., 180(3), 519-530. https://doi.org/10.1016/j.jsb.2012.09.006 Scheres, S. H. W. (2020). Amyloid structure determination in RELION-3.1. Acta Crystallogr. D, 76(Pt 2), 94-101. https://doi.org/10.1107/s2059798319016577 Sigurdsson, B. (1954). RIDA, a chronic encephalitis of sheep: With general remarks on infections which develop slowly and some of their special characteristics. Br. Vet. J., 110(9), 341-354. https://doi.org/10.1016/S0007-1935(17)50172-4 Theint, T., Nadaud, P. S., Surewicz, K., Surewicz, W. K., Jaroniec, C. P. (2017). (13)C and (15)N chemical shift assignments of mammalian Y145Stop prion protein amyloid fibrils. Biomol. NMR Assign., 11(1), 75-80. https://doi.org/10.1007/s12104-016-9723-6 Vanik, D. L., Surewicz, K. A., Surewicz, W. K. (2004). Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol. Cell., 14(1), 139-145. https://doi.org/10.1016/s1097-2765(04)00155-8 Vázquez-Fernández, E., Vos, M. R., Afanasyev, P., Cebey, L., Sevillano, A. M., Vidal, E., Rosa, I., Renault, L., Ramos, A., Peters, P. J., Fernández, J. J., van Heel, M., Young, H. S., Requena, J. R., Wille, H. (2016). The structural architecture of an infectious mammalian prion using electron cryomicroscopy. PLoS Pathog., 12(9), e1005835. https://doi.org/10.1371/journal.ppat.1005835 Wüthrich, K., Riek, R. (2001). Three-dimensional structures of prion proteins. In Adv. Protein Chem. (Vol. 57, pp. 55-82). Academic Press. https://doi.org/10.1016/S0065-3233(01)57018-7 Wang, L. Q., Zhao, K., Yuan, H. Y., Wang, Q., Guan, Z., Tao, J., Li, X. N., Sun, Y., Yi, C. W., Chen, J., Li, D., Zhang, D., Yin, P., Liu, C., Liang, Y. (2020). Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat. Struct. Mol. Biol., 27(6), 598-602. https://doi.org/10.1038/s41594-020-0441-5 Zhang, K. (2016). Gctf: Real-time CTF determination and correction. J. Struct. Biol., 193(1), 1-12. https://doi.org/10.1016/j.jsb.2015.11.003 Zheng, S. Q., Palovcak, E., Armache, J. P., Verba, K. A., Cheng, Y., Agard, D. A. (2017). MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods., 14(4), 331-332. https://doi.org/10.1038/nmeth.4193
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80596-
dc.description.abstract普利昂疾病是一類致命且具傳染性的神經退化性疾病,其臨床上的症狀包含失智、肌肉抽搐、共濟失調…等等。其發生的原因主要為普利昂蛋白質之二級結構由α結構轉變為β結構,形成類澱粉纖維堆積,造成腦部神經細胞死亡,因此,普利昂疾病是由蛋白質錯誤折疊引起的疾病。一種自發性普利昂疾病有基因序列突變會產生截短的普利昂蛋白,這種截短的普利昂蛋白可在接近生理條件之緩衝液內形成類澱粉纖維。 本論文中我們研究小鼠普利昂蛋白mPrP(23-144)產生的類澱粉纖維結構,我們選擇了五個位點並將它們單獨突變為 Cys 以進行自旋標記,兩種含 Cys 的蛋白質用 MTSSL 標記以獲得自旋標記的蛋白質,接著我們使用mPrP(23-144)形成的類澱粉纖維作為晶種去誘使各突變蛋白形成類澱粉纖維,最後再以電子自旋光譜ESR來解析類澱粉纖維中自旋標記之間的交互作用,探討mPrP(23-144)形成之類澱粉纖維的結構特性。實驗結果發現,113號殘基不在類澱粉纖維的cross-β結構中。此外,本研究中亦使用冷凍電子顯微鏡之技術,嘗試解析倉鼠普利昂胜肽haPrP(108-144)形成的類澱粉纖維的結構,我們成功得到高品質的電子顯微鏡影像,並且以單粒子分析之方式,進行類澱粉纖維之三維結構重組,已獲得解析度2.72 Å的三維結構。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:10:19Z (GMT). No. of bitstreams: 1
U0001-2210202116300000.pdf: 9597121 bytes, checksum: 1e40192fbd0682423df51c07a24e8bd5 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"中文摘要 i Abstract ii Abbreviations iii Table of contents iv List of figures vii List of tables x Chapter 1 Introduction 1 1.1 Prion diseases 1 1.2 Prion protein 3 1.3 Prion protein Y145Stop mutation 5 1.4 Electron Spin Resonance (ESR) 7 1.5 The aim of this study 10 Chapter 2 Materials and Methods 11 2.1 Materials 11 2.1.1 Water 11 2.1.2 Chemicals 11 2.1.3 Laboratory instruments 12 2.2 Methods 14 2.2.1 Site-directed mutagenesis 14 2.2.2 Expression of recombinant mouse PrP in E.coli and cell lysis 16 2.2.3 Immobilized metal-ion affinity chromatography (IMAC) 16 2.2.4 HPLC purification and protein identification 17 2.2.5 MTSSL labeling, purification and identification 17 2.2.6 Seed preparation 17 2.2.7 Amyloid Fibril formation 18 2.2.8 ThT binding assay 18 2.2.9 TEM grid preparation and observation 19 2.2.10 ESR sample preparation and spectroscopy measurement 19 Chapter 3 Results 20 3.1 Construction of mPrP(23-144) and the mutants 20 3.2 Mouse prion protein (23-144) expression and identification 21 3.3 Immobilized metal-ion affinity chromatography (IMAC) purification 21 3.4 High-performance liquid chromatography (HPLC) purification 22 3.5 Spin-labeling and purification 24 3.6 Spontaneous fibril formation 25 3.7 Seeded fibril formation 29 3.8 Transmissible Electron Microscopy 33 3.9 ESR spectra of A113R1 fibrils 36 Chapter 4 Cryo-EM study of hamster haPrP(108-144) peptide fibrils 38 4.1 Application of Cryo-EM in studying prion fibril structure 38 4.2 haPrP(108-144) fibril formation 40 4.3 Cryo-EM grid preparation 41 4.4 Cryo-EM data collection 42 4.5 Cryo-EM data processing 43 4.5.1 Import micrographs 43 4.5.2 Motion correction 44 4.5.3 CTF Estimation 46 4.5.4 Manual picking of fibrils 48 4.5.5 Particle extraction 49 4.5.6 2D classification 50 4.5.7 Selection of good particles 54 4.5.8 Initial model generation for amyloids 56 4.5.9 3D classification 59 4.5.10 3D Refinement 62 Chapter 5 Conclusion and discussion 73 Reference 75"
dc.language.isoen
dc.subject冷凍電子顯微鏡zh_TW
dc.subject普利昂疾病zh_TW
dc.subject普利昂蛋白zh_TW
dc.subject類澱粉纖維zh_TW
dc.subject電子自旋光譜zh_TW
dc.subjectamyloid fibrilsen
dc.subjectelectron spin resonance spectroscopyen
dc.subjectprion diseasesen
dc.subjectprion proteinen
dc.subjectcryo-electron microscopyen
dc.title以電子自旋共振光譜及冷凍電子顯微鏡探討普利昂蛋白生成的類澱粉纖維之結構zh_TW
dc.titleExploring the structures of prion amyloid fibrils by electron spin resonance spectroscopy and cryo-electron microscopyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳昆峯(Hsin-Tsai Liu),陳振中(Chih-Yang Tseng)
dc.subject.keyword普利昂疾病,普利昂蛋白,類澱粉纖維,電子自旋光譜,冷凍電子顯微鏡,zh_TW
dc.subject.keywordprion diseases,prion protein,amyloid fibrils,electron spin resonance spectroscopy,cryo-electron microscopy,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202104042
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2210202116300000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved