請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭宏(Jau-Horng Chen) | |
| dc.contributor.author | Shu-Chen Lin | en |
| dc.contributor.author | 林書辰 | zh_TW |
| dc.contributor.author | f04525034 | |
| dc.date.accessioned | 2022-11-24T03:08:56Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-24T03:08:56Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | [1] Base Station (BS) radio transmission and reception, 3GPP TS 38.104, The 3rd Generation Partnership Project Tech. Specification Group, Valbonne, France, 2020. [2] Z. Hasan, H. Boostanimehr and V. K. Bhargava, “Green cellular networks: a survey, some research issues and challenges,” IEEE Comm. Surveys Tuts., vol. 13, no. 4, pp. 524-540, Nov. 2011. [3] W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, vol. 24, no. 9, pp. 1163-1182, Nov. 1936. [4] L. R. Kahn, “Single-sideband transmission by envelope elimination and restoration,” Porc. IRE, vol. 40, no. 7, pp. 803-806, July 1952. [5] L. E. Barton, 1960, High-level modulated signal amplifier system, 2961615 [6] H. Chireix, “High power outphasing modulation,” Proc. IRE, vol. 23, no. 11, pp. 1370–1392, Nov. 1935 [7] F. H. Raab, P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popović, N. Pothecary, J. F. Sevic and N. O. Sokal, “Power amplifiers and transmitters for RF and microwave”, IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp 814-826, Mar. 2002. [8] G. Sun, R. H. Jansen, “Broadband Doherty power amplifier via real frequency technique,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp 99-111, Jan. 2012. [9] D. Gustafsson, C. M. Andersson and C. Fager, “A modified Doherty power amplifier with extended bandiwdth and reconfigurable efficiency,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp 533-542, Jan. 2013. [10] D. F. Kimball, J. Jeong, C. Hsia, P. Draxler, S. Lanfranco, W. Nagy, K. Linthicum, L. E. Larson and P. M. Asbeck, “High-efficiency envelope-tracking W-CDMA base-station amplifer using GAN HFETs,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 11, pp 3848-3856, Nov. 2006. [11] J. Jeong, D. F. Kimball, M. Kwak, C. Hsia, P. Draxler, and P. M. Asbeck, “Wideband envelope tracking power amplifiers with reduced bandwidth power supply waveforms and adaptive digital predistortion techniques,” IEEE Trans. Microw. Theory Techn. vol. 57, no. 12, pp. 3307–3314, Dec. 2009. [12] S. Sakata, S. Lanfrance, T. Kolmonen, O. Piirainen, T. Fujiwara, S. Shinjo and P. Asbeck, “An 80MHz modulation bandwidth high efficiency multi-band envelope-tracking power amplifier using GaN single-phase buck-converter,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2017, pp. 1854-1857 [13] F. Wang, D. F. Kimball, J. D. Popp, A. H. Yang, D. Y. Lie, P. M. Asbeck and L. E. Larson, “An improved power-added efficiency 19-dBm hybrid envelope elimination and restortation power amplifier for 802.11g WLAN applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp 4086-4099, Dec. 2006. [14] I. Kim, Y. Y. Woo, J. Kim, J. Moon, J. Kim and B. Kim, “High-efficiency hybrid EER transmitter using optimized power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 11, pp 2582-2593, Nov. 2008. [15] Z. Yang, Y. Yao, Z. Liu, M. Li, T. Li, and Z. Dai, ‘‘Design of high efficiency broadband continuous Class-F power amplifier using real frequency technique with finite transmission zero,’’ IEEE Access, vol. 6, pp. 61983–61993, 2018. [16] C. Huang, S. He, and F. You, ‘‘Design of broadband modified Class-J Doherty power amplifier with specific second harmonic terminations,’’ IEEE Access, vol. 6, pp. 2531–2540, 2017 [17] T. Sharma, P. Aflaki, M. Helaoui, and F. M. Ghannouchi, ‘‘Broadband GaN Class-E power amplifier for load modulated delta sigma and 5G transmitter applications,’’ IEEE Access, vol. 6, pp. 4709–4719, 2018. [18] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston: Artech House, 2006 [19] Y. Wang, “An improved Kahn transmitter architecture based on delta-sigma modulation,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2003, pp. 1327-1330. [20] J.-H. Chen, H.-S. Yang, and Y.-J. E. Chen, ‘‘A multi-level pulse-modulated polar transmitter using digital pulse-width modulation,’’ IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 295–297, May 2010. [21] T.-H. Wang, Y.-H. Chen, C.-W. Chang, K.-M. Li, J.-H. Chen and J. Staudinger, “On the thermal memory effect reduction of power amplifiers using pulse modulation,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 4, pp. 285-287, Apr. 2019. [22] K.-F. Liang, H.-S. Yang, C.-W. Chang, and J.-H. Chen, ‘‘A wideband pulsemodulated polar transmitter using envelope correction for LTE applications,’’ IEEE Trans. Microw. Theory Techn., vol. 62, no. 8, pp. 2603–2608, Aug. 2015. [23] J.-H. Chen, C.-W. Chang, and H.-S. Yang, ‘‘Linearity enhanced wide-bandwidth pulse-modulated polar transmitters for LTE femtocell applications,’’ IEEE Trans. Microw. Theory Techn., vol. 64, no. 1, pp. 219–225, Jan. 2016. [24] C.-W. Chang, J.-H. Chen and J. Staudinger, “A multiphase digital pulsewidth modulated polar transmitter architecture with reactive combiner for improved efficiency,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 3, pp. 1107-1114, Mar. 2019. [25] C.-W. Chang, S.-C. Lin, J.-H. Chen and J. Staudinger, “A multi-level pulse-modulated polar transmitter based on a Doherty power amplifier and memoryless digital predistortion,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 10, pp. 933-935, Oct. 2018. [26] J.-H. Chen, H.-S. Yang and Y.-J. E. Chen, “A technique for implementing wide dynamic-range polar transmitters,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 9, pp. 2368-2374, Sep. 2010. [27] J.-H. Chen, H.-S. Yang, H.-C. Lin and Y.-J. E. Chen, “A polar-transmitter architecture using multiphase pulsewidth modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp. 244-252, Feb. 2011. [28] H.-S. Yang, J.-H. Chen and Y.-J. E. Chen, “A polar transmitter using interleaving pulse modulation for multimode handsets,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2083-2090, Aug. 2011. [29] P. A. J. Nuyts, P. Reynaert and W. Dehaene, “Frequency-domain analysis of digital PWM-based RF modulators for flexible wireless transmitters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 1, pp. 238-246, Jan. 2014. [30] S. Chi, P. Singerl and C. Vogel, “Efficiency optimization for burst-mode multilevel radio frequency transmitters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 7, pp. 1901-1914, July 2013. [31] K. Hausmair, S. Chi, P. Singerl, and C. Vogel, ‘‘Aliasing-free digital pulsewidth modulation for burst-mode RF transmitters,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 2, pp. 415–427, Feb. 2013 [32] C.-W. Chang, S.-C. Lin, J.-H. Chen and J. Staudinger, “A highly linear pulse-modulated polar transmitter using aliasing-free digital PWM for small-cell base stations,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 8, pp. 729-731, Aug. 2018. [33] C.-W. Chang, Y.-J. E. Chen and J.-H. Chen, “ A power-recycling technique for improving power amplifier efficiency under load mismatch,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 571-573, Oct. 2011. [34] T.-H. Wang and J.-H. Chen, “Power recycling using Wilkinson power combiner with pulsewidth modulation,” in 2017 IEEE Int. Symp. On Radio-Frequency Integration Technology, Aug. 2017, pp. 223-225. [35] H.-S. Yang, C.-H. Chang and J.-H. Chen, “A highly efficient LTE pulse-modulated polar transmitter using wideband power recycling,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4437-4443, Dec. 2015. [36] A. Adahl and H. Zirath, “An 1 GHz Class E LDMOS power amplifier,” in 33rd Eur. Microw. Conf., Oct. 2003, vol. 1, pp. 285-288. [37] K. Chen and D. Peroulis, “Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3162-3171, Dec. 2011. [38] D. M. Pozar, Microwave Engineering, 3rd ed. Boston, MA: Wiley, 2005. [39] G. L. Matthaei, “Tables of Chebyshev impedance-transformation networks of low-pass filter form,” Porc. IEEE, vol. 52, no. 8, pp. 939-963, Aug. 1964. [40] 謝仰之 (2016) 。應用於小型基地台之寬頻功率放大器設計。碩士論文,國立台灣大學工程科學及海洋工程學系,2016。 https://hdl.handle.net/11296/8umgj4 [41] S. Jee, J. Moon, J. Kim, J. Son and B. Kim, “Switching behavior of Class-E power amplifier and its operation above maximum frequency,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 89-98, Jan. 2012. [42] P. Saad, C. Fager, H. Cao, H. Zirath and K. Andersson, “Design of a highly efficient 2-4 GHz octave bandwidth GaN-HEMT power amplifier,” IEEE Trans. Microwave Theory Tech., vol. 69, no. 7, pp. 1677-1685, July 2010. [43] A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1983. [44] H. Vandeven, ‘‘Family of spectral filters for discontinuous problems,’’ J. Sci. Comput., vol. 6, no. 2, pp. 159–192, Jun. 1991. [45] D. Gottlieb, C. W. Shu, A. Solomonoff, and H. Vandeven, ‘‘On the Gibbs phenomenon I: Recovering exponential accuracy from the Fourier partial sum of a non-periodic analytic function,’’ J. Comput. Appl. Math., vol. 43, nos. 1–2, pp. 81–98 Nov. 1991. [46] D. Gottlieb and C.-W. Shu, ‘‘On the Gibbs phenomenon and its resolution,’’ SIAM Rev., vol. 39, no. 4, pp. 644–668, Dec. 1997. [47] B. D. Shizgal and J.-H. Jung, ‘‘Towards the resolution of the Gibbs phenomena,’’ J. Sci. Comput., vol. 161, no. 1, pp. 41–65, Dec. 2003. [48] A. Gelb and S. Gottlieb, ‘‘The resolution of the Gibbs phenomenon for Fourier spectral methods,’’ in Advanced in Gibbs Phenomenon, A. J. Jerri, Ed. Potsdam, NY, USA: Sampling, Dec. 2006. [49] Z. Song and D. V. Sarwate, ‘‘The frequency spectrum of pulse width modulated signals,’’ Signal Process., vol. 83, no. 10, pp. 2227–2258, Oct. 2003. [50] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice., Piscataway, NJ, USA: IEEE Press, 2003. [Online]. Available: https://ieeexplore.ieee.org/book/5264450 [51] R. Guinee, ‘‘A novel Fourier series simulation tool for pulsewidth modulation (PWM) in pulsed power systems,’’ in Proc. 22nd IEEE Symp. Fusion Eng., June 2007, pp. 1–4. [52] J. W. Gibbs, ‘‘Fourier series,’’ Nature, vol. 606, p. 200, Apr. 1899. [53] M. T. Pasha, M. F. U. Haque, J. Ahmad, and T. Johansson, ‘‘A modified all digital polar PWM transmitter,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 2, pp. 758–768, Feb. 2018. [54] J. Shi and S. E. Reichenbach, “Image interpolation by two-dimensional parametric cubic convolution,” IEEE Trans. Image Process., vol. 15, no. 7, pp. 1857–1870, Jul. 2006. [55] L. Romani, M. Rossini, and D. Schenone, “Edge detection methods based on RBF interpolation,” J. Comput. Appl. Math., vol. 349, pp. 532–547, Mar. 2019. [56] H. Lakshman, H. Schwarz, and T. Wiegand, “Generalized interpolationbased fractional sample motion compensation,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 3, pp. 455–466, Mar. 2013. [57] A. Guetat, A. Ancel, S. Marchesin, and J.-M. Dischler, “Pre-integrated volume rendering with non-linear gradient interpolation,” IEEE Trans. Vis. Comput. Graphics, vol. 16, no. 6, pp. 1487–1494, Nov. 2010. [58] S. Lee, G. Jounghyun Kim, and S. Choi, “Real-time depth-of-field rendering using anisotropically filtered mipmap interpolation,” IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 3, pp. 453–464, May 2009. [59] X. Huang, Y. J. Guo, and J. A. Zhang, “Sample rate conversion using B-Spline interpolation for OFDM based software defined radios,” IEEE Trans. Commun., vol. 60, no. 8, pp. 2113–2122, Aug. 2012. [60] T.-B. Deng, “Discretization-free design of variable fractional-delay FIR digital filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 48, no. 6, pp. 637–644, Jun. 2001. [61] S. Boumaiza, J. Li, M. Jaidane-Saidane, and F. M. Ghannouchi, “Adaptive digital/RF predistortion using a nonuniform LUT indexing function with built-in dependence on the amplifier nonlinearity,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 12, pp. 2670–2677, Dec. 2004. [62] K.-F. Liang, J.-H. Chen, and Y.-J.-E. Chen, “A quadratic-interpolated LUT-based digital predistortion technique for cellular power amplifiers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 3, pp. 133–137, Mar. 2014. [63] A. Molina, K. Rajamani, and K. Azadet, “Concurrent dual-band digital predistortion using 2-D lookup tables with bilinear interpolation and extrapolation: Direct least squares coefficient adaptation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 4, pp. 1381–1393, Apr. 2017. [64] A. Molina, K. Rajamani, and K. Azadet, “Digital predistortion using lookup tables with linear interpolation and extrapolation: Direct least squares coefficient adaptation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 3, pp. 980–987, Mar. 2017. [65] Q. A. Pham, D. López-Bueno, T. Wang, G. Montoro, and P. L. Gilabert, “Partial least squares identification of multi look-up table digital predistorters for concurrent dual-band envelope tracking power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5143–5150, Dec. 2018. [66] J. Ren, “Digital predistorter for short-wave power amplifier with improving index accuracy of lookup table based on FPGA,” IEEE Access, vol. 7, pp. 182881–182885, Dec. 2019. [67] R. W. Schafer and L. R. Rabiner, “A digital signal processing approach to interpolation,” Proc. IEEE, vol. 61, no. 6, pp. 692–702, Jun. 1973. [68] H. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust., Speech, Signal Process., vol. 26, no. 6, pp. 508–517, Dec. 1978. [69] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing. I. Theory,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 821–833, Feb. 1993. [70] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing. II. Efficiency design and applications,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 834–848, Feb. 1993. [71] L. Kai-Yu, W. Wen-Dong, Z. Kai-Wen, L. Wen-Bo, and X. Gui-Li, “The application of B-spline based interpolation in real-time image enlarging processing,” in Proc. 2nd Int. Conf. Syst. Informat. (ICSAI), Shanghai, China, Nov. 2014, pp. 823–827. [72] S. Abbas, M. Irshad, and M. Z. Hussain, “Adaptive image interpolation technique based on cubic trigonometric B-spline representation,” IET Image Process., vol. 12, no. 5, pp. 769–777, May 2018. [73] H. K. Kwan and A. Jiang, “FIR, allpass, and IIR variable fractional delay digital filter design,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 2064–2074, Sep. 2009. [74] S. A. Dyer and J. S. Dyer, “Cubic-spline interpolation. 1,” IEEE Instrum. Meas. Mag., vol. 4, no. 1, pp. 44–46, Mar. 2001. [75] J. M. de Carvalho and J. V. Hanson, “Real-time interpolation with cubic splines and polyphase networks,” Can. Electr. Eng. J., vol. 11, no. 2, pp. 64–72, Apr. 1986. [76] J. Vesma and T. Saramaki, “Interpolation filters with arbitrary frequency response for all-digital receivers,” in Proc. IEEE Int. Symp. Circuits Syst., Atlanta, GA, USA, May 1996, pp. 568–571 [77] H. Ridha, J. Vesma, T. Saramaki, and M. Renfors, “Derivative approximations for sampled signals based on polynomial interpolation,” in Proc. 13th Int. Conf. Digit. Signal Process., Santorini, Greece, July 1997, pp. 939–942. [78] J. Vesma, “A frequency-domain approach to polynomial-based interpolation and the farrow structure,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 3, pp. 206–209, Mar. 2000. [79] J. Vesma and T. Saramaki, “Polynomial-based interpolation Filters— Part I: Filter synthesis,” Circuits, Syst. Signal Process., vol. 26, no. 2, pp. 115–146, Apr. 2007. [80] T. Baran, D. Wei, and A. V. Oppenheim, “Linear programming algorithms for sparse filter design,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1605–1617, Mar. 2010. [81] Y. Ma, Y. Yamao, Y. Akaiwa, and C. Yu, “FPGA implementation of adaptive digital predistorter with fast convergence rate and low complexity for multi-channel transmitters,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3961–3973, Nov. 2013. [82] Q. A. Pham, G. Montoro, D. López-Bueno, and P. L. Gilabert, “Dynamic selection and estimation of the digital predistorter parameters for power amplifier linearization,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 3996–4004, Oct. 2019. [83] C. D. Presti, D. F. Kimball, and P. M. Asbeck, “Closed-loop digital predistortion system with fast real-time adaptation applied to a handset WCDMA PA module,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 604–618, Mar. 2012. [84] J. Kral, T. Gotthans, and M. Harvanek, “Analytical method of fractional sample period synchronisation for digital predistortion systems,” in Proc. 27th Int. Conf. Radioelektronika (RADIOELEKTRONIKA), Apr. 2017, pp. 1–5. [85] S. Traverso and J.-Y. Bernier, “Low complexity time synchronization based on digital predistortion coefficients,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 240–242, Mar. 2019. [86] C. W. Farrow, “A continuously variable digital delay element,” in Proc. IEEE . Int. Symp. Circuits Syst., vol. 3, Espoo, Finland, June 1988, pp. 2641–2645. [87] T.-B. Deng, S. Chivapreecha, and K. Dejhan, “Bi-minimax design of even-order variable fractional-delay FIR digital filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 1766–1774, Aug. 2012 [88] L. L. Schumaker, Spline Functions: Basic Theory. New York, NY, USA: Wiley, 1981. [89] M. Unser, A. Aldroubi, and M. Eden, “Fast B-spline transforms for continuous image representation and interpolation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 3, pp. 277–285, Mar. 1991. [90] J. T. Olkkonen and H. Olkkonen, “Fractional delay filter based on the B-spline transform,” IEEE Signal Process. Lett., vol. 14, no. 2, pp. 97–100, Feb. 2007. [91] J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 9, pp. 2778–2789, Sep. 2016. [92] K. Hausmair, P. Singerl, and C. Vogel, “ Multiplierless implementation of an aliasing-free digital pulsewidth modulator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 9, pp. 592-596, Sep. 2013. [93] W. Li, E. Guillena, G. Montoro, and P. Gilabert, “FPGA implmentation of memory-baed digital predistorters with high-level synthesis,” in 2021 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), San Diego, USA, Mar. 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80542 | - |
| dc.description.abstract | 在無線傳輸系統中,效率一直是系統設計考量中最重要的因素之一,而在其中所佔功耗最大的功率放大器就成為了整個系統中最關鍵的原件。隨著高速傳輸的需求日益上升,新型的傳輸標準定義了更高的傳輸頻寬、更嚴峻的線性度要求及更高的峰均功率比,因而增加了無線傳輸機的設計難度。為了設計符合新型傳輸標準的傳輸機,本論文採用了擁有高效率與高線性度之特性的脈衝寬度調變之極座標架構。本論文的目標為針對數位前端以及射頻前端進行效率的優化,使提出的脈衝寬度調變之極座標架構能滿足第五代行動通訊之需求。 首先,本論文針對脈衝寬度調變之極座標架構的線性度設計了一寬頻功率放大器。藉由模擬以及量測,可成功驗證寬帶功率放大器可有效降低脈衝寬度調變之極座標系統在非線性放大時所遭受之失真。 接著,針對脈衝寬度調變的演算法,本論文進行了探討以及分析。舊有的脈衝寬度調變計算會使輸出訊號擁有抖動,此等抖動會增加切換功率放大器之非理想性,因而遭受更多的非線性放大。為了減緩此現象,本論文提出了新的脈衝寬度調變演算法,可有效的提升傅立葉級數在頻域的收斂性,從而抑制訊號在時域的抖動。利用新型的演算法,脈衝寬度調變極座標收發機可在沒有任何線性提升技術下通過嚴峻的20-MHz第五代行動通訊標準之基地台線性度要求。 接著,本論文針對內插法提出新的演算法。在新提出的演算法中,能在低複雜度的前提下擁有良好的頻率響應,並且能支援大多數無線通訊中所適用的頻寬。經由量測結果,它能適用於相當低的過取樣率,並在內插過程中有效抑制失真。不僅如此,本論文利用提出的內插法實作出了實時的脈衝寬度調變極座標系統,並能有效減少實作時硬體資源之使用,在數位前端達到高效之目標。 最後,本論文之研究將有助於開發實時脈衝寬度調變極座標架構的實現,並且能在提升效率的同時達到良好的線性度。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:08:56Z (GMT). No. of bitstreams: 1 U0001-2610202105055800.pdf: 4898534 bytes, checksum: cba7a2a8413aa1929b3ece302819edc5 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | CONTENTS 誌謝 i 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xvii LIST OF ABBREVIATIONS xix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 2 1.3 Efficient architectures 7 1.4 Pulse-Modulated Polar Transmitter 10 1.5 Research Purpose 12 Chapter 2 Related Work 15 2.1 Conventional PMPT 15 2.2 Aliasing-free Digital PWM of PMPT 16 2.3 Linearity Enhancement of Wideband PMPT 17 2.4 Multi-phase and Multi-level PMPT 17 2.5 Summary 19 Chapter 3 A Broadband PA Design for Highly Linear PMPT 21 3.1 Introduction 21 3.2 Broadband Class-E PA Topology 23 3.2.1 Conventional Class-E PA Design 23 3.2.2 Broadband Class-E PA Design 25 3.2.3 Ladder LPF Broadband Network 27 3.3 Broadband PA Design for PMPT 30 3.4 System Implementation and Measurement Results 34 3.5 Summary 41 Chapter 4 Gibbs-Phenomenon-Reduced Digital PWM for PMPT 43 4.1 Introduction 43 4.2 Non-ideal Characteristics of Gibbs Phenomenon 44 4.3 Gibbs Phenomenon Reduction Filter 48 4.4 System Implementation and Measurement Results 62 4.5 Summary 66 Chapter 5 Efficient Interpolation Method for Wireless Communication System 67 5.1 Introduction 67 5.2 Interpolation Methods and Theory 70 5.2.1 Interpolating Low-Pass Filter 70 5.2.2 Interpolating Polynomials 71 5.3 Proposed Interpolation Method 76 5.4 Computation Complexity 81 5.5 Measurement Results 86 5.6 Efficient Real-Time PMPT System using Proposed Interpolation Method 92 5.6.1 Real-Time PMPT System Overview 92 5.6.2 Real-Time Interpolation Implementation 94 5.6.3 Cross-Correlation for Signal Synchronization 96 5.6.4 System Implementation 97 5.7 Summary 102 Chapter 6 Conclusions 103 Reference 107 | |
| dc.language.iso | en | |
| dc.subject | 內插法 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 極座標發射機 | zh_TW |
| dc.subject | 數位預失真校正技術 | zh_TW |
| dc.subject | 數位脈寬調變技術 | zh_TW |
| dc.subject | 濾波器 | zh_TW |
| dc.subject | power amplifiers | en |
| dc.subject | filter | en |
| dc.subject | digital pulse-width modulation (DPWM) | en |
| dc.subject | digital pre-distortion correction | en |
| dc.subject | polar transmitters | en |
| dc.subject | interpolation | en |
| dc.title | 高效實現應用於無線通訊之高線性度發射機 | zh_TW |
| dc.title | Efficient Implementation of Highly Linear Transmitters for Wireless Communication Applications | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張恆華(Hsin-Tsai Liu),陳怡然(Chih-Yang Tseng),楊濠瞬,余帝穀 | |
| dc.subject.keyword | 功率放大器,極座標發射機,數位預失真校正技術,數位脈寬調變技術,濾波器,內插法, | zh_TW |
| dc.subject.keyword | power amplifiers,polar transmitters,digital pre-distortion correction,digital pulse-width modulation (DPWM),filter,interpolation, | en |
| dc.relation.page | 118 | |
| dc.identifier.doi | 10.6342/NTU202104196 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2610202105055800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
