Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80540
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹長權(Chang-Chuan Chan)
dc.contributor.authorTing-Syuan Huangen
dc.contributor.author黃庭萱zh_TW
dc.date.accessioned2022-11-24T03:08:54Z-
dc.date.available2021-11-05
dc.date.available2022-11-24T03:08:54Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-27
dc.identifier.citationAl-Abadleh, H. A., Lysy, M., Neil, L., Patel, P., Mohammed, W., Khalaf, Y. (2021). Rigorous quantification of statistical significance of the COVID-19 lockdown effect on air quality: The case from ground-based measurements in Ontario, Canada. Journal of Hazardous Materials, 413, 17. doi:10.1016/j.jhazmat.2021.125445 Anh Bui, P. S., Nic Lutsey. (2020). Update on electric vehicle adoption across U.S. cities. Retrieved from https://theicct.org/publications/ev-update-us-cities-aug2020 Apple Inc. (2020). Mobility trends reports. Retrieved from https://covid19.apple.com/mobility Accessed Jul 8, 2021 Berkeley Earth. Real-Time Air Pollution Overview. Retrieved from http://berkeleyearth.org/air-pollution-overview/ Accessed Jul 2, 2021 Boston, M. H. E. I. (2020). A Special Report on Global Exposure to Air Pollution and Its Health Impacts. State of Global Air. Campbell, D. T., Stanley, J. C. (2015). Experimental and quasi-experimental designs for research: Ravenio Books. Chan, C.-c., Chen, C.-h. S. (2020). The Taiwan Model of COVID-19 Control and Its Global Implication. Taiwan Strategists, 6, 1-16. Cole, M. A., Ozgen, C., Strobl, E. (2020). Air Pollution Exposure and Covid-19 in Dutch Municipalities. Environmental Resource Economics, 76(4), 581-610. doi:10.1007/s10640-020-00491-4 Conticini, E., Frediani, B., Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environmental Pollution, 261, 3. doi:10.1016/j.envpol.2020.114465 Cook, T. D., Campbell, D. T., Shadish, W. (2002). Experimental and quasi-experimental designs for generalized causal inference: Houghton Mifflin Boston, MA. Cui, Y., Zhang, Z.-F., Froines, J., Zhao, J., Wang, H., Yu, S.-Z., Detels, R. (2003). Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study. Environmental Health, 2(1), 1-5. Dong, E., Du, H., Gardner, L. J. T. L. i. d. (2020). An interactive web-based dashboard to track COVID-19 in real time. 20(5), 533-534. European Centre for Disease Prevention and Control. (2020). Rapid Risk Assessment: Cluster of pneumonia cases caused by a novel coronavirus, Wuhan, China, 2020. Retrieved from https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-cluster-pneumonia-cases-caused-novel-coronavirus-wuhan#no-link European Commission. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Frontera, A., Cianfanelli, L., Vlachos, K., Landoni, G., Cremona, G. (2020). Severe air pollution links to higher mortality in COVID-19 patients: The 'double-hit' hypothesis. Journal of Infection, 81(2), 255-259. doi:10.1016/j.jinf.2020.05.031 Google LLC. (2020). Google COVID-19 Community Mobility Reports. Retrieved from https://www.google.com/covid19/mobility/ Accessed Jul 8, 2021 Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., . . . Tatlow, H. (2021). A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour, 5(4), 529-+. doi:10.1038/s41562-021-01079-8 Hannah Ritchie, E. M., Lucas Rodés-Guirao, Cameron Appel, Charlie Giattino, Esteban Ortiz-Ospina, Joe Hasell, Bobbie Macdonald, Diana Beltekian and Max Roser. (2020). Coronavirus Pandemic (COVID-19). Our World in Data. Ju, M. J., Oh, J., Choi, Y. H. (2021). Changes in air pollution levels after COVID-19 outbreak in Korea. Science of the Total Environment, 750, 9. doi:10.1016/j.scitotenv.2020.141521 Liu, Q., Harris, J. T., Chiu, L. S., Sun, D. L., Houser, P. R., Yu, M. Z., . . . Yang, C. W. (2021). Spatiotemporal impacts of COVID-19 on air pollution in California, USA. Science of the Total Environment, 750, 9. doi:10.1016/j.scitotenv.2020.141592 Loomis, D., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., . . . Straif, K. J. L. O. (2013). The carcinogenicity of outdoor air pollution. 14(13), 1262. Lynn Jenner, N. (2020). Danger Zone: NASA’s Terra Highlights Aerosols From U.S. Fires – Worst Since the “Big Blowup” of 1910. Retrieved from https://scitechdaily.com/danger-zone-nasas-terra-highlights-aerosols-from-u-s-fires-worst-since-the-big-blowup-of-1910/ Accessed Aug 23, 2021 Mohan, R. (2020). West Coast wildfires reach a grim milestone this week. Retrieved from https://wildhunt.org/2020/10/west-coast-wildfires-reach-a-grim-milestone-this-week.html Accessed Aug 23, 2021 Patel, H., Talbot, N., Salmond, J., Dirks, K., Xie, S. J., Davy, P. (2020). Implications for air quality management of changes in air quality during lockdown in Auckland (New Zealand) in response to the 2020 SARS-CoV-2 epidemic. Science of the Total Environment, 746, 13. doi:10.1016/j.scitotenv.2020.141129 Prüss-Üstün, A., Wolf, J., Corvalán, C., Bos, R., Neira, M. (2016). Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks: World Health Organization. Qualls, N., Levitt, A., Kanade, N., Wright-Jegede, N., Dopson, S., Biggerstaff, M., . . . Reports. (2017). Community mitigation guidelines to prevent pandemic influenza—United States, 2017. 66(1), 1. Rogers, P. (2020). Coronavirus: Bay Area Air Quality is Improving as People Stay Home. The Mercury News. Retrieved from https://www.mercurynews.com/2020/03/23/coronavirus-bay-area-air-quality-improving-as-people-stay-home/ Accessed Aug 23, 2021 Saadat, S., Rawtani, D., Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of the Total Environment, 728, 6. doi:10.1016/j.scitotenv.2020.138870 Schaffer, A. L., Dobbins, T. A., Pearson, S. A. (2021). Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions. Bmc Medical Research Methodology, 21(1), 12. doi:10.1186/s12874-021-01235-8 Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389. Singh, V., Singh, S., Biswal, A., Kesarkar, A. P., Mor, S., Ravindra, K. (2020). Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environmental Pollution, 266, 16. doi:10.1016/j.envpol.2020.115368 Stanaway, J. D., Afshin, A., Gakidou, E., Lim, S. S., Abate, D., Abate, K. H., . . . Abd-Allah, F. J. T. L. (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. 392(10159), 1923-1994. Stratoulias, D., Nuthammachot, N. (2020). Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Science of the Total Environment, 746, 9. doi:10.1016/j.scitotenv.2020.141320 Taiwan CDC. (2020). COVID-19 Introduction. Retrieved from https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A Accessed Aug 22, 2021 Taiwan CDC. (2021). 全國疫情警戒第三級延長至6月28日,相關防疫措施持續執行,嚴守社區防線 [Press release]. Retrieved from https://www.cdc.gov.tw/Category/ListContent/EmXemht4IT-IRAPrAnyG9A?uaid=0SoUcz9h9xq6wfHsBCpV-g Accessed Aug 22, 2021 Taiwan CECC. (2021a). CECC confirms 56 more COVID-19 cases, including 55 indigenous cases and 1 imported case [Press release]. Retrieved from https://www.cdc.gov.tw/En/Bulletin/Detail/xlZGMHZ53MeOTpFVM7ZF3Q?typeid=158 Accessed Aug 22, 2021 Taiwan CECC. (2021b). CECC extends nationwide Level 3 epidemic alert until July 26 to safeguard disease prevention efforts in the community; CECC to partially relax restrictions starting July 13 [Press release]. Retrieved from https://www.cdc.gov.tw/En/Bulletin/Detail/vlmAORqyqEntz1Tr_Ls7DQ?typeid=158 Accessed Aug 22, 2021 Taiwan CECC. (2021c). CECC raises epidemic alert level for Taipei City and New Taipei City to Level 3 and strengthens national restrictions and measures, effective from May 15 to May 28, in response to increasing level of community transmission [Press release]. Retrieved from https://www.cdc.gov.tw/En/Bulletin/Detail/R1K7gSjoYa7Wojk54nW7fg?typeid=158 Accessed Aug 22, 2021 Taiwan CECC. (2021d). CECC raises epidemic warning to Level 2 and implements related restrictions and measures, effective from May 11 to June 8, in response to increased risk of community transmission [Press release]. Retrieved from https://www.cdc.gov.tw/En/Bulletin/Detail/0jMlImCVWTuhO9mfQCd-4g?typeid=158 Accessed Aug 22, 2021 Taiwan CECC. (2021e). CECC raises epidemic warning to Level 3 nationwide from May 19 to May 28; strengthened measures and restrictions introduced across Taiwan to reduce community transmission [Press release]. Retrieved from https://www.cdc.gov.tw/En/Bulletin/Detail/VN_6yeoBTKhRKoSy2d0hJQ?typeid=158 Accessed Aug 22, 2021 Taiwan CECC. (2021f). COVID-19 Epidemic Warning Standards and Guidelines. Retrieved from https://www.cdc.gov.tw/Uploads/Files/cff51b12-5dfd-4953-86bb-f38027a17175.png Accessed Aug 22, 2021 Taiwan EPA. (2018). 空氣品質標準法規. Retrieved from https://airtw.epa.gov.tw/cht/Information/Standard/Rules.aspx Accessed Aug 22, 2021 Taiwan Ministry of Education. (2020). 高級中等以下學校因應武漢肺炎疫情延至2月25日開學 [Press release]. Retrieved from https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8 s=F430DC0E892811A6 Accessed Aug 22, 2021 Taiwan Ministry of Health and Welfare. (2020a). COVID-19疫情期間民眾假期生活防疫指引. Retrieved from https://www.mohw.gov.tw/cp-4633-52991-1.html Accessed Aug 22, 2021 Taiwan Ministry of Health and Welfare. (2020b). Good resource allocation- Crucial Policy for Combating COVID-19. Retrieved from https://covid19.mohw.gov.tw/en/cp-4773-53707-206.html Accessed Aug 22, 2021 Taiwan Ministry of Health and Welfare. (2020c). Timely border control- Crucial Policy for Combating COVID-19. Retrieved from https://covid19.mohw.gov.tw/en/cp-4774-53783-206.html Accessed Aug 22, 2021 Taiwan National Health Insurance Administration. (2020). Enhanced Epidemic Prevention Travel History of High-risk Area Now Available on NHI MediCloud System [Press release]. Retrieved from https://www.nhi.gov.tw/english/News_Content.aspx?n=996D1B4B5DC48343 sms=F0EAFEB716DE7FFA s=55A96DA33CDC9BE5 Accessed Aug 22, 2021 Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. Indagationes mathematicae, 12(85), 173. Thurston, G. D., Kipen, H., Annesi-Maesano, I., Balmes, J., Brook, R. D., Cromar, K., . . . Frampton, M. W. J. E. R. J. (2017). A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. European Respiratory Journal, 49(1). Ugarov, A. J. m. (2020). Inclusive costs of NPI measures for COVID-19 pandemic: three approaches. US EPA. (2016). NAAQS Table. Retrieved from https://www.epa.gov/criteria-air-pollutants/naaqs-table Accessed Aug 22, 2021 Wang, C. J., Ng, C. Y., Brook, R. H. J. J. (2020). Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. 323(14), 1341-1342. WHO. (2006). Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide: World Health Organization. WHO. (2020a). Coronavirus disease 2019 (COVID-19): situation report, 48. Retrieved from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200308-sitrep-48-covid-19.pdf?sfvrsn=16f7ccef_4 Accessed Aug 22, 2021 WHO. (2020b). Naming the coronavirus disease (COVID-19) and the virus that causes it. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it Accessed Aug 21, 2021 WHO. (2020c). Tracking Public Health and Social Measures. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/phsm Accessed Aug 21, 2021 WHO. (2020d). WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Retrieved from https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 Accessed Aug 21, 2021 WHO. (2020e). WHO Director-General's statement on IHR Emergency Committee on Novel Coronavirus (2019-nCoV). Retrieved from https://www.who.int/director-general/speeches/detail/who-director-general-s-statement-on-ihr-emergency-committee-on-novel-coronavirus-(2019-ncov) Accessed Aug 21, 2021 WHO. (2021a). Coronavirus disease (COVID-19): How is it transmitted? Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted Accessed Aug 22, 2021 WHO. (2021b). WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary. WHO Europe. (2019). Noncommunicable diseases and air pollution. Retrieved from https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/news/news/2019/3/noncommunicable-diseases-and-air-pollution Accessed Aug 22, 2021 Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., Dominici, F. (2020). Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Science Advances, 6(45), 6. doi:10.1126/sciadv.abd4049 Yeap, C. (2015, July 14, 2015). The State of the Nation: Rethinking urban transport and cost of high car ownership. Retrieved from https://www.theedgemarkets.com/article/state-nation-rethinking-urban-transport-and-cost-high-car-ownership Accessed Aug 22, 2021
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80540-
dc.description.abstract背景: 自2019年12月,中國武漢爆發新冠肺炎(COVID-19),隨後迅速傳播至全球各地,世界衛生組織於2020年3月11日宣布疫情發展為全球大流行,至今(2021年10月19日)全球已累計約2億4110萬人確診,約490萬人死亡。隨著全球疫情持續嚴峻,在疫苗還未上市的2020年,非藥物介入措施(NPI)已成為各國政府控制疫情的主要手段,如封城、維持社交距離、居家令等影響人類行為模式之管制措施,進而影響各地的空氣品質。本研究嘗試針對更多國家來瞭解新冠肺炎流行期間PM2.5污染的改善狀況,以及我國在2021年5月本土疫情爆發後,提升疫情警戒期間PM2.5的變化情形。 材料與方法: 本研究以牛津大學COVID-19政府反映追蹤資料庫(OxCGRT)公開之全球各國NPI實施等級及嚴格度指標,合併柏克萊地球(Berkeley Earth)資料庫,篩選出分布於45國的160個首都及主要城市,於2017年至2021年6月逐日PM2.5濃度,經過Theil-Sen斜率估計計算趨勢濃度差異百分比,判斷疫情期間社會移動的減少對PM2.5濃度的影響程度。透過中斷性時間序列分析,探討智利聖地牙哥及印度新德里實施強制居家令干預後PM2.5濃度的變化。另外,以環保署中央空氣品質監測站之臺北萬華站、新北板橋站、全臺6個交通測站(永和、三重、大同、中壢、復興、鳳山)及全臺5個工業測站(頭份、線西、麥寮、臺西、前鎮)的PM2.5小時濃度資料,針對臺灣疫情警戒提升至第三級開始前後一個月的PM2.5濃度變化進行時間變異分析。 結果: 透過OxCGRT資料庫的9項NPI等級統計結果顯示,在遏止與關閉類別的8項政策中,取消公開活動(C3)、禁止群聚(C4)及國際旅行限制(C8)的實施較其他5項NPI嚴格,其等級中位數分別為1.38、2.70及2.91。在綜合9項NPI的嚴格度指標,45國平均嚴格度指標四分位數的第一分位(Q1)為47.16、中位數(Q2)為54.56、第三分數(Q3)為59.52。臺灣的平均嚴格度指標為27.85,其中又以實施公共宣導(H1)及邊境管制(C8)兩項較嚴格且天數較長。透過Berkeley Earth資料庫中2017 ~ 2020年的PM2.5濃度資料,以2020年實際觀測的年平均濃與過去三年濃度趨勢下的預測年平均濃度所計算的PM2.5濃度差異百分比,在160個城市中有85個城市是顯著下降的,降幅約為5.6% ~ 54.2%,其中馬來西亞首都吉隆坡是降幅最大的城市,實測濃度(12.12 g/m3)較預測濃度(26.42 g/m3)低54.2%(95% CI: -58.6% ~ -50.3%)。在160個城市中有27個城市是顯著上升的,上升幅度約為5.1% ~ 73.4%,其中美國加州的聖荷西是上升幅度最大的城市,實測濃度(11.30 g/m3)較預測濃度(6.52 g/m3)高73.4%(47.3% ~ 116.1%)。以160個城市的資料分析,PM2.5濃度在NPI平均嚴格度指標介於Q2 ~ Q3及大於Q3兩組的差異分別為 -9.2%(-11.7% ~ -6.1%)及-3.1%(-5.8% ~ -0.3%)。中斷性時間序列分析結果顯示智利聖地牙哥實施強制居家令之干預措施後,PM2.5濃度在干預後的一個月呈現顯著階躍性地下降 6.66 g/m3(-10.38 g/m3 ~ -2.95 g/m3),在干預後至2021年6月的期間則呈現顯著斜率上升0.71 g/m3(0.25 g/m3 ~ 1.17 g/m3)。此外在2021年5月臺灣疫情警戒提升至三級後的一個月,萬華測站之PM2.5濃度相較提升警戒前一個月下降約28.6%,板橋測站下降約30.8%,全臺交通類型測站平均下降約43.8%,以及全臺工業類型測站平均下降約46.7%。 結論與建議: 本研究發現隨著新冠肺炎疫情惡化及政府實施非藥物介入措施的狀況下,觀察到全球160個城市中有過半(55%)城市的PM2.5濃度呈現下降,臺灣於開始實施三級警戒的一個月期間,臺北都會區PM2.5濃度較前一個月下降約30%,交通繁忙地段下降約43%,工業相關排放的下降達到46%。藉由研究顯示人為行為的改變,可以減少PM2.5的排放進而改善空氣品質。美國加州聖荷西PM2.5濃度的上升顯示,氣候變遷對環境中PM2.5污染的影響不容忽視。以本研究的發現可以作為未來透過管制交通及工業相關污染源控制PM2.5污染的參考依據,另外在新冠肺炎疫情流行期間,氣候變遷對空氣污染的影響是值得探討的。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:08:54Z (GMT). No. of bitstreams: 1
U0001-2610202111351100.pdf: 4965819 bytes, checksum: e6639d17ee65d7cd29ee13e4be73b1ce (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 I 致謝 II 中文摘要 III ABSTRACT VI 目錄 IX 圖目錄 XI 表目錄 XIII 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 11 第二章 材料與方法 12 2.1 研究架構 12 2.2 資料來源 13 2.2.1 非藥物介入措施資料庫 13 2.2.2 細懸浮微粒濃度資料庫 23 2.2.3 研究地區 25 2.3 資料處理與統計分析 31 2.3.1 資料處理 31 2.3.2 濃度差異百分比及趨勢濃度差異百分比 32 2.3.3 中斷性時間序列分析 34 第三章 結果 35 3.1 非藥物介入措施的實施 35 3.1.1 全球非藥物介入措施實施概況 35 3.1.2 我國非藥物介入措施實施時間軸 45 3.2 細懸浮微粒平均濃度變化 47 3.2.1 全球首都及主要城市之細懸浮微粒污染變化 47 3.2.2 我國環保署中央監測之細懸浮微粒污染變化 60 3.3 居家令政策之介入對PM2.5的影響 75 第四章 討論 78 4.1 疫情期間全球大城市的PM2.5污染變化 78 4.2 我國PM2.5濃度與人流趨勢的變化 85 4.3 長期空氣污染地區疫情嚴峻 87 4.4 研究限制 89 第五章 結論與建議 90 參考文獻 91 附錄 98
dc.language.isozh-TW
dc.title因應新冠肺炎之非藥物介入措施對大氣細懸浮微粒污染之影響zh_TW
dc.titleThe impact of COVID-19 non-pharmaceutical interventions on ambient levels of fine particulate matteren
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭尊仁(Hsin-Tsai Liu),蘇大成(Chih-Yang Tseng),袁子軒
dc.subject.keyword新冠肺炎,非藥物介入措施,空氣污染,細懸浮微粒,zh_TW
dc.subject.keywordCOVID-19,SARS-CoV-2,non-pharmaceutical intervention,fine particulate matter,en
dc.relation.page103
dc.identifier.doi10.6342/NTU202104212
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-27
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2610202111351100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved