請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80533完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳賢燁(Hsien-Yeh Chen) | |
| dc.contributor.author | Yu-Chi Tu | en |
| dc.contributor.author | 杜育綺 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:08:44Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2022-11-24T03:08:44Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-31 | |
| dc.identifier.citation | (1) Ito, Y.; Tada, S. Bio-orthogonal and combinatorial approaches for the design of binding growth factors. Biomaterials 2013, 34 (31), 7565-74, DOI: 10.1016/j.biomaterials.2013.06.037. (2) Fu, R. H.; Wang, Y. C.; Liu, S. P.; Huang, C. M.; Kang, Y. H.; Tsai, C. H.; Shyu, W. C.; Lin, S. Z. Differentiation of stem cells: strategies for modifying surface biomaterials. Cell Transplant 2011, 20 (1), 37-47, DOI: 10.3727/096368910X532756. (3) Masters, K. S. Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol Biosci 2011, 11 (9), 1149-63, DOI: 10.1002/mabi.201000505. (4) Kusamori, K.; Takayama, Y.; Nishikawa, M. Stable Surface Modification of Mesenchymal Stem Cells Using the Avidin-Biotin Complex Technique. Curr Protoc Stem Cell Biol 2018, 47 (1), e66, DOI: 10.1002/cpsc.66. (5) Sengupta, P.; Prasad, B. L. V. Surface Modification of Polymers for Tissue Engineering Applications: Arginine Acts as a Sticky Protein Equivalent for Viable Cell Accommodation. ACS Omega 2018, 3 (4), 4242-4251, DOI: 10.1021/acsomega.8b00215. (6) Mahla, R. S. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol 2016, 2016, 6940283, DOI: 10.1155/2016/6940283. (7) Gimble, J. M.; Katz, A. J.; Bunnell, B. A. Adipose-derived stem cells for regenerative medicine. Circ Res 2007, 100 (9), 1249-60, DOI: 10.1161/01.RES.0000265074.83288.09. (8) Dellatore, S. M. G., A. S.; Miller, W. M. Mimicking Stem Cell Niches to Increase Stem Cell Expansion. Curr. Opin, Biotechnol. 2008, 19 (5), 7. (9) Lu, Z. R.-E., S. I.; Wang, G.; Zreiqat ,H. Bone Biomimetic Microenvironment Induces Osteogenic Differentiation of Adipose Tissue-derived Mesenchymal Stem Cells. Nanomedicine 2012, 8 (4), 9. (10) Donnelly, H. S.-S., M.; Dalby, M. J. Designing Stem Cell Niches for Differentiation and Self-renewal. J. R. Soc. Interface 2018, 15. (11) J., C. H.-Y. a. L. Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir 2010, 27 (1), 15. (12) Sun, H.-Y.; Fang, C.-Y.; Lin, T.-J.; Chen, Y.-C.; Lin, C.-Y.; Ho, H.-Y.; Chen, M. H. C.; Yu, J.; Lee, D.-J.; Chang, C.-H.; Chen, H.-Y. Thiol-Reactive Parylenes as a Robust Coating for Biomedical Materials. Advanced Materials Interfaces 2014, 1 (6), DOI: 10.1002/admi.201400093. (13) Tsai, M.-Y. L., C.-Y.; Huang, C.-H.; Gu, J.-A.; Huang,S.-T; Yu, J.; Chen, H.-Y. Vapor-based Synthesis of Maleimide-functionalized Coating for Biointerface Engineering, . Chem. Commun 2012, 48 (89), 4. (14) Lahann, J. a. L., R. Novel Poly(p-xylylenes): Thin Films with Tailored Chemical and Optical Properties. Macromolecules 2002, 35 (11), 7. (15) Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 1959, 155 (2), 206-222, DOI: 10.1007/BF01337937. (16) Wu, C.-Y.; Liu, H.-Y.; Huang, C.-W.; Yeh, S.-Y.; Cheng, N.-C.; Ding, S.-T.; Chen, H.-Y. Synergistically Controlled Stemness and Multilineage Differentiation Capacity of Stem Cells on Multifunctional Biointerfaces. Advanced Materials Interfaces 2017, 4 (11), 1700243, DOI: 10.1002/admi.201700243. (17) Zheng, C. H.; Levenston, M. E. Fact versus artifact: Avoiding erroneous estimates of sulfated glycosaminoglycan content using the dimethylmethylene blue colorimetric assay for tissue-engineered constructs. European Cells and Materials 2015, 29, 224-236, DOI: 10.22203/eCM.v029a17. (18) Kraus, N. A.; Ehebauer, F.; Zapp, B.; Rudolphi, B.; Kraus, B. J.; Kraus, D. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte 2016, 5 (4), 351-358, DOI: 10.1080/21623945.2016.1240137. (19) Zuk, P. A. Z., M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H; Alfonso, Z.C; Fraser, J. K.; Benhaim, P.; Hendrick, M. H., . Human Adipose Tissue is a Source of Multipotent Stem Cells. Mol. Biol. Cell 2002, 13 (12), 7. (20) Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25 (4), 402-8, DOI: 10.1006/meth.2001.1262. (21) Tsai, M.-Y.; Lin, C.-Y.; Huang, C.-H.; Gu, J.-A.; Huang, S.-T.; Yu, J.; Chen, H.-Y. Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chemical Communications 2012, 48 (89), 10969-10971. (22) Hoyle, C. E. a. B., C. N. Thiol-ene click chemistry. Angew Chem Int Ed Engl. 2010, 49 (9), 34. (23) Brewer, C. F. a. R., J. P. Evidence for possible nonspecific reactions between N-ethylmaleimide and proteins. Analytical Biochemistry 1967, 18 (2), 8. (24) Chen, Y. C.; Sun, T. P.; Su, C. T.; Wu, J. T.; Lin, C. Y.; Yu, J.; Huang, C. W.; Chen, C. J.; Chen, H. Y. Sustained immobilization of growth factor proteins based on functionalized parylenes. ACS Appl Mater Interfaces 2014, 6 (24), 21906-10, DOI: 10.1021/am5071865. (25) Wu, J.-T.; Sun, T.-P.; Huang, C.-W.; Su, C.-T.; Wu, C.-Y.; Yeh, S.-Y.; Yang, D.-K.; Chen, L.-C.; Ding, S.-T.; Chen, H.-Y. Tunable coverage of immobilized biomolecules for biofunctional interface design. Biomaterials Science 2015, 3 (9), 1266-1269, DOI: 10.1039/C5BM00127G. (26) Della Ventura, B.; Sakac, N.; Funari, R.; Velotta, R. Flexible immunosensor for the detection of salivary alpha-amylase in body fluids. Talanta 2017, 174, 52-58, DOI: 10.1016/j.talanta.2017.05.075. (27) Shi, Y.; Massagué, J. Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell 2003, 113 (6), 685-700, DOI: https://doi.org/10.1016/S0092-8674(03)00432-X. (28) Mueller, T. D. Chapter One - Mechanisms of BMP–Receptor Interaction and Activation. In Vitamins Hormones; Litwack, G., Ed.; Academic Press: 2015; pp 1-61. (29) Shea C. M.; Edgar, C. M. E., T. A.; Gerstenfeld, L. C. BMP Treatment of C3H10T1/2 Mesenchymal Stem Cells Induces Both Chondrogenesis and Osteogenesis. Journal of Cellular Biochemistry 2003, 90 (6), 6. (30) Lee, S. Y.; Lee, J. H.; Kim, J. Y.; Bae, Y. C.; Suh, K. T.; Jung, J. S. BMP2 increases adipogenic differentiation in the presence of dexamethasone, which is inhibited by the treatment of TNF-alpha in human adipose tissue-derived stromal cells. Cell Physiol Biochem 2014, 34 (4), 1339-50, DOI: 10.1159/000366341. (31) Sottile, V.; Seuwen, S. Bone morphogenetic protein-2 stimulates adipogenic di¡erentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS Letters 2000, 475, 201-204. (32) Vanhatupa, S.; Ojansivu, M.; Autio, R.; Juntunen, M.; Miettinen, S. Bone Morphogenetic Protein-2 Induces Donor-Dependent Osteogenic and Adipogenic Differentiation in Human Adipose Stem Cells. Stem Cells Transl Med 2015, 4 (12), 1391-402, DOI: 10.5966/sctm.2015-0042. (33) Chiou, M. X., Y.; Longaker, M. T. Mitogenic and Chondrogenic Effects of Fibroblast Growth Factor-2 in Adipose Derived Mesenchymal Cells. Biochem. Biophys. Res. Commun 2006, 343 (2), 9. (34) Hankemeier, S. K., M.; Zeichen, J.; Jagodzinski, M.; Barkhausen, T.; Bosch, U.; Krettek, C.; Van Griensven, M. Modulation of Proliferation and Differentiation of Human Bone Marrow Stromal Cells by Fibroblast Growth Factor 2: Potential Implication for Tissue Engineering of Tendons and Ligaments. Tissue Eng. 2005, 11 (1-2), 9. (35) Kakudo, N. S., A.; Kusumoto, K. Fibroblast Growth Factor-2 Stimulates Adipogenic Differentiation of Human Adipose-derived Stem Cell. Biochemical and Biophysical Research Communications 2007, 395 (2), 6. (36) Merrell, A. J.; Stanger, B. Z. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 2016, 17 (7), 413-25, DOI: 10.1038/nrm.2016.24. (37) Chiacchiera, F.; Morey, L.; Mozzetta, C. Editorial: Epigenetic Regulation of Stem Cell Plasticity in Tissue Regeneration and Disease. Front Cell Dev Biol 2020, 8, 82, DOI: 10.3389/fcell.2020.00082. (38) Hernigou, P.; Poignard, A.; Beaujean, F.; Rouard, H. Percutaneous Autologous Bone-Marrow Grafting for Nonunions: Influence of the Number and Concentration of Progenitor Cells. JBJS 2005, 87 (7), 1430-1437, DOI: 10.2106/jbjs.D.02215. (39) Giuliani, N.; Lisignoli, G.; Magnani, M.; Racano, C.; Bolzoni, M.; Dalla Palma, B.; Spolzino, A.; Manferdini, C.; Abati, C.; Toscani, D.; Facchini, A.; Aversa, F. New Insights into Osteogenic and Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells and Their Potential Clinical Applications for Bone Regeneration in Pediatric Orthopaedics. Stem Cells International 2013, 2013, 312501, DOI: 10.1155/2013/312501. (40) Chen, H.; Wang, H.; Li, B.; Feng, B.; He, X.; Fu, W.; Yuan, H.; Xu, Z. Enhanced chondrogenic differentiation of human mesenchymal stems cells on citric acid-modified chitosan hydrogel for tracheal cartilage regeneration applications. RSC Advances 2018, 8 (30), 16910-16917, DOI: 10.1039/C8RA00808F. (41) Tan, S. S.; Ng, Z. Y.; Zhan, W.; Rozen, W. Role of Adipose-derived Stem Cells in Fat Grafting and Reconstructive Surgery. J Cutan Aesthet Surg 2016, 9 (3), 152-156, DOI: 10.4103/0974-2077.191672. (42) Yoshimura, K.; Sato, K.; Aoi, N.; Kurita, M.; Inoue, K.; Suga, H.; Eto, H.; Kato, H.; Hirohi, T.; Harii, K. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 2008, 34 (9), 1178-85, DOI: 10.1111/j.1524-4725.2008.34256.x. (43) Yoshimura, K.; Sato, K.; Aoi, N.; Kurita, M.; Hirohi, T.; Harii, K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 2008, 32 (1), 48-57, DOI: 10.1007/s00266-007-9019-4. (44) GM, C. The Cell: A Molecular Approach. 2nd edition, Sinauer Associates: Sunderland (MA), 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80533 | - |
| dc.description.abstract | 生醫材料的改質需要結合物理、化學和生物線索,因應現代再生醫學,以操縱幹細胞生長。這些複雜的修飾仍然是一個挑戰,包括基底物限制、生物相容性以及幹細胞活性的通用。在本研究中,使用功能化的聚對二甲苯(PPX),以化學氣相沉積法進行表面改質,用於幹細胞的培養。該塗層提供了骨塑型蛋白(BMP-2)和纖維細胞生長因子(FGF-2)的共價結合能力,並且由於特定的活性,改質的表面使直接幹細胞分化和控制增殖成為可能。生長因子與馬來酰亞胺修飾的表面連接,偶聯反應在溫和條件下以高靈敏度且快速的動力學進行。 BMP-2 的結合密度約為 140 ng·cm-2,FGF-2 的結合密度約為 155 ng·cm-2。主導人類脂肪幹細胞(hADSCs)的活性是通過修飾表面來促進hADSC分化能力和增殖率。本研究中的塗層系統表現出生物相容性、不受基材影響的一致性和穩定性,並且它可以提供有效和多樣的介面平台,進一步用於生物醫學應用。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:08:44Z (GMT). No. of bitstreams: 1 U0001-2610202113404000.pdf: 2317476 bytes, checksum: 0f8eb618829872af013d24f15ebb21a8 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "摘要 i Abstract ii 目 錄 iii 圖目錄 v 表目錄 vi 第一章 簡介 1 第二章 材料和方法 2 2.1 CVD表面改質與基底材料 2 2.1.1 化學氣相沉積(CVD)之簡介 2 2.1.2 化學氣相沉積(CVD)之流程 3 2.1.3 功能性聚對二甲苯高分子 4 2.1.4 親疏水材料與多孔材料 5 2.1.5基底材料選定 6 2.2生長因子固定 6 2.3表面性質測定 7 2.4 微接觸印刷(µCP, Micro Contact Printing)和免疫螢光 8 2.5 誘導細胞活動 8 2.6 硬骨形成 9 2.7軟骨形成 9 2.8 脂肪生成 9 2.9擴散活動 10 2.10 基因譜 10 2.11 統計分析 11 第三章 結果 14 第四章 結論 28 參考文獻 29 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 生醫材料 | zh_TW |
| dc.subject | Biomaterials | en |
| dc.subject | Modification | en |
| dc.title | 利用氣相沉積技術製備聚對二甲苯奈米級鍍膜及其在操控幹細胞生長以及分化之應用 | zh_TW |
| dc.title | Vapor-Deposited Nanometer-Thick Functionalized Poly-p-xylylene Coatings for Guiding Stem Cell Differentiation and Proliferation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游佳欣(Hsin-Tsai Liu),陳柏均(Chih-Yang Tseng) | |
| dc.subject.keyword | 生醫材料,表面改質, | zh_TW |
| dc.subject.keyword | Modification,Biomaterials, | en |
| dc.relation.page | 34 | |
| dc.identifier.doi | 10.6342/NTU202104224 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2610202113404000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
