Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 運動設施與健康管理碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80522
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢桂玉(Kuei-Yu Chien)
dc.contributor.authorTing-Yi Yangen
dc.contributor.author楊婷貽zh_TW
dc.date.accessioned2022-11-24T03:08:28Z-
dc.date.available2021-11-04
dc.date.available2022-11-24T03:08:28Z-
dc.date.copyright2021-11-04
dc.date.issued2021
dc.date.submitted2021-10-28
dc.identifier.citation1. Gordon BJ, Eddie J, Johnson JE, Korol O, Kruse HD, Brandon P, James WA, Womble M, Kelly YA. Anatomy physiology. Houston: OpenStax College, Rice University, 2017. 2. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. American Journal of Physiology-Endocrinology And Metabolism 262: E763-778, 1992. 3. Clark H. NCDs: a challenge to sustainable human development. The Lancet 381: 510-511, 2013. 4. Mensah GA, Roth GA, and Fuster V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. Journal of the American College of Cardiology 74: 2529-2532, 2019. 5. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G,… Murray C. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. Journal of the American College of Cardiology 70: 1-25, 2017. 6. Kapoor E, Collazo-Clavell ML, and Faubion SS. Weight Gain in Women at Midlife: A Concise Review of the Pathophysiology and Strategies for Management. In Mayo Clinic Proceedings 92: 1552-1558, 2017. 7. Leeners B, Geary N, Tobler PN, and Asarian L. Ovarian hormones and obesity. Human reproduction update 23: 300-321, 2017. 8. Subhashri S, Pal P, Papa D, Nanda N, Pal GK, and Packirisamy RM. Assessment of heart rate variability in early post-menopausal women. International Journal of Clinical and Experimental Physiology 6: 11-14, 2019. 9. Zaydun G, Tomiyama H, Hashimoto H, Arai T, Koji Y, Yambe M, Motobe K, Hori S, and Yamashina A. Menopause is an independent factor augmenting the age-related increase in arterial stiffness in the early postmenopausal phase. Atherosclerosis 184: 137-142, 2006. 10. Torjesen A, Cooper LL, Rong J, Larson MG, Hamburg NM, Levy D, Benjamin EJ, Vasan RS, and Mitchell GF. Relations of Arterial Stiffness With Postural Change in Mean Arterial Pressure in Middle-Aged Adults. Hypertension 69: 685-690, 2017. 11. Gunarathne A, Patel JV, Gammon B, Hughes EA, and Lip GY. Impact of mean arterial blood pressure on higher arterial stiffness indices in South Asians compared to white Europeans. Journal of hypertension 26: 1420-1426, 2008. 12. Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, Froelicher VF, Leon AS, Piña IL, Rodney R, Simons-Morton DA, Williams MA, and Bazzarre T. Exercise Standards for Testing and Training. Circulation 104: 1694-1740, 2001. 13. Franklin BA, Whaley MH, Howley ET, Balady GJ. ACSM's guidelines for exercise testing and prescription. Philadelphia: Lippincott Williams Wilkins, 2000. 14. Asikainen TM, Kukkonen-Harjula K, and Miilunpalo S. Exercise for health for early postmenopausal women: a systematic review of randomised controlled trials. Sports medicine 34: 753-778, 2004. 15. Maillard F, Pereira B, and Boisseau N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Medicine 48: 269-288, 2018. 16. Sjöblom S, Suuronen J, Rikkonen T, Honkanen R, Kröger H, and Sirola J. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 75: 175-180, 2013. 17. Sosner P, Gayda M, Dupuy O, Garzon M, Lemasson C, Gremeaux V, Lalonge J, Gonzales M, Hayami D, Juneau M, Nigam A, and Bosquet L. Ambulatory blood pressure reduction following high-intensity interval exercise performed in water or dryland condition. Journal of the American Society of Hypertension 10: 420-428, 2016. 18. Ngomane AY, Fernandes B, Guimaraes GV, and Ciolac EG. Hypotensive Effect of Heated Water-based Exercise in Older Individuals with Hypertension. International journal of sports medicine 40: 283-291, 2019. 19. Jabbour G, and Iancu HD. Comparison of performance and health indicators between perimenopausal and postmenopausal obese women: the effect of high-intensity interval training (HIIT). Menopause 2020. 20. Bahmanbeglou NA, Ebrahim K, Maleki M, Nikpajouh A, and Ahmadizad S. Short-Duration High-Intensity Interval Exercise Training Is More Effective Than Long Duration for Blood Pressure and Arterial Stiffness But Not for Inflammatory Markers and Lipid Profiles in Patients With Stage 1 Hypertension. Journal of Cardiopulmonary Rehabilitation and Prevention 39: 50-55, 2019. 21. Kim HK, Hwang CL, Yoo JK, Hwang MH, Handberg EM, Petersen JW, Nichols WW, Sofianos S, and Christou DD. All-Extremity Exercise Training Improves Arterial Stiffness in Older Adults. Medicine and science in sports and exercise 49: 1404-1411, 2017. 22. Ruangthai R, Phoemsapthawee J, Makaje N, and Phimphaphorn P. Comparative effects of water- and land-based combined exercise training in hypertensive older adults. Archives of Gerontology and Geriatrics 90: 104164, 2020. 23. Sherman S. Defining the menopausal transition. The American journal of medicine 118 Suppl 12B: 3-7, 2005. 24. Stocco C. Tissue physiology and pathology of aromatase. Steroids 77: 27-35, 2012. 25. Mendelsohn ME, and Karas RH. The protective effects of estrogen on the cardiovascular system. New England journal of medicine 340: 1801-1811, 1999. 26. Xing D, Nozell S, Chen YF, Hage F, and Oparil S. Estrogen and mechanisms of vascular protection. Arteriosclerosis, thrombosis, and vascular biology 29: 289-295, 2009. 27. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, and Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biology of sex differences 8: 33, 2017. 28. Reckelhoff JF, and Fortepiani LA. Novel mechanisms responsible for postmenopausal hypertension. Hypertension 43: 918-923, 2004. 29. Tikhonoff V, Casiglia E, Gasparotti F, and Spinella P. The uncertain effect of menopause on blood pressure. Journal of human hypertension 33: 421-428, 2019. 30. De Kat AC, Dam V, Onland-Moret NC, Eijkemans MJ, Broekmans FJ, and Van der Schouw YT. Unraveling the associations of age and menopause with cardiovascular risk factors in a large population-based study. BMC Med 15: 2, 2017. 31. Barrett-Connor E, and Bush TL. Estrogen and Coronary Heart Disease in Women. The Journal of the American Medical Association 265: 1861-1867, 1991. 32. Matthews KA, Crawford SL, Chae CU, Everson-Rose SA, Sowers MF, Sternfeld B, and Sutton-Tyrrell K. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? Journal of the American College of Cardiology 54: 2366-2373, 2009. 33. El Khoudary SR. HDL and the menopause. Current Opinion in Lipidology 28: 328-336, 2017. 34. Mahmood SS, Levy D, Vasan RS, and Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. The Lancet 383: 999-1008, 2014. 35. Kimura T, Matsumoto T, Akiyoshi M, Owa Y, Miyasaka N, Aso T, and Moritani T. Body fat and blood lipids in postmenopausal women are related to resting autonomic nervous system activity. European journal of applied physiology 97: 542-547, 2006. 36. Chaudhuri A, Saha S, and Borade N. Relationship of gender and lipid profile with cardiac parasympathetic reactivity. Journal of Basic and Clinical Reproductive Sciences 1: 2012. 37. Moodithaya SS, and Avadhany ST. Comparison of cardiac autonomic activity between pre and post menopausal women using heart rate variability. Indian Journal of Physiology and Pharmacology 53: 227-234, 2009. 38. DuPont JJ, Kenney RM, Patel AR, and Jaffe IZ. Sex differences in mechanisms of arterial stiffness. British journal of pharmacology 176: 4208-4225, 2019. 39. Ross R. Atherosclerosis--an inflammatory disease. New England journal of medicine 340: 115-126, 1999. 40. Ridker PM, Hennekens CH, Buring JE, and Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. New England journal of medicine 342: 836-843, 2000. 41. Xu Y, Arenas IA, Armstrong SJ, Plahta WC, Xu H, and Davidge ST. Estrogen improves cardiac recovery after ischemia/reperfusion by decreasing tumor necrosis factor-alpha. Cardiovascular research 69: 836-844, 2006. 42. Zhang JM, and An J. Cytokines, inflammation, and pain. International anesthesiology clinics 45: 27-37, 2007. 43. Regnault V, Thomas F, Safar ME, Osborne-Pellegrin M, Khalil RA, Pannier B, and Lacolley P. Sex difference in cardiovascular risk: role of pulse pressure amplification. Journal of the American College of Cardiology 59: 1771-1777, 2012. 44. Sesso HD, Stampfer MJ, Rosner B, Hennekens CH, Gaziano JM, Manson JE, and Glynn RJ. Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in Men. Hypertension 36: 801-807, 2000. 45. Sherwood L. Human Physiology: From Cells to Systems. Australia: Cengage Learning, 2016. 46. McCraty R, and Shaffer F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Global advances in health and medicine 4: 46-61, 2015. 47. Benetos A, Waeber B, Izzo J, Mitchell G, Resnick L, Asmar R, and Safar M. Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications. American Journal of Hypertension 15: 1101-1108, 2002. 48. Duprez DA, and Cohn JN. Arterial stiffness as a risk factor for coronary atherosclerosis. Current atherosclerosis reports 9: 139-144, 2007. 49. Shimazu H, Kawarada A, Ito H, and Yamakoshi K. Electric impedance cuff for the indirect measurement of blood pressure and volume elastic modulus in human limb and finger arteries. Medical and Biological Engineering and Computing 27: 477-483, 1989. 50. Sato H, Hayashi J, Harashima K, Shimazu H, and Kitamoto K. A population-based study of arterial stiffness index in relation to cardiovascular risk factors. Journal of atherosclerosis and thrombosis 12: 175-180, 2005. 51. Altunkan S, Oztas K, and Seref B. Arterial stiffness index as a screening test for cardiovascular risk: a comparative study between coronary artery calcification determined by electron beam tomography and arterial stiffness index determined by a VitalVision device in asymptomatic subjects. European Journal of Internal Medicine 16: 580-584, 2005. 52. Kaibe M, Ohishi M, Komai N, Ito N, Katsuya T, Rakugi H, and Ogihara T. Arterial stiffness index: A new evaluation for arterial stiffness in elderly patients with essential hypertension. Geriatrics Gerontology International 2: 199-205, 2002. 53. Park S-M, Seo H-S, Lim H-E, Shin S-H, Park C-G, Oh D-J, and Ro Y-M. Assessment of Arterial Stiffness Index as a Clinical Parameter for Atherosclerotic Coronary Artery Disease. Circulation Journal 69: 1218-1222, 2005. 54. Kao YT, Wang ST, Shih CM, Lin FY, Tsao NW, Chiang KH, Chan CS, Lin YC, Hung MY, Hsieh MH, Shyu KG, Chen JW, Chang NC, Yeh JS, and Huang CY. Arterial Stiffness Index and Coronary Artery Plaques in Patients with Subclinical Coronary Atherosclerosis. Acta Cardiol Sin 31: 59-65, 2015. 55. Weimer LH. Autonomic testing: common techniques and clinical applications. Neurologist 16: 215-222, 2010. 56. Akselrod S, Gordon D, Ubel F, Shannon D, Berger A, and Cohen R. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213: 220-222, 1981. 57. Shaffer F, McCraty R, and Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Frontiers in Psychology 5: 2014. 58. Shaffer F, and Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health 5: 2017. 59. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, and Schwartz PJ. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal 17: 354-381, 1996. 60. Van de Kar LD, and Blair ML. Forebrain pathways mediating stress-induced hormone secretion. Front Neuroendocrinol 20: 1-48, 1999. 61. Hansen AL, Murison R, Eid J, and Thayer JF. Heart rate variability and cortisol responses during attentional and working memory tasks in naval cadets. International Maritime Health 63: 181-187, 2012. 62. Weber CS, Thayer JF, Rudat M, Wirtz PH, Zimmermann-Viehoff F, Thomas A, Perschel FH, Arck PC, and Deter HC. Low vagal tone is associated with impaired post stress recovery of cardiovascular, endocrine, and immune markers. European Journal of Applied Physiology 109: 201-211, 2010. 63. Weston KS, Wisløff U, and Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British journal of sports medicine 48: 1227-1234, 2014. 64. Chang WD, and Lai PT. Different Exercise Behaviors Influence Heart Rate Variability, Autonomic Nerve System Function and Menopausal Symptoms in Post-Menopausal Women. Journal of Physical Therapy Science 25: 477-481, 2013. 65. Amano M, Kanda T, Ue H, and Moritani T. Exercise training and autonomic nervous system activity in obese individuals. Medicine Science in Sports Exercise 33: 1287-1291, 2001. 66. Ciolac EG, Bocchi EA, Bortolotto LA, Carvalho VO, Greve JM, and Guimarães GV. Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertension Research 33: 836-843, 2010. 67. Henke E, Oliveira VS, Silva IMd, Schipper L, Dorneles G, Elsner VR, de Oliveira MR, Romão PRT, and Peres A. Acute and chronic effects of High Intensity Interval Training on inflammatory and oxidative stress markers of postmenopausal obese women. Translational Sports Medicine 1: 257-264, 2018. 68. Dupuit M, Rance M, Morel C, Bouillon P, Pereira B, Bonnet A, Maillard F, Duclos M, and Boisseau N. Moderate-Intensity Continuous Training or High-Intensity Interval Training with or without Resistance Training for Altering Body Composition in Postmenopausal Women. Medicine and Science in Sports and Exercise 52: 736-745, 2020. 69. Nunes PRP, Martins FM, Souza AP, Carneiro MAS, Nomelini RS, Michelin MA, Murta EFC, de Oliveira EP, and Orsatti FL. Comparative effects of high-intensity interval training with combined training on physical function markers in obese postmenopausal women: a randomized controlled trial. Menopause 26: 1242-1249, 2019. 70. Abdeen HA, El Nahas EM, and AbdAllah GA. Impact of High Intensity Interval Versus Moderate Intensity Continuous Training on Modulating Cardiovascular Disease Risk Factors in Postmenopausal Women. International Journal of Physiotherapy and Research 5: 2405-2419, 2017. 71. Mandrup CM, Egelund J, Nyberg M, Lundberg Slingsby MH, Andersen CB, Løgstrup S, Bangsbo J, Suetta C, Stallknecht B, and Hellsten Y. Effects of high-intensity training on cardiovascular risk factors in premenopausal and postmenopausal women. American journal of obstetrics and gynecology 216: 384.e381-384.e311, 2017. 72. Clark T, Morey R, Jones MD, Marcos L, Ristov M, Ram A, Hakansson S, Franklin A, McCarthy C, De Carli L, Ward R, and Keech A. High-intensity interval training for reducing blood pressure: a randomized trial vs. moderate-intensity continuous training in males with overweight or obesity. Hypertension Research 43: 396-403, 2020. 73. Kim H-K, Hwang C-L, Yoo J-K, Hwang M-H, Handberg EM, Nichols WW, and Christou DD. Abstract 18329: Aortic Pulse Wave Velocity Improves Following Moderate-intensity Continuous Training but not High-intensity Interval Training in Older Men and Postmenopausal Women. Circulation 132: A18329-A18329, 2015. 74. Nualnim N, Parkhurst K, Dhindsa M, Tarumi T, Vavrek J, and Tanaka H. Effects of swimming training on blood pressure and vascular function in adults >50 years of age. The American journal of cardiology 109: 1005-1010, 2012. 75. Al-Jazzar M, Aly FA, Al-Omran M, Alghadir AH, and Berika MY. Therapeutic Effect of an Underwater Exercise Program for Patients with Peripheral Arterial Disease. Journal of Physical Therapy Science 24: 687-690, 2012. 76. Naylor LH, Maslen BA, Cox KL, Spence AL, Robey E, Haynes A, Carter HH, Lautenschlager NT, Ridgers ND, Pestell C, and Green DJ. Land- versus water-walking interventions in older adults: Effects on body composition. Journal of science and medicine in sport 23: 164-170, 2020. 77. Haynes A, Naylor LH, Spence AL, Robey E, Cox KL, Maslen BA, Lautenschlager NT, Carter HH, Ainslie PN, and Green DJ. Effects of Land versus Water Walking Interventions on Vascular Function in Older Adults. Medicine and Science in Sports and Exercise 53: 83-89, 2021. 78. Rezaeipour M, and Nychyporuk VI. Study of Weight Loss Parameters Among Sedentary, Overweight Postmenopausal Females Using Different Time Models of Aquafit. Hormozgan Medical Journal 23: e96378, 2019. 79. Park SY, Kwak YS, and Pekas EJ. Impacts of aquatic walking on arterial stiffness, exercise tolerance, and physical function in patients with peripheral artery disease: a randomized clinical trial. Journal of Applied Physiology 127: 940-949, 2019. 80. Reichert T, Costa RR, Barroso BM, da Rocha VMB, Delevatti RS, and Kruel LFM. Aquatic Training in Upright Position as an Alternative to Improve Blood Pressure in Adults and Elderly: A Systematic Review and Meta-Analysis. Sports medicine 48: 1727-1737, 2018. 81. Borg GA. Psychophysical bases of perceived exertion. Medicine science in sports exercise 14: 377-381, 1982. 82. Massin MM, Maeyns K, Withofs N, Ravet F, and Gérard P. Circadian rhythm of heart rate and heart rate variability. Archives of disease in childhood 83: 179-182, 2000. 83. Health Promotion Administration, Ministry of Health and Welfare. (2019) meal exchange list. https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/8380/File_8031.pdf 84. Food and Drug Administration, Ministry of Health and Welfare. (2019) Food Nutrition Information Database. https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178 85. Shaffer F, McCraty R, and Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol 5: 1040, 2014. 86. Goldstein DS, Bentho O, Park MY, and Sharabi Y. Low‐frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental physiology 96: 1255-1261, 2011. 87. Jabbour G, and Iancu HD. Supramaximal-Exercise Training Improves Heart Rate Variability in Association With Reduced Catecholamine in Obese Adults. Frontiers in Physiology 12: 437, 2021. 88. Zouhal H, Jacob C, Delamarche P, and Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports medicine 38: 401-423, 2008. 89. Jabbour G, and Iancu HD. Comparison of performance and health indicators between perimenopausal and postmenopausal obese women: the effect of high-intensity interval training (HIIT). Menopause 28: 50-57, 2021. 90. Rheim AEDRA, Ibrahim HM, Saad AH, and Amin MA. The Effect of Long-term Aerobic Exercises on Autonomic Imbalance in Postmenopausal Women. Cardiology and Angiology: An International Journal 1-9, 2017. 91. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, and Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports medicine 45: 679-692, 2015. 92. Abdeen HA, El Nahas EM, and AbdAllah GA. IMPACT OF HIGH INTENSITY INTERVAL VERSUS MODERATE INTEN-SITY CONTINUOUS TRAINING ON MODULATING CARDIOVASCULAR DISEASE RISK FACTORS IN POSTMENOPAUSAL WOMEN. Int J Physiother Res 5: 2405-2412, 2017. 93. Buch AN, Coote JH, and Townend JN. Mortality, cardiac vagal control and physical training–what’s the link? Experimental physiology 87: 423-435, 2002. 94. Nualnim N, Barnes JN, Tarumi T, Renzi CP, and Tanaka H. Comparison of central artery elasticity in swimmers, runners, and the sedentary. The American journal of cardiology 107: 783-787, 2011. 95. Cox KL, Burke V, Beilin LJ, Grove JR, Blanksby BA, and Puddey IB. Blood pressure rise with swimming versus walking in older women: the Sedentary Women Exercise Adherence Trial 2 (SWEAT 2). Journal of Hypertension 24: 307-314, 2006. 96. Tanaka H, Bassett DRJ, Howley ET, Thompson DL, Ashraf M, and Rawson FL. Swimming training lowers the resting blood pressure in individuals with hypertension. Journal of Hypertension 15: 651-657, 1997. 97. Ramos JS, Dalleck LC, Borrani F, Beetham KS, Mielke GI, Dias KA, Wallen MP, Keating SE, Fassett RG, and Coombes JS. High-intensity interval training and cardiac autonomic control in individuals with metabolic syndrome: a randomised trial. International journal of cardiology 245: 245-252, 2017. 98. Yadav RL, Yadav PK, Yadav LK, Agrawal K, Sah SK, and Islam MN. Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration–a risk of CVD. Diabetes, metabolic syndrome and obesity: targets and therapy 10: 57, 2017. 99. Prasad D, Kabir Z, Dash A, and Das B. Abdominal obesity, an independent cardiovascular risk factor in Indian subcontinent: A clinico epidemiological evidence summary. Journal of cardiovascular disease research 2: 199-205, 2011. 100. Tanaka H. Swimming exercise. Sports Medicine 39: 377-387, 2009. 101. White LJ, Dressendorfer RH, Holland E, McCoy SC, and Ferguson MA. Increased caloric intake soon after exercise in cold water. International journal of sport nutrition and exercise metabolism 15: 38-47, 2005. 102. Health Promotion Administration, Ministry of Health and Welfare. (2019) Nutrition and Health Survey in Taiwan 2013-2016. https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/11145/File_12788.pdf 103. Li Y, Zhong X, Cheng G, Zhao C, Zhang L, Hong Y, Wan Q, He R, and Wang Z. Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: a meta-analysis. Atherosclerosis 259: 75-82, 2017. 104. Huffman KM, Samsa GP, Slentz CA, Duscha BD, Johnson JL, Bales CW, Tanner CJ, Houmard JA, and Kraus WE. Response of high-sensitivity C-reactive protein to exercise training in an at-risk population. American heart journal 152: 793-800, 2006. 105. Schjerve IE, Tyldum GA, Tjønna AE, Stølen T, Loennechen JP, Hansen HE, Haram PM, Heinrich G, Bye A, and Najjar SM. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical science 115: 283-293, 2008. 106. Walther C, Möbius-Winkler S, Linke A, Bruegel M, Thiery J, Schuler G, and Halbrecht R. Regular exercise training compared with percutaneous intervention leads to a reduction of inflammatory markers and cardiovascular events in patients with coronary artery disease. European Journal of Preventive Cardiology 15: 107-112, 2008. 107. Kim YJ, Shin YO, Bae JS, Lee JB, Ham JH, Son YJ, Kim JK, Kim C, Lee BK, and Oh JK. Beneficial effects of cardiac rehabilitation and exercise after percutaneous coronary intervention on hsCRP and inflammatory cytokines in CAD patients. Pflügers Archiv-European Journal of Physiology 455: 1081-1088, 2008. 108. Borst SE. The role of TNF-α in insulin resistance. Endocrine 23: 177-182, 2004. 109. Gonzalez Y, Herrera MT, Soldevila G, Garcia-Garcia L, Fabián G, Pérez-Armendariz EM, Bobadilla K, Guzmán-Beltrán S, Sada E, and Torres M. High glucose concentrations induce TNF-α production through the down-regulation of CD33 in primary human monocytes. BMC immunology 13: 1-14, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80522-
dc.description.abstract"目的:比較水中跳躍與陸上階梯高強度間歇訓練對停經後婦女心血管健康之影響。方法:招募57位停經後婦女 (61.6 ± 5.2歲),分為水中運動組 (aquatic exercise, AE, n=19)、陸地運動組 (land exercise, LE, n=24) 與控制組 (Control, CON, n=14)。本研究為期16週,AE組與LE組介入每週 3 次,每次 42.5分鐘的間歇運動,高運動強度為 75-80% 儲備心跳率 (heart rate reserve, HRR) 或運動自覺強度(RPE) 6-8,動態恢復50% HRR。CON 維持日常生活模式。實驗前後檢測心血管健康相關指標:檢測指標包括心率變異度 (Heart rate variability, HRV)、血管硬度指數、血壓、一氧化氮 (Nitric Oxide, NO)、胰島素阻抗指標 (Homeostasis Model Assessment-Insulin Resistance, HOMA-IR) 、發炎指標高敏感度C-反應蛋白 (hs-CRP) 與腫瘤壞死因子-α (Tumor Necrosis Factor, TNF-α),以及分析飲食攝取。結果:單純主要效果:AE組:取自然對數之心率變異度指標正常心跳間期的標準差 (natural logarithm Standard deviation of NN intervals, Ln SDNN) 與低頻範圍正常心跳間期之變異數 (natural logarithm Low Frequency power, Ln LF) 後測顯著高於前測 (Ln SDNN: 3.67±0.38 vs. 3.31±0.26 ms, p<0.001; Ln LF: 4.95±1.04 vs. 4.18±0.64 ms2, p=0.001)。LE組:TNF-α、HOMA-IR與體脂肪率後測顯著低於前測 (0.43±0.3 vs. 0.78±0.5 pg/mL, p<0.001; 1.47±1.09 vs. 2.14±1.34, p<0.001; 31.08±4.4 vs. 32.13±5.3 %, p=0.046),骨骼肌重後測顯著高於前測 (20.72±2.83 vs. 20.51±2.63 kg, p=0.028)。另外,飲食脂肪攝取AE與LE後測皆顯著高於前測 (AE: 76.8±33.5 vs. 65.5 ±17.3 g, p=0.037; LE: 73.0±15.1 vs. 59.9 ±17.7 g, p=0.024)。整體時間主要效果:相鄰正常心跳間期差值平方和的均方根 (The square root of the mean of the sum of the squares of differences between adjacent NN interval , RMSSD)、高頻範圍正常心跳間期之變異數 (High Frequency power , HF)、低頻範圍正常心跳間期之變異數 (Low Frequency power, LF)、全部正常心跳間期之變異數高頻、低頻、極低頻的總和 (Total Power, TP) 皆後測顯著高於前測 (RMSSD: 27.49±13.1 vs. 19.90±8.6 ms, p<0.001; HF: 147.41±24.4 vs. 78.79±8.6 ms2, p=0.008; LF: 157.98±25.3 vs. 94.43±9.7 ms2, p=0.001; TP: 649±65.0 vs. 412.60±28.9 ms2, p<0.001),安靜心率後測顯著低於前測 (65.04±7.5 vs. 68.60±8.4 bpm, p<0.001),血清NO後測顯著高於前測 (37.01±15.3 vs. 25.00±10.3 mM, p<0.001)。飲食熱量攝取與碳水化合物後測顯著高於前測(1778±337 vs. 1575±279 kcal, p=0.001; 209±43 vs. 184±44 g, p=0.003)。結論:水中運動環境之高強度間歇運動介入顯著增加停經後婦女心率變異度,而陸地高強度間歇運動在身體組成、胰島素阻抗值以及TNF-α有顯著改善。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:08:28Z (GMT). No. of bitstreams: 1
U0001-2610202122314700.pdf: 2900173 bytes, checksum: 0e22b103f14a3b3c284c78aa8363a672 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書 I 中文摘要 II 英文摘要 III 目錄 IV 圖次 VII 表次 VIII 第壹章 緒論 1 第一節 研究動機 1 第二節 研究目的 4 第三節 研究假設 4 第貳章 文獻探討 5 第一節 停經後婦女生理生化改變之影響 5 第二節 心血管循環機制與評估指標 7 (一)心臟血管血流動力機制 7 (二)評估心血管功能之指標 10 第三節 運動訓練對心血管因子之影響 13 (一)陸上間歇訓練 14 (二)水中運動訓練 15 第參章 研究方法 20 第一節 研究對象 20 第二節 研究設計與過程 21 第三節 課程設計 25 (一)陸上間歇課程 25 (二)水中間歇課程 26 第四節 測量工具與方法 31 (一)基本資料及問卷 31 (二)血管硬度指數(Arterial stiffness index, ASI)及血壓指標 31 (三)心率變異度(Heart rate variability, HRV) 32 (四)血液生化指標 32 (五)身體組成 34 (六)飲食監測 35 第五節 統計方法 36 第肆章 結果 37 第一節 受試者基本資料 37 第二節 身體組成 37 第三節 心率變異度 39 第四節 血管硬度指數與血壓 42 第五節 血液生化值 42 第六節 飲食指標 46 第伍章 討論 48 第一節 運動介入對心率變異度之影響 48 第二節 運動介入對NO與血壓指標之影響 51 第三節 運動介入對身體組成及HOMA-IR之影響差異與飲食攝取 53 第四節 運動介入對發炎指標hs-CRP與TNF-α的影響 55 第五節 研究實務應用與限制 57 第陸章、結論與建議 59 參考文獻 60 "
dc.language.isozh-TW
dc.subject身體組成zh_TW
dc.subject自律神經zh_TW
dc.subject心率變異度zh_TW
dc.subjectbody compositionen
dc.subjectheart rate variabilityen
dc.subjectAutonomic nervous systemen
dc.title水中與陸上高強度間歇運動課程對停經後婦女心血管健康之影響zh_TW
dc.titleEffects of Water- and Land-based High-intensity Interval Training on Cardiovascular Health Related Parameters in Postmenopausal Womenen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor林信甫(Hsin-Fu Lin)
dc.contributor.oralexamcommittee楊艾倫(Hsin-Tsai Liu),李淑玲(Chih-Yang Tseng)
dc.subject.keyword自律神經,心率變異度,身體組成,zh_TW
dc.subject.keywordAutonomic nervous system,heart rate variability,body composition,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202104279
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-29
dc.contributor.author-dept共同教育中心zh_TW
dc.contributor.author-dept運動設施與健康管理碩士學位學程zh_TW
顯示於系所單位:運動設施與健康管理碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-2610202122314700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved