Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80475
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖zh_TW
dc.contributor.advisorChi-Sheng Wuen
dc.contributor.author鄧函文zh_TW
dc.contributor.authorHan Van Dangen
dc.date.accessioned2022-11-24T03:07:26Z-
dc.date.available2023-11-10-
dc.date.copyright2022-03-07-
dc.date.issued2021-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] R.K.P.a.L.A. Meyer, IPCC (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., IPCC, Geneva, Switzerland, 2014, pp. 151 pp.
[2] B. Concepts, Basic of Renewable and Non-Renewable Energy, Basics, 2021.
[3] BlogMech, Engine Combustion and Fuel Properties, Types of Auto Engine Fuels, Calorific Value of Fuels, 2021.
[4] O.o.E.E.R. Energy, Hydrogen Production, Energy Efficiency & Renewable Energy, 1000 Independence Avenue, SW Washington, DC 20585.
[5] O.o.E.E.R. Energy, Hydrogen Production: Electrolysis, Office of Energy Efficiency & Renewable Energy, 1000 Independence Avenue, SW Washington, DC 20585.
[6] S.Y. Jeong, J. Song, S. Lee, Photoelectrochemical device designs toward practical solar water splitting: A review on the recent progress of BiVO4 and BiFeO3 photoanodes, Applied Sciences, 8 (2018) 1388.
[7] J.R. Benemann, Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen, ExCo Secretariat of the International Energy Agency Implementing Agreement, 1998.
[8] J.W. Sheffield, Ç. Sheffield, Assessment of hydrogen energy for sustainable development, Springer2009.
[9] Wikipedia, Photosynthesis, Wikimedia Foundation, Inc., 2021.
[10] J.N. Armor, Addressing the CO2 dilemma, Catalysis Letters, 114 (2007) 115-121.
[11] Y. Wang, H. Suzuki, J. Xie, O. Tomita, D.J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems, Chemical reviews, 118 (2018) 5201-5241.
[12] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature, 238 (1972) 37-38.
[13] R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11 (2010) 179-209.
[14] N.S. Lewis, G. Crabtree, A.J. Nozik, M.R. Wasielewski, P. Alivisatos, H. Kung, J. Tsao, E. Chandler, W. Walukiewicz, M. Spitler, Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, DOESC (USDOE Office of Science (SC)), 2005.
[15] C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chemical Society Reviews, 39 (2010) 4206-4219.
[16] Z.B. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, H.N. Dinh, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, Journal of Materials Research, 25 (2010) 3-16.
[17] R. Abe, Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation, Bulletin of the Chemical Society of Japan, 84 (2011) 1000-1030.
[18] S. Cho, J.-W. Jang, J. Kim, J.S. Lee, W. Choi, K.-H. Lee, Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities, Langmuir, 27 (2011) 10243-10250.
[19] G. Dai, J. Yu, G. Liu, Synthesis and enhanced visible-light photoelectrocatalytic activity of p−n junction BiOI/TiO2 nanotube arrays, The Journal of Physical Chemistry C, 115 (2011) 7339-7346.
[20] J. Zhang, S.Z. Qiao, L. Qi, J. Yu, Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity, Physical chemistry chemical physics, 15 (2013) 12088-12094.
[21] S. Gao, W. Wang, Y. Ni, C. Lu, Z. Xu, Facet-dependent photocatalytic mechanisms of anatase TiO2: A new sight on the self-adjusted surface heterojunction, Journal of Alloys and Compounds, 647 (2015) 981-988.
[22] J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets, Journal of the American Chemical Society, 136 (2014) 8839-8842.
[23] J. Yu, S. Wang, J. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air, Physical Chemistry Chemical Physics, 15 (2013) 16883-16890.
[24] D. Xu, B. Cheng, S. Cao, J. Yu, Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation, Applied Catalysis B: Environmental, 164 (2015) 380-388.
[25] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, Journal of the American Chemical Society, 133 (2011) 10878-10884.
[26] Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets, Nanoscale, 3 (2011) 3670-3678.
[27] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al‐Ghamdi, Heterojunction photocatalysts, Advanced materials, 29 (2017) 1601694.
[28] X. Zhou, Y. Fang, X. Cai, S. Zhang, S. Yang, H. Wang, X. Zhong, Y. Fang, In Situ Photodeposited Construction of Pt–CdS/g-C3N4–MnOx Composite Photocatalyst for Efficient Visible-Light-Driven Overall Water Splitting, ACS applied materials & interfaces, 12 (2020) 20579-20588.
[29] C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction, ACS nano, 4 (2010) 6425-6432.
[30] Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity, ACS applied materials & interfaces, 2 (2010) 2915-2923.
[31] T. Soltani, A. Tayyebi, B.-K. Lee, BiFeO3/BiVO4 p−n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation, Catalysis Today, 340 (2020) 188-196.
[32] R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4, Nature communications, 4 (2013) 1-7.
[33] A.J. Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors, Journal of Photochemistry, 10 (1979) 59-75.
[34] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system, Nature materials, 5 (2006) 782-786.
[35] Y. Yang, L. Liu, Q. Qi, F. Chen, M. Qiu, F. Gao, J. Chen, A low-cost and stable Fe2O3/C-TiO2 system design for highly efficient photocatalytic H2 production from seawater, Catalysis Communications, 143 (2020) 106047.
[36] W. Choi, A. Termin, M.R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, The Journal of Physical Chemistry, 98 (1994) 13669-13679.
[37] M.I. Litter, Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Applied Catalysis B: Environmental, 23 (1999) 89-114.
[38] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269-271.
[39] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration, Journal of the American Chemical Society, 126 (2004) 4943-4950.
[40] A. Merlen, V. Gadenne, J. Romann, V. Chevallier, L. Patrone, J.C. Valmalette, Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates, Nanotechnology, 20 (2009).
[41] J.-F. Masson, Portable and field-deployed surface plasmon resonance and plasmonic sensors, Analyst, 145 (2020) 3776-3800.
[42] A. Primo, A. Corma, H. Garcia, Titania supported gold nanoparticles as photocatalyst, Physical Chemistry Chemical Physics, 13 (2011) 886-910.
[43] A. Primo, T. Marino, A. Corma, R. Molinari, H. Garcia, Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer Templating Method (vol 133, pg 6930, 2011), Journal of the American Chemical Society, 134 (2012) 1892-1892.
[44] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide, Journal of the American Chemical Society, 130 (2008) 1676-1680.
[45] C. Gomes Silva, R. Juarez, T. Marino, R. Molinari, H. Garcia, Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water, Journal of the American Chemical Society, 133 (2011) 595-602.
[46] K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts, The Journal of Physical Chemistry, 90 (1986) 292-295.
[47] T. Hisatomi, K. Domen, Recent progress in photocatalysts for overall water splitting under visible light, Solar Hydrogen and Nanotechnology IV, International Society for Optics and Photonics, 2009, pp. 740802.
[48] T. HISATOMI, N. SAKAMOTO, K. MAEDA, M. KATAYAMA, J. KUBOTA, K. DOMEN, Study of nanosized Rh/Cr2O3 core/shell cocatalyst for over all water splitting using XAFS, Materials Science, (2008) 2009.
[49] K. Domen, Efficient Hydrogen Evolution Sites of Photocatalysts for Water Splitting, 21st North American Meeting, 2009.
[50] K. Maeda, Photocatalytic water splitting using semiconductor particles: history and recent developments, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12 (2011) 237-268.
[51] X. Guan, F.A. Chowdhury, N. Pant, L. Guo, L. Vayssieres, Z. Mi, Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays, The Journal of Physical Chemistry C, 122 (2018) 13797-13802.
[52] C. Oshima, H. Nishiyama, A. Chatterjee, K. Uchida, K. Sato, Y. Inoue, T. Hisatomi, K. Domen, Photocatalytic activity of ZnO/GaP1−xNx for water splitting, Journal of Materials Chemistry A, 3 (2015) 18083-18089.
[53] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature, 440 (2006) 295-295.
[54] T. Ohno, L. Bai, T. Hisatomi, K. Maeda, K. Domen, Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity, Journal of the American Chemical Society, 134 (2012) 8254-8259.
[55] N. Wang, X. Li, Protonated carbon nitride nanosheet supported IrO2 quantum dots for pure water splitting without sacrificial reagents, Inorganic Chemistry Frontiers, 5 (2018) 2268-2275.
[56] X. Wang, G. Zhang, Z. Lan, L. Lin, S. Lin, Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agent, Chem. Sci., 2016.
[57] V. Kumaravel, A. Abdel-Wahab, A short review on hydrogen, biofuel, and electricity production using seawater as a medium, Energy & Fuels, 32 (2018) 6423-6437.
[58] S. Fukuzumi, Y.M. Lee, W. Nam, Fuel production from seawater and fuel cells using seawater, ChemSusChem, 10 (2017) 4264-4276.
[59] S.M. Ji, H. Jun, J.S. Jang, H.C. Son, P.H. Borse, J.S. Lee, Photocatalytic hydrogen production from natural seawater, Journal of Photochemistry and Photobiology A: Chemistry, 189 (2007) 141-144.
[60] J. Zhang, W. Hu, S. Cao, L. Piao, Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting, Nano Research, (2020) 1-10.
[61] L. Huang, R. Li, R. Chong, G. Liu, J. Han, C. Li, Cl− making overall water splitting possible on TiO2-based photocatalysts, Catalysis Science & Technology, 4 (2014) 2913-2918.
[62] K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, Improvement of photocatalytic activity of (Ga1− xZnx)(N1− xOx) solid solution for overall water splitting by co-loading Cr and another transition metal, Journal of Catalysis, 243 (2006) 303-308.
[63] A.-J. Simamora, T.-L. Hsiung, F.-C. Chang, T.-C. Yang, C.-Y. Liao, H.P. Wang, Photocatalytic splitting of seawater and degradation of methylene blue on CuO/nano TiO2, International journal of hydrogen energy, 37 (2012) 13855-13858.
[64] P. Dhanasekaran, N. Gupta, Factors affecting the production of H2 by water splitting over a novel visible-light-driven photocatalyst GaFeO3, International journal of hydrogen energy, 37 (2012) 4897-4907.
[65] G. Cui, W. Wang, M. Ma, J. Xie, X. Shi, N. Deng, J. Xin, B. Tang, IR-driven photocatalytic water splitting with WO2–NaxWO3 hybrid conductor material, Nano Letters, 15 (2015) 7199-7203.
[66] G. Zhang, Z.-A. Lan, L. Lin, S. Lin, X. Wang, Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents, Chemical science, 7 (2016) 3062-3066.
[67] Z. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers, ChemSusChem, 10 (2017) 87-90.
[68] M. Han, H. Wang, S. Zhao, L. Hu, H. Huang, Y. Liu, One-step synthesis of CoO/g-C3N4 composites by thermal decomposition for overall water splitting without sacrificial reagents, Inorganic Chemistry Frontiers, 4 (2017) 1691-1696.
[69] M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, Strontium-titanate photoelectrodes- efficient photoassisted electrolysis of water at zero applied potential, Journal of the American Chemical Society, 98 (1976) 2774-2779.
[70] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J.M. Thomas, Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production, Catalysis Today, 122 (2007) 51-61.
[71] C. Huang, W. Yao, T. Ali, N. Muradov, Development of efficient photoreactors for solar hydrogen production, Solar Energy, 85 (2011) 19-27.
[72] C.-H. Liao, C.-W. Huang, J. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting, Catalysts, 2 (2012) 490-516.
[73] B.J. Ng, L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh, S.P. Chai, Z‐Scheme Photocatalytic Systems for Solar Water Splitting, Advanced Science, 7 (2020) 1903171.
[74] T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, M. Matsumura, Unique effects of iron (III) ions on photocatalytic and photoelectrochemical properties of titanium dioxide, The Journal of Physical Chemistry B, 101 (1997) 6415-6419.
[75] C.-C. Lo, C.-W. Huang, C.-H. Liao, J.C. Wu, Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting, international journal of hydrogen energy, 35 (2010) 1523-1529.
[76] S.-C. Yu, C.-W. Huang, C.-H. Liao, J.C. Wu, S.-T. Chang, K.-H. Chen, A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting, Journal of membrane science, 382 (2011) 291-299.
[77] M. Tabata, K. Maeda, M. Higashi, D. Lu, T. Takata, R. Abe, K. Domen, Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light, Langmuir, 26 (2010) 9161-9165.
[78] S.-H. Yu, C.-W. Chiu, Y.-T. Wu, C.-H. Liao, V.-H. Nguyen, J.C. Wu, Photocatalytic water splitting and hydrogenation of CO2 in a novel twin photoreactor with IO3−/I− shuttle redox mediator, Applied Catalysis A: General, 518 (2016) 158-166.
[79] Y. Sasaki, H. Kato, A. Kudo, [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system, Journal of the American Chemical Society, 135 (2013) 5441-5449.
[80] S. Chabi, K.M. Papadantonakis, N.S. Lewis, M.S. Freund, Membranes for artificial photosynthesis, Energy & Environmental Science, 10 (2017) 1320-1338.
[81] B. Sørensen, G. Spazzafumo, Hydrogen and fuel cells: emerging technologies and applications, Academic Press2018.
[82] Y. Hori, H. Ito, K. Okano, K. Nagasu, S. Sato, Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide, Electrochimica Acta, 48 (2003) 2651-2657.
[83] N. Li, T. Yan, Z. Li, T. Thurn-Albrecht, W.H. Binder, Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes, Energy & Environmental Science, 5 (2012) 7888-7892.
[84] J. Pan, C. Chen, Y. Li, L. Wang, L. Tan, G. Li, X. Tang, L. Xiao, J. Lu, L. Zhuang, Constructing ionic highway in alkaline polymer electrolytes, Energy & Environmental Science, 7 (2014) 354-360.
[85] J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, T. Xu, Ion exchange membranes: New developments and applications, Journal of Membrane Science, 522 (2017) 267-291.
[86] C.W. Huang, C.H. Liao, J.C.S. Wu, Y.C. Liu, C.L. Chang, C.H. Wu, M. Anpo, M. Matsuoka, M. Takeuchi, Hydrogen generation from photocatalytic water splitting over TiO2 thin film prepared by electron beam-induced deposition, International Journal of Hydrogen Energy, 35 (2010) 12005-12010.
[87] S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2 2, Science, 297 (2002) 2243-2245.
[88] Y.-T. Liao, C.-W. Huang, C.-H. Liao, J.C.S. Wu, K.C.W. Wu, Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting, Applied Energy, 100 (2012) 75-80.
[89] C.-H. Liao, C.-W. Huang, J.C.S. Wu, Novel dual-layer photoelectrode prepared by RF magnetron sputtering for photocatalytic water splitting, International Journal of Hydrogen Energy, 37 (2012) 11632-11639.
[90] H.Y. Ki, H.K. Tae, Photoeffects in undoped and doped SrTiO3 ceramic electrodes, Journal of Solid State Chemistry, 67 (1987) 359-363.
[91] G. Prasad, K.S.C. Babu, O.N. Srivastava, Structural and photoelectrochemical studies of In2O3-TiO2 and WSe2 photoelectrodes for photoelectrochemical production of hydrogen, International Journal of Hydrogen Energy, 14 (1989) 537-544.
[92] O. Khaselev, A. Bansal, J.A. Turner, High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production, International Journal of Hydrogen Energy, 26 (2001) 127-132.
[93] O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science, 280 (1998) 425-427.
[94] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis, Journal of Physical Chemistry B, 104 (2000) 8920-8924.
[95] C.-W. Huang, C.-H. Liao, C.-H. Wu, J.C.S. Wu, Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films, Solar Energy Materials and Solar Cells, 107 (2012) 322-328.
[96] Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator, The Journal of Physical Chemistry C, 113 (2009) 17536-17542.
[97] Q. Jia, A. Iwase, A. Kudo, BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting, Chemical Science, 5 (2014) 1513-1519.
[98] A. Kudo, Z-scheme photocatalyst systems for water splitting under visible light irradiation, Mrs Bulletin, 36 (2011) 32-38.
[99] Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%, Nature materials, 15 (2016) 611-615.
[100] H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation, Chemistry Letters, 33 (2004) 1348-1349.
[101] Y. Sasaki, A. Iwase, H. Kato, A. Kudo, The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation, Journal of Catalysis, 259 (2008) 133-137.
[102] H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting, Journal of Materials Chemistry A, 1 (2013) 12327-12333.
[103] R. Niishiro, S. Tanaka, A. Kudo, Hydrothermal-synthesized SrTiO3 photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H2 and O2 evolution and application to overall water splitting, Applied Catalysis B: Environmental, 150 (2014) 187-196.
[104] H. Suzuki, O. Tomita, M. Higashi, R. Abe, Z-scheme water splitting into H2 and O2 using tungstic acid as an oxygen-evolving photocatalyst under visible light irradiation, Chemistry Letters, 44 (2015) 1134-1136.
[105] H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, R. Abe, Layered perovskite oxychloride Bi4NbO8Cl: a stable visible light responsive photocatalyst for water splitting, Journal of the American Chemical Society, 138 (2016) 2082-2085.
[106] H. Kunioku, M. Higashi, C. Tassel, D. Kato, O. Tomita, H. Kageyama, R. Abe, Sillén–Aurivillius-related Oxychloride Bi6NbWO14Cl as a Stable O2-evolving Photocatalyst in Z-scheme Water Splitting under Visible Light, Chemistry Letters, 46 (2017) 583-586.
[107] H. Horie, A. Iwase, A. Kudo, Photocatalytic properties of layered metal oxides substituted with silver by a molten AgNO3 treatment, ACS applied materials & interfaces, 7 (2015) 14638-14643.
[108] O. Tomita, S. Nitta, Y. Matsuta, S. Hosokawa, M. Higashi, R. Abe, Improved photocatalytic water oxidation with Fe3+/Fe2+ redox on rectangular-shaped WO3 particles with specifically exposed crystal faces via hydrothermal synthesis, Chemistry Letters, 46 (2017) 221-224.
[109] A. Nakada, S. Nishioka, J.J.M. Vequizo, K. Muraoka, T. Kanazawa, A. Yamakata, S. Nozawa, H. Kumagai, S.-i. Adachi, O. Ishitani, Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst, Journal of Materials Chemistry A, 5 (2017) 11710-11719.
[110] Y. Miseki, S. Fujiyoshi, T. Gunji, K. Sayama, Photocatalytic Z-scheme water splitting for independent H2/O2 production via a stepwise operation employing a vanadate redox mediator under visible light, The Journal of Physical Chemistry C, 121 (2017) 9691-9697.
[111] S. Hara, M. Yoshimizu, S. Tanigawa, L. Ni, B. Ohtani, H. Irie, Hydrogen and oxygen evolution photocatalysts synthesized from strontium titanate by controlled doping and their performance in two-step overall water splitting under visible light, The Journal of Physical Chemistry C, 116 (2012) 17458-17463.
[112] K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation, Chemical Communications, (2001) 2416-2417.
[113] R. Abe, T. Takata, H. Sugihara, K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator, Chemical Communications, (2005) 3829-3831.
[114] M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, K. Domen, Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ< 500 nm), Chemistry letters, 37 (2008) 138-139.
[115] K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, Journal of the American Chemical Society, 132 (2010) 5858-5868.
[116] K. Maeda, D. Lu, K. Domen, Solar-driven Z-scheme water splitting using modified BaZrO3–BaTaO2N solid solutions as photocatalysts, Acs Catalysis, 3 (2013) 1026-1033.
[117] W. Zhao, K. Maeda, F. Zhang, T. Hisatomi, K. Domen, Effect of post-treatments on the photocatalytic activity of Sm2Ti2 S2 O5 for the hydrogen evolution reaction, Physical Chemistry Chemical Physics, 16 (2014) 12051-12056.
[118] Y. Miseki, S. Fujiyoshi, T. Gunji, K. Sayama, Photocatalytic water splitting under visible light utilizing I3−/I− and IO3−/I− redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst, Catalysis Science & Technology, 3 (2013) 1750-1756.
[119] S. Tanigawa, H. Irie, Visible-light-sensitive two-step overall water-splitting based on band structure control of titanium dioxide, Applied Catalysis B: Environmental, 180 (2016) 1-5.
[120] D.J. Martin, P.J.T. Reardon, S.J. Moniz, J. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system, Journal of the American Chemical Society, 136 (2014) 12568-12571.
[121] S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S.S.K. Ma, F. Zhang, K. Domen, C. Li, Efficient visible‐light‐driven Z‐scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution, Angewandte Chemie, 127 (2015) 8618-8621.
[122] T. Kato, Y. Hakari, S. Ikeda, Q. Jia, A. Iwase, A. Kudo, Utilization of Metal Sulfide Material of (CuGa)1–xZn2xS2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems, The journal of physical chemistry letters, 6 (2015) 1042-1047.
[123] S.-C. Yu, C.-W. Chang, K.-C. Hsu, J.C. Wu, A novel photoreactor for separating hydrogen and oxygen in photocatalytic water splitting.
[124] M. Simic, M. Hoffman, R. Cheney, Q. Mulazzani, One-electron reduction of tris (2, 2'-bipyridine) and tris (1, 10-phenanthroline) complexes of cobalt (III) in aqueous solution, Journal of Physical Chemistry, 83 (1979) 439-443.
[125] K. YAMASAKI, T. HARA, M. YASUDA, Absorption spectra of cobalt complexes with 1, 10-phenanthroline, Proceedings of the Japan Academy, 29 (1953) 337-341.
[126] W.H. Bragg, W.L. Bragg, The reflection of X-rays by crystals, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88 (1913) 428-438.
[127] N.E. Darrell Henry, John Goodge, David Mogk, X-ray reflection in accordance with Bragg's Law, Intergrating Research and Education, Geochemical Instrumentation and Analysis, 2016.
[128] T.F.S. Inc., FTIR Spectroscopy Basics, Thermo Fisher Scientific Inc., Thermo Fisher Scientific Inc., 2017.
[129] A. Ameruddin, Growth and characterisation of gold-seeded Indium gallium arsenide nanowires for optoelectronic applications, (2015).
[130] I. Wikimedia Foundation, X-ray photoelectron spectroscopy, Wikimedia Foundation, Inc.,, 2021.
[131] R. plc., Photoluminescence explained, © 2001-2021 Renishaw plc., 2021.
[132] en:user:rune.welsh, File: Gas chromatograph.png, Wikimedia Commons, 2020, pp. Crude diagram of a GC apparatus.
[133] Z. Zeng, H. Yu, X. Quan, S. Chen, S. Zhang, Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 227 (2018) 153-160.
[134] L. Lin, W. Ren, C. Wang, A. Asiri, J. Zhang, X. Wang, Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production, Applied Catalysis B: Environmental, 231 (2018) 234-241.
[135] M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thomas, Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride, Chemistry–A European Journal, 14 (2008) 8177-8182.
[136] G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang, M. Antonietti, Ionothermal Synthesis of Triazine–Heptazine‐Based Copolymers with Apparent Quantum Yields of 60% at 420 nm for Solar Hydrogen Production from “Sea Water”, Angewandte Chemie International Edition, 57 (2018) 9372-9376.
[137] L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw, Applied Catalysis B: Environmental, 217 (2017) 388-406.
[138] L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis, Acs Catalysis, 6 (2016) 3921-3931.
[139] L. Dai, C. Pu, H. Li, H. Hu, K. Liu, L. Yang, M. Hong, Characterization of metallization and amorphization for GaP under different hydrostatic environments in diamond anvil cell up to 40.0 GPa, Review of Scientific Instruments, 90 (2019) 066103.
[140] W.F.S. John F. Moulder, Peter E. Sobol, Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 6509 Flying Cloud Drive, Eden Prairie, Minnesota 55344, United States of America, 1995.
[141] Y. Liu, Z. Xiang, Fully conjugated covalent organic polymer with carbon-encapsulated Ni2P for highly sustained photocatalytic H2 production from seawater, ACS applied materials & interfaces, 11 (2019) 41313-41320.
[142] J. Wang, M. Kuo, P. Zeng, L. Xu, S. Chen, T. Peng, Few-layer BiVO4 nanosheets decorated with SrTiO3:Rh nanoparticles for highly efficient visible-light-driven overall water splitting, Applied Catalysis B: Environmental, 279 (2020) 119377.
[143] S. Peng, X. Liu, M. Ding, Y.-x. LI, Preparation of CdS-Pt/TiO2 Composite and the properties for splitting sea water into hydrogen under visible light irradiation, J Mol Catal, 27 (2013) 459e466.
[144] C. Yang, J. Qin, S. Rajendran, X. Zhang, R. Liu, WS2 and C‐TiO2 Nanorods Acting as Effective Charge Separators on g‐C3N4 to Boost Visible‐Light Activated Hydrogen Production from Seawater, ChemSusChem, 11 (2018) 4077-4085.
[145] C. Huang, H. Bai, Y. Huang, S. Liu, S. Yen, Y. Tseng, Synthesis of neutral SiO2/TiO2 hydrosol and its application as antireflective self-cleaning thin film, International Journal of Photoenergy, (2012).
[146] Y. Yu, W. Xu, J. Fang, D. Chen, T. Pan, W. Feng, Y. Liang, Z. Fang, Soft-template assisted construction of superstructure TiO2/SiO2/g-C3N4 hybrid as efficient visible-light photocatalysts to degrade berberine in seawater via an adsorption-photocatalysis synergy and mechanism insight, Applied Catalysis B: Environmental, 268 (2020) 118751.
[147] B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Graphitic carbon nitride (gC3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation, Physical Chemistry Chemical Physics, 14 (2012) 16745-16752.
[148] Z. Qin, L. Chen, R. Ma, R. Tomovska, X. Luo, X. Xie, T. Su, H. Ji, TiO2/BiYO3 composites for enhanced photocatalytic hydrogen production, Journal of Alloys and Compounds, 836 (2020) 155428.
[149] J. Chastain, R.C. King Jr, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, 40 (1992) 221.
[150] B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment, Scientific reports, 6 (2016) 1-12.
[151] B. Bharti, H. Li, D. Liu, H. Kumar, V. Manikandan, X. Zha, F. Ouyang, Efficient Zr-doped FS–TiO2/SiO2 photocatalyst and its performance in acrylonitrile removal under simulated sunlight, Applied Physics A, 126 (2020) 1-10.
[152] N. Zhong, H. Shima, H. Akinaga, Mechanism of the performance improvement of TiO2-x-based field-effect transistor using SiO2 as gate insulator, AIP advances, 1 (2011) 032167.
[153] D. Komaraiah, E. Radha, J. Sivakumar, M.R. Reddy, R. Sayanna, Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films, Optical Materials, 108 (2020) 110401.
[154] Y. Duan, M. Zhang, L. Wang, F. Wang, L. Yang, X. Li, C. Wang, Plasmonic Ag-TiO2−x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies, Applied Catalysis B: Environmental, 204 (2017) 67-77.
[155] R. Mashkovtsev, L. Isaenko, Electron paramagnetic resonance and optical absorption spectra of Rh impurity ion in KTiOAsO4 single crystal, Ferroelectrics, 330 (2006) 85-92.
[156] K. Maeda, H. Masuda, K. Domen, Effect of electrolyte addition on activity of (Ga1−xZnx)(N1−xOx) photocatalyst for overall water splitting under visible light, Catalysis Today, 147 (2009) 173-178.
[157] M. Gao, P.K.N. Connor, G.W. Ho, Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination, Energy & Environmental Science, 9 (2016) 3151-3160.
[158] Y. Li, F. He, S. Peng, D. Gao, G. Lu, S. Li, Effects of electrolyte NaCl on photocatalytic hydrogen evolution in the presence of electron donors over Pt/TiO2, Journal of Molecular Catalysis A: Chemical, 341 (2011) 71-76.
[159] Y. Li, G. Lu, S. Li, Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2, Applied Catalysis A: General, 214 (2001) 179-185.
[160] M. Krivec, R. Dillert, D.W. Bahnemann, A. Mehle, J. Štrancar, G. Dražić, The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor, Physical Chemistry Chemical Physics, 16 (2014) 14867-14873.
[161] L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 6 (6), 3921–3931 (2016), 2016.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80475-
dc.description.abstract利用太陽能驅動的海水光催化在近期受到極大的關注,光催化可使海水同時分解生成氫氣與氧氣,具有低成本、環境友善等優點,特別是太陽能與海水的豐富資源,使得光催化分解海水具有環境永續性,在未來製造綠色化學燃料方面具有廣闊的前景。而如何提高陽光使用率、增進光催化穩定性,以及如何同步分離產物中的氫氣與氧氣成為了發展的重要課題。
新型雙胞光反應器可以使產物中的氫氣與氧氣分離到不同腔室中,從而降低了分離氫氣與氧氣的成本、減少氧氣與氫氣混合的爆炸風險,同時防止逆反應發生。雙胞反應器由兩個部分組成,一側為還原側,裝有產H2光觸媒,另一側氧化側,裝有產O2光觸媒,兩個反應室中間以陽離子或陰離子交換膜作為間隔,兩邊以離子交互擴散,傳遞兩側的電荷。
在單反應器實驗上,使用異質結構光觸媒,其中產H2光觸媒合成Pt/GaP-C3N4 (PGC)、Pt/GaP-TiO2-SiO2:Rh (PGTSR)、Rh@Cr2O3/SrTiO3:Rh (RCSTOA),產O2光觸媒則採用Cl-BiVO4-SiO2 (CBS)。在水分解實驗,比較去離子水、人造海水和天然海水在模擬陽光照射下的光催化性能。運用XRD、FTIR、UV-Vis、BET、SEM、TEM、HRTEM、EDS、XPS、PL、TRPL和UPS進行觸媒鑑定。其中光觸媒PGTSR具有均勻圓型外貌(粒徑20 nm)、擁有高數量Ti3+的缺陷和氧空缺(VO)以致有很多的電洞儲存量在複合型的TiO2-SiO2:Rh、可密切接觸GaP形成Z-Scheme的異質結構光觸媒。為了要達到高光催化效率,表面異質結光觸媒CBS的曝露晶面主要是{010}-{101}反應基,發現是在Cl-在水熱法合成時形成的。另一方面核殼結構Rh@Cr2O3的薄層約5-20 nm厚度,是和SrTiO3:Al密切地接觸在一起。這個核殼結構是在RCSTOA展現光催化很重要的角色,導致即使沒有犧牲劑,也有最高的光催化水分解效能,不過在酸性水溶液,卻穩定性不佳。
光催化水分解分離H2和O2的實驗是用雙胞光反應器,以模擬太陽光照射進行。Z-Secheme光催化在HEP-OEP-Mediator-Membrane 的系統,能有效的光催化分解水和同步分離H2和O2,在Z-Secheme的光催化會受到反應溶液pH值的影響很大。在PGTSR-CBS-Fe3+/2+-Nafion系統,以pH=2.40呈現最高的光催化活性,達到產H2率68/35 µmol.g-1,但在RCSTOA-CBS-IO3-/I--(Neosepta or FAA)系統,需要還原端在pH=10.0和產氧端在pH=4.0,才能達到分別是544/183 µmol.g-1 和721/280 µmol.g-1。綜上結果顯示異質結構光觸媒有發展潛力,也增進人工光合作用在光催化水分解產氫的效能。

關鍵詞:Z-Scheme異質結光觸媒;表面異質結光觸媒;核-殼結構;雙胞反應器;光催壞海水分解
zh_TW
dc.description.abstractUsing solar-driven photocatalytic seawater splitting process to produce simultaneously hydrogen and oxygen gas has attracted enormous attention as the promising prospects in the future to create green chemical fuels due to its low-cost, friendly environment and specially taking advantage abundant unlimited resources from sunlight and seawater. A perfect engineering for improving this process efficiency should fulfill some requirements including high photoactivity, photostability for long-term usages as well as simultaneous separation of hydrogen and oxygen gas from photocatalytic seawater splitting.
A novel twin photoreactor can split and separate hydrogen and oxygen into each compartment lead to depressing explosion risk and lowering separation cost of H2-O2 mixture as well as preventing the backward reaction. The major components in twin photoreactor include H2-photocatalyst and O2-photocatalyst placed in reduction side and oxidation side, respectively, and shuttle mediators circulated through cation or anion exchanged membrane.
In this study, heterojunction photocatalysts Pt/GaP-C3N4 (PGC), Pt/GaP-TiO2-SiO2:Rh (PGTSR), Rh@Cr2O3/SrTiO3:Rh (RCSTOA) for H2-photocatalysts and Cl-BiVO4-SiO2 (CBS) for O2-photocatalyst were prepared and applied in photocatalytic DI H2O, artificial and natural seawater splitting under simulated sunlight illumination. Based on the characteristic analysis results of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Visible light (UV-Vis), Specific surface area (BET), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HRTEM), Energy-dispersive X-ray spectroscopy (EDS), Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), Photoluminescence (PL), Ultraviolet photoelectron spectroscopy (UPS) measurements, heterojunction photocatalyst PGTSR with the uniform spherical morphology (20 nm) possessed the high Ti3+ defects and oxygen vacancy (VO) sites with high rich-hole reservoir in TiO2-SiO2:Rh composite which intimately contacted with high-electron reservoir of GaP in Z-scheme heterojunction photocatalyst. In order to achieve a high photoactivity efficiency, the surface heterojunction photocatalyst CBS with dominantly exposed {010}-{101} reactive facets was formed through Cl- ion hydrothermal treatment. On the other hand, the thin layer of Rh@Cr2O3 core-shell structure with the thickness about 5-20 nm present strong intimate contact with SrTiO3:Al photocatalyst. This core-shell structure displayed the important role for RCSTOA photoactivity lead to its highest photocatalytic water splitting performance without using artificial agents, but this photocatalyst has low stability in acidic condition.
The separated H2 evolution from O2 through the photocatalytic seawater splitting was also carried out in a twin photoreactor under simulated sunlight irradiation. The Z-scheme photocatalysis including HEP-OEP-Mediator-Membrane system can work and be effective to split and separate hydrogen from oxygen from photocatalytic water-splitting performance. The photoactivity of Z-scheme photocatalysis system strongly depended on pH of the reactant solution. In details PGTSR-CBS-Fe3+/2+-Nafion system displayed the highest photoactivity in seawater splitting at pH 2.40 reached HER/OER of 68/35 µmol.g-1, while the highest performance RCSTOA-CBS-IO3-/I--(Neosepta or FAA) system exhibited at pH 10.0 for reduction side and pH 4.0 for oxidation side achieved of 544/183 µmol.g-1 and 721/280 µmol.g-1, respectively. The results indicate a promising construct of heterojunction photocatalyst as well as the improvement of artificial photosynthesis system for overall photocatalytic seawater splitting.
en
dc.description.provenanceMade available in DSpace on 2022-11-24T03:07:26Z (GMT). No. of bitstreams: 1
U0001-2510202114032500.pdf: 9708975 bytes, checksum: df3e8f9e6fcca16309338a74986d848f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsAcknowledgement i
摘要 ii
Abstract iv
Abbreviations vi
Table of Contents viii
List of Tables xi
List of Figures xiii
Chapter 1. Introduction 1
1.1. World energy demand 1
1.2. Renewable energy – Alternative energy sources 2
1.2.1. Hydrogen energy 3
1.2.2. Hydrogen production 4
1.2.2.1. Steam reforming method 5
1.2.2.2. Coal gasification (CG process) 6
1.2.2.3. Electrolysis of water 6
1.2.2.4. Biomass path ways 6
1.2.2.5. Hydrogen production from solar energy 7
1.3. Photocatalytic water splitting review 9
1.3.1. Photocatalytic water splitting principle 11
1.3.2. Development of water-splitting photocatalysts 14
1.3.2.1. Heterojunction photocatalysts 14
1.3.2.2. Other strategies for photocatalyst design 23
1.3.3. Solution in photocatalytic water splitting process 30
1.3.4. Photoreactor design 33
1.3.5. Redox mediator couples 38
1.3.5.1. Fe3+/Fe2+ redox system 39
1.3.5.2. IO3-/I- redox system 40
1.3.5.3. Metal complex redox system 44
1.3.6. Membranes 45
1.3.6.1. Cation-exchange membrane (CEM) 46
1.3.6.2. Anion-exchange membrane (AEM) 47
1.4. Summary of photocatalytic water splitting 48
Chapter 2. Objective of this study 58
Chapter 3. Experiments 62
3.1. Chemicals, equipment and instruments 62
3.1.1. Chemicals 62
3.1.2. Experimental equipment 63
3.1.3. Instruments for characterization analysis 64
3.2. Photocatalyst preparation 64
3.2.1. H2-photocatalyst synthesis 64
3.2.1.1. Pt/GaP-C3N4 (PGC) photocatalyst 64
3.2.1.2. Pt/GaP-TiO2-SiO2:Rh (PGTSR) 66
3.2.1.3. Rh@C2O3/SrTiO3:Al (RCSTOA) 68
3.2.2. O2-photocatalyst synthesis 70
3.2.3. [Co(phen)3]3+/2+ shuttle mediator preparation 71
3.3. Characterization methods 72
3.3.1 Powder X-ray diffraction (XRD) 72
3.3.2. Fourier-transform infrared spectroscopy (FT-IR) 73
3.3.3. UV-Vis absorption spectroscopy (UV-Vis) 74
3.3.4. Specific surface area (BET) 75
3.3.5. Micromorphology analysis 75
3.3.5.1. SEM and EDS 76
3.3.5.2. TEM-HRTEM 77
3.3.6. X-ray photoelectron spectroscopy (XPS) 77
3.3.7. Photoluminescence (PL) 78
3.3.8. Electron paramagnetic resonance (EPR) 79
3.3.9. Ultraviolet photoelectron spectroscopy (UPS) 80
3.4. Photocatalytic water splitting 81
3.4.1. Gas chromatography-Thermal conductivity detector (GC-TCD) 81
3.4.2. Gas calibration on GC 82
3.4.2.1. H2 calibration 83
3.4.2.1. O2 and N2 calibration 84
3.4.3. Anion calibration on Ion Chromatography (IC) 86
3.4.4. Light sources 87
3.4.5. Membrane pretreatment 88
3.4.5.1. Nafion membrane 88
3.4.5.2. Neosepta membrane 89
3.4.5.3. Fumasep FAA membrane 90
3.4.6. Photocatalytic water splitting reaction 90
Chapter 4. Results and Discussion 93
4.1. Characterization and photoactivity of prepared photocatalysts 93
4.1.1. Pt/GaP-C3N4 (PGC) photocatalyst 93
4.1.1.1. Characterization analysis 93
4.1.1.2. Photocatalytic water splitting performance in single reactor 102
4.1.2. Pt/GaP-TiO2-SiO2:Rh (PGTSR) photocatalyst 108
4.1.2.1. Characterization analysis 108
4.1.2.2. Photocatalytic water splitting performance in single reactor 117
4.1.3. Rh@Cr2O3/SrTiO3:Al (RCSTOA) photocatalyst 122
4.1.3.1. Characterization analysis 122
4.1.3.2. Photocatalytic water splitting performance in single reactor 127
4.1.4. Cl-BiVO4-SiO2 (CBS) photocatalyst 133
4.1.4.1. Characterization analysis 133
4.1.4.2. Photocatalytic water oxidation performance in single reactor 136
4.2. H2-Separated performance in twin photoreactor from water splitting 139
4.2.1. Diffusivity evaluation 139
4.2.2. Twin photoreactor with cation-exchanged membrane 142
4.2.3. Twin photoreactor with membrane filter (MF) 145
4.2.4. Twin photoreactor with anion-exchanged membrane 148
4.2.4.1. Neosepta membrane 148
4.2.4.1. FAA membrane 150
4.3. Summary 154
Chapter 5. Conclusion and Outlook 158
References 161
Personal Biography 180
Appendices 183
-
dc.language.isozh_TW-
dc.subject雙胞反應器zh_TW
dc.subject光催壞海水分解zh_TW
dc.subjectZ-Scheme異質結光觸媒zh_TW
dc.subject表面異質結光觸媒zh_TW
dc.subject核-殼結構zh_TW
dc.subjectphotocatalytic seawater splittingen
dc.subjectZ-scheme heterojunction photocatalysten
dc.subjectsurface heterojunction photocatalysten
dc.subjectcore-shell structureen
dc.subjecttwin photoreactoren
dc.title異質結光觸媒以模擬太陽光照射分解海水並同步在雙胞光反應器分離H2和O2zh_TW
dc.titleHeterojunction Photocatalysts for Seawater Splitting in Twin Photoreactor to Separate H2 and O2 under Simulated Sunlight Illuminationen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee張淑閔;鄧熙聖;游文岳;康敦彥;李奕霈;吳嘉文zh_TW
dc.contributor.oralexamcommitteeSue-Min Chang;Hsisheng Teng;Wen Yueh Yu;Dun-Yen Kang;Yi-Pei Li;Kevin C.-W. Wuen
dc.subject.keywordZ-Scheme異質結光觸媒,表面異質結光觸媒,核-殼結構,雙胞反應器,光催壞海水分解,zh_TW
dc.subject.keywordZ-scheme heterojunction photocatalyst,surface heterojunction photocatalyst,core-shell structure,twin photoreactor,photocatalytic seawater splitting,en
dc.relation.page196-
dc.identifier.doi10.6342/NTU202104137-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2021-10-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved