請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80461完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕志鴻(Tzihong Chiueh) | |
| dc.contributor.author | Shu-Rong Chen | en |
| dc.contributor.author | 陳姝蓉 | zh_TW |
| dc.contributor.author | f97222062 | |
| dc.date.accessioned | 2022-11-24T03:07:07Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.available | 2022-11-24T03:07:07Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-14 | |
| dc.identifier.citation | N. C. Amorisco, A. Agnello, and N. W. Evans. The core size of the Fornax dwarf spheroidal. Mon. Not. R. Astron. Soc., 429:L89–L93, February 2013. N. C. Amorisco and N. W. Evans. A Troublesome Past: Chemodynamics of the Fornax Dwarf Spheroidal. Astrophys. J. Lett., 756:L2, September 2012. N. C. Amorisco and N. W. Evans. Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals. Mon. Not. R. Astron. Soc., 419:184–196, January 2012. N. C. Amorisco and N. W. Evans. Line profiles from discrete kinematic data. Mon. Not. R. Astron. Soc., 424:1899–1913, August 2012. Lm An, Stephen Brooks, and Andrew Gelman. Stephen brooks and andrew gelman. Journal of Computational and Graphical Statistics, 7:434–455, 1998. K. S. Arraki, A. Klypin, S. More, and S. Trujillo-Gomez. Effects of baryon removal on the structure of dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc., 438:1466–1482, February 2014. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell. String axiverse. Phys. Rev. D, 81:123530, 2010. G. Battaglia, A. Helmi, and M. Breddels. Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. New Astron. Rev., 57:52–79, September 2013. G. Battaglia, A. Helmi, E. Tolstoy, M. Irwin, V. Hill, and P. Jablonka. The Kinematic Status and Mass Content of the Sculptor Dwarf Spheroidal Galaxy. Astrophys. J. Lett., 681:L13, July 2008. G. Battaglia, M. Irwin, E. Tolstoy, T. de Boer, and M. Mateo. The Extensive Age Gradient of the Carina Dwarf Galaxy. Astrophys. J. Lett., 761:L31, December 2012. G. Battaglia, E. Tolstoy, A. Helmi, M. Irwin, P. Parisi, V. Hill, and P. Jablonka. Study of the Sextans dwarf spheroidal galaxy from the DART Ca II triplet survey. Mon. Not. R. Astron. Soc., 411:1013–1034, February 2011. C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard, K. M. Smith, R. S. Hill, B. Gold, M. Halpern, E. Komatsu, M. R. Nolta, L. Page, D. N. Spergel, E. Wollack, J. Dunkley, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Supp., 208:20, October 2013. A. J. Benson, C. G. Lacey, C. M. Baugh, S. Cole, and C. S. Frenk. The effects of photoionization on galaxy formation - I. Model and results at z=0. Mon. Not. R. Astron. Soc., 333:156–176, June 2002. E. Bertschinger. Self-similar secondary infall and accretion in an Einstein-de Sitter universe. Astrophys. J. Supp., 58:39–65, May 1985. James Binney and Scott Tremaine. Galactic Dynamics. Princeton Univ. Press, Princeton, 2008. C. G. B¨ohmer and T. Harko. Can dark matter be a Bose Einstein condensate? J. Cosmol. Astropart. Phys., 6:025, June 2007. A. Borriello and P. Salucci. The dark matter distribution in disc galaxies. Mon. Not. R. Astron. Soc., 323:285–292, May 2001. M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc., 415:L40–L44, July 2011. M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat. The Milky Way’s bright satellites as an apparent failure of ΛCDM. Mon. Not. R. Astron. Soc., 422:1203–1218, May 2012. B. Bozek, D. J. E. Marsh, J. Silk, and R. F. G. Wyse. Galaxy UV-luminosity function and reionization constraints on axion dark matter. Mon. Not. R. Astron. Soc., 450:209–222, June 2015. M. A. Breddels, A. Helmi, R. C. E. van den Bosch, G. van de Ven, and G. Battaglia. Orbit-based dynamical models of the Sculptor dSph galaxy. Mon. Not. R. Astron. Soc., 433:3173–3189, August 2013. A. M. Brooks, M. Kuhlen, A. Zolotov, and D. Hooper. A Baryonic Solution to the Missing Satellites Problem. Astrophys. J., 765:22, March 2013. J. S. Bullock, A. V. Kravtsov, and D. H. Weinberg. Reionization and the Abundance of Galactic Satellites. Astrophys. J., 539:517–521, August 2000. A. Burkert. The Structure of Dark Matter Halos in Dwarf Galaxies. Astrophys. J. Lett., 447:L25, July 1995. E. Calabrese and D. N. Spergel. Ultra-Light Dark Matter in Ultra-Faint Dwarf Galaxies. ArXiv e-prints, March 2016. P.-H. Chavanis. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results. Phys. Rev. D, 84(4):043531, August 2011. T. Chiueh. Why is the Dark Axion Mass $10ˆ{-22}$ eV? arXiv:1409.0380, 2014. S. Cole, W. J. Percival, J. A. Peacock, P. Norberg, C. M. Baugh, C. S. Frenk, I. Baldry, J. Bland-Hawthorn, T. Bridges, R. Cannon, M. Colless, C. Collins, W. Couch, N. J. G. Cross, G. Dalton, V. R. Eke, R. De Propris, S. P. Driver, G. Efstathiou, R. S. Ellis, K. Glazebrook, C. Jackson, A. Jenkins, O. Lahav, I. Lewis, S. Lumsden, S. Maddox, D. Madgwick, B. A. Peterson, W. Sutherland, and K. Taylor. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc., 362:505–534, September 2005. M. G. Coleman, G. S. Da Costa, J. Bland-Hawthorn, and K. C. Freeman. A Wide-Field Survey of the Fornax Dwarf Spheroidal Galaxy. Astron. J., 129:1443–1464, March 2005. P. Col´ın, V. Avila-Reese, and O. Valenzuela. Substructure and Halo Density Profiles in a Warm Dark Matter Cosmology. Astrophys. J., 542:622–630, October 2000. P. S. Corasaniti, S. Agarwal, D. J. E. Marsh, and S. Das. Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts. ArXiv e-prints, November 2016. S. Davidson. Axions: Bose Einstein condensate or classical field? Astroparticle Physics, 65:101–107, May 2015. W. J. G. de Blok. Halo Mass Profiles and Low Surface Brightness Galaxy Rotation Curves. Astrophys. J., 634:227–238, November 2005. W. J. G. de Blok and A. Bosma. High-resolution rotation curves of low surface brightness galaxies. Astron. Astrophys., 385:816–846, April 2002. W. J. G. de Blok, S. S. McGaugh, and V. C. Rubin. High-Resolution Rotation Curves of Low Surface Brightness Galaxies. II. Mass Models. Astron. J., 122:2396–2427, November 2001. A. El-Zant, I. Shlosman, and Y. Hoffman. Dark Halos: The Flattening of the Density Cusp by Dynamical Friction. Astrophys. J., 560:636–643, October 2001. R. A. Flores and J. R. Primack. Observational and theoretical constraints on singular dark matter halos. Astrophys. J. Lett., 427:L1–L4, May 1994. C. S. Frenk and S. D. M. White. Dark matter and cosmic structure. Annalen der Physik, 524:507–534, October 2012. T. Goerdt, B. Moore, J. I. Read, J. Stadel, and M. Zemp. Does the Fornax dwarf spheroidal have a central cusp or core? Mon. Not. R. Astron. Soc., 368:1073–1077, May 2006. A. X. Gonz´ales-Morales, D. J. E. Marsh, J. Pe˜narrubia, and L. Ure˜na-L´opez. Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies. ArXiv e-prints, September 2016. J. Goodman. Repulsive dark matter. New Astron., 5:103–107, April 2000. F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, J. Wadsley, P. Jonsson, B. Willman, G. Stinson, T. Quinn, and P. Madau. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature, 463:203–206, January 2010. F. Governato, A. Zolotov, A. Pontzen, C. Christensen, S. H. Oh, A. M. Brooks, T. Quinn, S. Shen, and J. Wadsley. Cuspy no more: how outflows affect the central dark matter and baryon distribution in Λ cold dark matter galaxies. Mon. Not. R. Astron. Soc., 422:1231–1240, May 2012. A. H. Guth, M. P. Hertzberg, and C. Prescod-Weinstein. Do dark matter axions form a condensate with long-range correlation? Phys. Rev. D, 92(10):103513, November 2015. F. S. Guzm´an and T. Matos. LETTER TO THE EDITOR: Scalar fields as dark matter in spiral galaxies. Classical and Quantum Gravity, 17:L9–L16, January 2000. W.K. Hastings. Monte carlo samping methods using markov chains and their applications. Biometrika, 57:97–109, 1970. R. Hlozek, D. Grin, D. J. E. Marsh, and P. G. Ferreira. A search for ultralight axions using precision cosmological data. Phys. Rev. D, 91(10):103512, May 2015. W. Hu, R. Barkana, and A. Gruzinov. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. Physical Review Letters, 85:1158–1161, August 2000. William Michael Irvine. Local Irregularities in a Universe Satisfying the Cosmological Principle. PhD thesis, HARVARD UNIVERSITY., January 1961. M. Irwin and D. Hatzidimitriou. Structural parameters for the Galactic dwarf spheroidals. Mon. Not. R. Astron. Soc., 277:1354–1378, December 1995. J. R. Jardel and K. Gebhardt. The Dark Matter Density Profile of the Fornax Dwarf. Astrophys. J., 746:89, February 2012. J. R. Jardel and K. Gebhardt. Variations in a Universal Dark Matter Profile for Dwarf Spheroidals. Astrophys. J. Lett., 775:L30, September 2013. M. I. Khlopov, B. A. Malomed, and I. B. Zeldovich. Gravitational instability of scalar fields and formation of primordial black holes. Mon. Not. R. Astron. Soc., 215:575–589, August 1985. J. Kleyna, M. I. Wilkinson, N. W. Evans, G. Gilmore, and C. Frayn. Dark matter in dwarf spheroidals - II. Observations and modelling of Draco. Mon. Not. R. Astron. Soc., 330:792–806, March 2002. J. T. Kleyna, M. I. Wilkinson, N. W. Evans, and G. Gilmore. Ursa Major: A Missing Low-Mass CDM Halo? Astrophys. J. Lett., 630:L141–L144, September 2005. J. T. Kleyna, M. I. Wilkinson, G. Gilmore, and N. W. Evans. A Dynamical Fossil in the Ursa Minor Dwarf Spheroidal Galaxy. Astrophys. J. Lett., 588:L21–L24, May 2003. A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada. Where Are the Missing Galactic Satellites? Astrophys. J., 522:82–92, September 1999. David Layzer. A Preface to Cosmogony. I. The Energy Equation and the Virial Theorem for Cosmic Distributions. Astrophys. J., 138:174, July 1963. Antony Lewis and Sarah Bridle. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev., D66:103511, 2002. Antony Lewis, Anthony Challinor, and Anthony Lasenby. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J., 538:473–476, 2000. E. L. Lokas. Dark matter distribution in dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc., 333:697–708, July 2002. E. L. Lokas and G. A. Mamon. Dark matter distribution in the Coma cluster from galaxy kinematics: breaking the mass-anisotropy degeneracy. Mon. Not. R. Astron. Soc., 343:401–412, August 2003. V. Lora and J. Maga˜na. Is Sextans dwarf galaxy in a scalar field dark matter halo? J. Cosmol. Astropart. Phys., 9:011, September 2014. V. Lora, J. Maga˜na, A. Bernal, F. J. S´anchez-Salcedo, and E. K. Grebel. On the mass of ultra-light bosonic dark matter from galactic dynamics. J. Cosmol. Astropart. Phys., 2:011, February 2012. M. R. Lovell, V. Eke, C. S. Frenk, L. Gao, A. Jenkins, T. Theuns, J. Wang, S. D. M. White, A. Boyarsky, and O. Ruchayskiy. The haloes of bright satellite galaxies in a warm dark matter universe. Mon. Not. R. Astron. Soc., 420:2318–2324, March 2012. Y.-Z. Ma, G. Hinshaw, and D. Scott. WMAP Observations of Planck ESZ Clusters. Astrophys. J., 771:137, July 2013. A. V. Macci`o, S. Paduroiu, D. Anderhalden, A. Schneider, and B. Moore. Cores in warm dark matter haloes: a Catch 22 problem. Mon. Not. R. Astron. Soc., 424:1105–1112, August 2012. E. Madelung. Quantentheorie in hydrodynamischer Form. Zeitschrift fur Physik, 40:322–326, March 1927. D. J. E. Marsh. Axion Cosmology. ArXiv e-prints, October 2015. D. J. E. Marsh and P. G. Ferreira. Ultralight scalar fields and the growth of structure in the Universe. Phys. Rev. D, 82:103528, 2010. D. J. E. Marsh and A.-R. Pop. Axion dark matter, solitons and the cusp-core problem. Mon. Not. R. Astron. Soc., 451:2479–2492, August 2015. D. J. E. Marsh and J. Silk. A model for halo formation with axion mixed dark matter. Mon. Not. R. Astron. Soc., 437:2652–2663, January 2014. S. Mashchenko. Mass Models of Dwarf Spheroidal Galaxies with Variable Stellar Anisotropy. I. Jeans Analysis. ArXiv e-prints, April 2015. S. Mashchenko, A. Sills, and H. M. Couchman. Constraining Global Properties of the Draco Dwarf Spheroidal Galaxy. Astrophys. J., 640:252–269, March 2006. S. Mashchenko, J. Wadsley, and H. M. P. Couchman. Stellar Feedback in Dwarf Galaxy Formation. Science, 319:174, January 2008. M. Mateo, E. W. Olszewski, and M. G. Walker. The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run? Astrophys. J., 675:201–233, March 2008. M. L. Mateo. Dwarf Galaxies of the Local Group. Annu. Rev. Astron. Astrophys, 36:435–506, 1998. T. Matos, F. S. Guzm´an, and L. A. Ure˜na-L´opez. Scalar field as dark matter in the universe. Classical and Quantum Gravity, 17:1707–1712, April 2000. D. Merritt. Distribution functions for spherical galaxies. Mon. Not. R. Astron. Soc., 214:25P–28P, June 1985. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21:1087–1092, June 1953. B. Moore. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature, 370:629–631, August 1994. B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi. Dark Matter Substructure within Galactic Halos. Astrophys. J. Lett., 524:L19–L22, October 1999. R. R. Mu˜noz, S. R. Majewski, S. Zaggia, W. E. Kunkel, P. M. Frinchaboy, D. L. Nidever, D. Crnojevic, R. J. Patterson, J. D. Crane, K. V. Johnston, S. T. Sohn, R. Bernstein, and S. Shectman. Exploring Halo Substructure with Giant Stars. XI. The Tidal Tails of the Carina Dwarf Spheroidal Galaxy and the Discovery of Magellanic Cloud Stars in the Carina Foreground. Astrophys. J., 649:201–223, September 2006. J. F. Navarro, V. R. Eke, and C. S. Frenk. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc., 283:L72–L78, December 1996. J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical Clustering. Astrophys. J., 490:493–508, December 1997. M. Odenkirchen, E. K. Grebel, D. Harbeck, W. Dehnen, H.-W. Rix, H. J. Newberg, B. Yanny, J. Holtzman, J. Brinkmann, B. Chen, I. Csabai, J. J. E. Hayes, G. Hennessy, R. B. Hindsley, Z. Ivezi´c, E. K. Kinney, S. J. Kleinman, ˇ D. Long, R. H. Lupton, E. H. Neilsen, A. Nitta, S. A. Snedden, and D. G. York. New Insights on the Draco Dwarf Spheroidal Galaxy from the Sloan Digital Sky Survey: A Larger Radius and No Tidal Tails. Astron. J., 122:2538–2553, November 2001. S.-H. Oh, W. J. G. de Blok, F. Walter, E. Brinks, and R. C. Kennicutt, Jr. High-Resolution Dark Matter Density Profiles of THINGS Dwarf Galaxies: Correcting for Noncircular Motions. Astron. J., 136:2761–2781, December 2008. L. P. Osipkov. Spherical systems of gravitating bodies with an ellipsoidal velocity distribution. Soviet Astronomy Letters, 5:42–44, 1979. Jeremiah P. Ostriker and Christopher F. McKee. Astrophysical blastwaves. Rev. Mod. Phys., 60:1–68, Jan 1988. P. J. E. Peebles. Fluid Dark Matter. Astrophys. J. Lett., 534:L127–L129, May 2000. C. Pfrommer, P. Chang, and A. E. Broderick. The Cosmological Impact of Luminous TeV Blazars. III. Implications for Galaxy Clusters and the Formation of Dwarf Galaxies. Astrophys. J., 752:24, June 2012. Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck 2015 results. XIII. Cosmological parameters. ArXiv e-prints, February 2015. A. Pontzen and F. Governato. Cold dark matter heats up. Nature, 506:171–178, February 2014. J. I. Read and G. Gilmore. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc., 356:107–124, January 2005. V. H. Robles and T. Matos. Exact Solution to Finite Temperature SFDM: Natural Cores without Feedback. Astrophys. J., 763:19, January 2013. V. Sahni and L. Wang. New cosmological model of quintessence and dark matter. Phys. Rev. D, 62(10):103517, November 2000. P. Salucci, M. I. Wilkinson, M. G. Walker, G. F. Gilmore, E. K. Grebel, A. Koch, C. Frigerio Martins, and R. F. G. Wyse. Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws. Mon. Not. R. Astron. Soc., 420:2034–2041, March 2012. F. J. S´anchez-Salcedo, J. Reyes-Iturbide, and X. Hernandez. An extensive study of dynamical friction in dwarf galaxies: the role of stars, dark matter, halo profiles and MOND. Mon. Not. R. Astron. Soc., 370:1829–1840, August 2006. A. Sarkar, R. Mondal, S. Das, S. K. Sethi, S. Bharadwaj, and D. J. E. Marsh. The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts. J. Cosmol. Astropart. Phys., 4:012, April 2016. H.-Y. Schive, T. Chiueh, and T. Broadhurst. Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys., 10:496–499, 2014. (SCB14a). H.-Y. Schive, T. Chiueh, T. Broadhurst, and K.-W. Huang. Contrasting Galaxy Formation from Quantum Wave Dark Matter, ψDM, with ΛCDM, using Planck and Hubble Data. Astrophys. J., 818:89, February 2016. H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T. Chiueh, T. Broadhurst, and W.-Y. P. Hwang. Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Phys. Rev. Lett., 113(26):261302, 2014. (S14b). Hsi-Yu Schive, Tzihong Chiueh, and Tom Broadhurst. Soliton Random Walk and the Cluster-Stripping Problem in Ultralight Dark Matter. Phys. Rev. Lett., 124(20):201301, May 2020. Hsi-Yu Schive, John A. ZuHone, Nathan J. Goldbaum, Matthew J. Turk, Massimo Gaspari, and Chin-Yu Cheng. GAMER-2: a GPU-accelerated adaptive mesh refinement code - accuracy, performance, and scalability. Mon. Not. R. Astron. Soc., 481(4):4815–4840, Dec 2018. P. Sikivie and Q. Yang. Bose-Einstein Condensation of Dark Matter Axions. Physical Review Letters, 103(11):111301, September 2009. S.-J. Sin. Late-time phase transition and the galactic halo as a Bose liquid. Phys. Rev. D, 50:3650–3654, September 1994. T. A. Smecker-Hane, P. B. Stetson, J. E. Hesser, and M. D. Lehnert. The stellar populations of the Carina dwarf spheroidal Galaxy. 1: A new color magnitude diagram for the giant and horizontal branches. Astron. J., 108:507–513, August 1994. V. Smolˇci´c, D. B. Zucker, E. F. Bell, M. G. Coleman, H. W. Rix, E. Schinnerer, Z. Ivezi´c, and A. Kniazev. Improved Photometry of Sloan Digital Sky Survey ˇ Crowded-Field Images: Structure and Dark Matter Content in the Dwarf Spheroidal Galaxy Leo I. Astron. J., 134:1901–1915, November 2007. R. S. Somerville. Can Photoionization Squelching Resolve the Substructure Crisis? Astrophys. J. Lett., 572:L23–L26, June 2002. D. N. Spergel and P. J. Steinhardt. Observational Evidence for Self-Interacting Cold Dark Matter. Physical Review Letters, 84:3760–3763, April 2000. L. E. Strigari, C. S. Frenk, and S. D. M. White. Kinematics of Milky Way satellites in a Lambda cold dark matter universe. Mon. Not. R. Astron. Soc., 408:2364–2372, November 2010. L. E. Strigari, C. S. Frenk, and S. D. M. White. Dynamical models for the Sculptor dwarf spheroidal in a Lambda CDM universe. ArXiv e-prints, June 2014. P. Svrcek and E. Witten. Axions in string theory. Journal of High Energy Physics, 6:051, June 2006. M. Tegmark, D. J. Eisenstein, M. A. Strauss, D. H. Weinberg, M. R. Blanton, J. A. Frieman, M. Fukugita, J. E. Gunn, A. J. S. Hamilton, G. R. Knapp, R. C. Nichol, J. P. Ostriker, N. Padmanabhan, W. J. Percival, D. J. Schlegel, on, S. Kent, D. Q. ˇ Lamb, B. C. Lee, H. Lin, J. Loveday, R. H. Lupton, J. A. Munn, K. Pan, C. Park, J. Peoples, J. R. Pier, A. Pope, M. Richmond, C. Rockosi, R. Scranton, R. K. Sheth, A. Stebbins, C. Stoughton, I. Szapudi, D. L. Tucker, D. E. vanden Berk, B. Yanny, and D. G. York. Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D, 74(12):123507, December 2006. E. J. Tollerud, R. L. Beaton, M. C. Geha, J. S. Bullock, P. Guhathakurta, J. S. Kalirai, S. R. Majewski, E. N. Kirby, K. M. Gilbert, B. Yniguez, R. J. Patterson, J. C. Ostheimer, J. Cooke, C. E. Dorman, A. Choudhury, and M. C. Cooper. The SPLASH Survey: Spectroscopy of 15 M31 Dwarf Spheroidal Satellite Galaxies. Astrophys. J., 752:45, June 2012. E. Tolstoy, K. A. Venn, M. Shetrone, F. Primas, V. Hill, A. Kaufer, and T. Szeifert. VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. II. Implications for Understanding Galaxy Evolution. Astron. J., 125:707–726, February 2003. M. S. Turner. Coherent scalar-field oscillations in an expanding universe. Phys. Rev. D, 28:1243–1247, September 1983. K. A. Venn, M. Irwin, M. D. Shetrone, C. A. Tout, V. Hill, and E. Tolstoy. Stellar Chemical Signatures and Hierarchical Galaxy Formation. Astron. J., 128:1177–1195, September 2004. M. Vogelsberger, J. Zavala, and A. Loeb. Subhaloes in self-interacting galactic dark matter haloes. Mon. Not. R. Astron. Soc., 423:3740–3752, July 2012. M. Wadepuhl and V. Springel. Satellite galaxies in hydrodynamical simulations of Milky Way sized galaxies. Mon. Not. R. Astron. Soc., 410:1975–1992, January 2011. M. Walker. Dark Matter in the Galactic Dwarf Spheroidal Satellites, page 1039. 2013. M. G. Walker, M. Mateo, E. W. Olszewski, O. Y. Gnedin, X. Wang, B. Sen, and M. Woodroofe. Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies. Astrophys. J. Lett., 667:L53–L56, September 2007. M. G. Walker, M. Mateo, E. W. Olszewski, J. Pe˜narrubia, N. Wyn Evans, and G. Gilmore. A Universal Mass Profile for Dwarf Spheroidal Galaxies? Astrophys. J., 704:1274–1287, October 2009. M. G. Walker, M. Mateo, E. W. Olszewski, B. Sen, and M. Woodroofe. Clean Kinematic Samples in Dwarf Spheroidals: An Algorithm for Evaluating Membership and Estimating Distribution Parameters When Contamination is Present. Astron. J., 137:3109–3138, February 2009. M. G. Walker and J. Pe˜narrubia. A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. Astrophys. J., 742:20, November 2011. D. H. Weinberg, J. S. Bullock, F. Governato, R. Kuzio de Naray, and A. H. G. Peter. Cold dark matter: controversies on small scales. ArXiv e-prints, June 2013. Lawrence M. Widrow and Nick Kaiser. Using the Schroedinger equation to simulate collisionless matter. Astrophys. J., 416:L71–L74, 1993. T.-P. Woo and T. Chiueh. High-Resolution Simulation on Structure Formation with Extremely Light Bosonic Dark Matter. Astrophys. J., 697:850–861, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80461 | - |
| dc.description.abstract | 波暗物質模型的性質由其粒子質量決定,其預測每個星系的暗物質暈中央存有孤粒子,而核心外的暗物質平均密度分布與傳統冷暗物質相同,在其上有隨時間震盪的顆粒狀結構。本論文包括兩個工作,一是利用Jeans分析法搭配暗物質占多數的矮橢球星系的動力學觀測結果,來估算波暗物質模型的粒子質量;二是推導出波暗物質模型在愛因斯坦-德西特宇宙模型下的自相似解。 在第一部分,我們假設八個矮橢球星系中的恆星的觀測資料皆落在暗物質暈中央的孤立子中,利用Jeans分析方法分析兩組不同的觀測資料\cite{Walker2007}和 \cite{Walker2009b}推估得粒子質量為 $1.18_{-0.24}^{+0.28}\times10^{-22}\eV$ 與 $1.79_{-0.33}^{+0.35}\times10^{-22}\eV~(2\sigma)$ 。利用此分析方法估計的波暗物質粒子質量,對矮橢球星系的動力學觀測資料非常敏感,但對恆星密度分布模型較不敏感。文中亦分析矮橢球星系中不同恆星族群的動力學資料,得到與前述一致的粒子質量。 在第二部分,我們推導出波暗物質在愛因斯坦-德西特宇宙模型下隨時間演化的自相似解。自相似解在慣性座標系裡整體的密度分佈隨時間變寬,但在隨宇宙膨脹的共移座標系下看起來隨時間變窄,而在自相似解的座標系中不隨時間改變。自相似解能量為正,與暗物質暈中心亦具有自相似但能量為負的孤立子不同。自相似解對小擾動相對穩定,而在較大的擾動下會演化成中心帶有孤立子、周圍帶有顆粒狀結構的解,這與宇宙學模擬中見到的暗物質暈非常類似。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:07:07Z (GMT). No. of bitstreams: 1 U0001-1002202222535200.pdf: 5291971 bytes, checksum: 0a59579320ccf883e99780e378195354 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 1 Introduction 1 2 Jeans Analysis for Dwarf Spheroidal Galaxies 5 2.1 Jeans Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Wave Dark Matter Halo . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Stellar Density and Velocity Dispersion . . . . . . . . . . . . . 7 2.1.3 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . 7 2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Model Uncertainties . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Soliton + NFW model . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3 Stellar Subpopulations . . . . . . . . . . . . . . . . . . . . . . 22 3 Self-Similar Solutions of Wave Dark Matter Halos 27 3.1 Self-Similar Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Solution Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 Shrinking Core . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 Energy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.3 Single-Shell Trajectory . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Stability and Formation of Self-Similar Solutions . . . . . . . . . . . . 39 3.3.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 Solution Validation . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Stability against Three-Dimensional Perturbations . . . . . . . 41 3.3.4 Forming Self-Similar Solutions with One-Dimensional Simulations . . . . . . 45 3.3.5 Core-Halo Relation . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Summary and Conclusions 54 Appendices 72 A Jeans Analysis for Dwarf Spheroidal Galaxies 73 A.1 Soliton Mass Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.2 Joint Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 B Self-Similar Solutions of Wave Dark Matter Halos 77 B.1 Self-Similar Solution for ρ = 0 . . . . . . . . . . . . . . . . . . . . . . 77 | |
| dc.language.iso | en | |
| dc.subject | 自相似解 | zh_TW |
| dc.subject | 波暗物質 | zh_TW |
| dc.subject | 矮星系 | zh_TW |
| dc.subject | Jeans分析法 | zh_TW |
| dc.subject | Jeans analysis | en |
| dc.subject | self-similar solution | en |
| dc.subject | wave dark matter | en |
| dc.subject | dwarf galaxy | en |
| dc.title | 波暗物質模型中的矮星系與自相似解 | zh_TW |
| dc.title | Dwarf Galaxies and Similarity Solutions in the Wave Dark Matter Scenario | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳建宏(Mao-Chao Lin),奧村哲平(Shih-Chun Lin),梅津敬一,吳俊輝 | |
| dc.subject.keyword | 波暗物質,矮星系,Jeans分析法,自相似解, | zh_TW |
| dc.subject.keyword | wave dark matter,dwarf galaxy,Jeans analysis,self-similar solution, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202200549 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-02-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1002202222535200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
