請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8045
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林依依 | |
dc.contributor.author | Iam-Fei Pun | en |
dc.contributor.author | 潘任飛 | zh_TW |
dc.date.accessioned | 2021-05-19T18:04:13Z | - |
dc.date.available | 2022-08-10 | |
dc.date.available | 2021-05-19T18:04:13Z | - |
dc.date.copyright | 2012-08-17 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-10 | |
dc.identifier.citation | Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical Simulations of Tropical Cyclone-Ocean Interaction with a High-Resolution Coupled Model. J Geophys Res-Atmos, 98, 23245-23263.
Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon Weather Rev, 128, 917-946. Cabanes, C., A. Cazenave, and C. Le Provost, 2001: Sea level rise during past 40 years determined from satellite and in situ observations. Science, 294, 840-842. Carnes, M. R., J. L. Mitchell, and P. W. Dewitt, 1990: Synthetic Temperature Profiles Derived from Geosat Altimetry - Comparison with Air-Dropped Expendable Bathythermograph Profiles. J Geophys Res-Oceans, 95, 17979-17992. Cazenave, A., and F. Remy, 2011: Sea level and climate: measurements and causes of changes. Wires Clim Change, 2, 647-662. Cazenave, A., and Coauthors, 2009: Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet Change, 65, 83-88. Chaigneau, A., A. Gizolme, and C. Grados, 2008: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog Oceanogr, 79, 106-119. Chambers, D. P., 2006: Observing seasonal steric sea level variations with GRACE and satellite altimetry, J Geophys Res, 111. Chan, J. C. L., 2006: Comment on 'Changes in tropical cyclone number, duration, and intensity in a warming environment'. Science, 311. Chan, J. C. L., 2007: Interannual variations of intense typhoon activity. Tellus A, 59, 455-460. Chang, S. W., and R. A. Anthes, 1979: Mutual Response of the Tropical Cyclone and the Ocean. J Phys Oceanogr, 9, 128-135. Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys Res Lett, 34. Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog Oceanogr, 91, 167-216. Cheney, R. E., 1982: Comparison Data for Seasat Altimetry in the Western North-Atlantic. J Geophys Res-Oc Atm, 87, 3247-3253. Chow, C. H., J. H. Hu, L. R. Centurioni, and P. P. Niiler, 2008: Mesoscale Dongsha Cyclonic Eddy in the northern Asouth China Sea by drifter and satellite observations. J Geophys Res-Oceans, 113. Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon Weather Rev, 131, 1783-1796. D'Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys Res Lett, 34. D'Asaro, E., and Coauthors, 2011: Typhoon-ocean interaction in the western North Pacific: Part 1. Oceanography, 24, 24-31. Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 1090-U1096. Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J Geophys Res-Oceans, 105, 19477-19498. Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 92-95. Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665-669. Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J Atmos Sci, 61, 843-858. Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688. Fofonoff, N. P., and R. C. Millard, 1983: Algorithms for computation of fundamental properties of seawater. UNESCO technical paper in marine science 44, UNESCO. Fu, L. L., E. J. Christensen, C. A. Yamarone, M. Lefebvre, Y. Menard, M. Dorrer, and P. Escudier, 1994: Topex/Poseidon Mission Overview. J Geophys Res-Oceans, 99, 24369-24381. Fu, L.L., D. Stammer, B. B. Leben, and D. B. Chelton, 2003. Improved spatial resolution of ocean surface topography from the TOPEX/Poseidon – Jason-1 tandem altimeter mission, EOS, Trans. Amer. Geophys. Union, 84, 247-248. Gallacher, P. C., R. Rotunno, and K. A. Emanuel, 1989: Tropical cyclogenesis in a coupled ocean-atmosphere model. 18th Conference on Hurricanes and Tropical Meteorology, American Meteorological Society. Gallina G. M., and C. S. Velden, 2002: Environmental wind shear and tropical cyclone intensity change using enhanced satellite derived wind information. Preprints, 25th Conference Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 172-173. Gilson, J., D. Roemmich, B. Cornuelle, and L. L. Fu, 1998: Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific. J Geophys Res-Oceans, 103, 27947-27965. Goni, G., S. Kamholz, S. Garzoli, and D. Olson, 1996: Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. J Geophys Res-Oceans, 101, 16273-16289. Goni, G. J., and J. A. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. EOS, Trans. Amer. Geophys. Union, 84, 573-580. Goni, G., and Coauthors, 2009: Applications of Satellite-Derived Ocean Measurements to Tropical Cyclone Intensity Forecasting. Oceanography, 22, 190-197. Gould, J., and Coauthors, 2004: Argo Profiling Floats Bring New Era of In Situ Ocean Observations. EOS, Trans. Amer. Geophys. Union, 84, 179,190-191. Gould, W. J., 2005: From Swallow floats to Argo - the development of neutrally buoyant floats. Deep-Sea Res Pt Ii, 52, 529-543. Gouretski, V., and K. P. Koltermann, 2007: How much is the ocean really warming? Geophys Res Lett, 34. Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218. Grundlingh, M. L., 1995: Tracking eddies in the southeast Atlantic and southwest Indian oceans with TOPEX/POSEIDON. J Geophys Res-Oceans, 100, 24977-24986. Holliday, C. R., and A. H. Thompson, 1979: Climatological Characteristics of Rapidly Intensifying Typhoons. Mon Weather Rev, 107, 1022-1034. Hong, X. D., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon Weather Rev, 128, 1347-1365. Hwang, C., C. R. Wu, and R. Kao, 2004: TOPEX/Poseidon observations of mesoscale eddies over the Subtropical Countercurrent: Kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. J Geophys Res-Oceans, 109. Isern-Fontanet, J., E. Garcia-Ladona, and J. Font, 2003: Identification of marine eddies from altimetric maps. J Atmos Ocean Tech, 20, 772-778. Isern-Fontanet, J., 2006: Vortices of the Mediterranean Sea: An altimetric perspective. J Phys Oceanogr, 36, 87-103. Ishii, M., M. Kimoto, K. Sakamoto, and S. I. Iwasaki, 2006: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J Oceanogr, 62, 155-170. Johnson, G. C., M. J. McPhaden, G. D. Rowe, and K. E. McTaggart, 2000: Upper equatorial Pacific Ocean current and salinity variability during the 1996-1998 El Nino-La Nina cycle. J Geophys Res-Oceans, 105, 1037-1053. Johnson, G. C., and S. C. Doney, 2006: Recent western south Atlantic bottom water warming (vol 33, art no L21604, 2006). Geophys Res Lett, 33. Johnson, G. C., J. M. Lyman, J. K. Willis, S. Levitus, T. Boyer, J. Antonov, and S. A. Good, 2011: Ocean heat content. In 'State of the Climate in 2010', Bull. Amer. Meteor. Soc., S81-S84. Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast, 18, 1093-1108. Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2002: Naval Research Laboratory Mixed Layer Depth (NMLD) Climatologies. Keeley, B., C. Sun, and L. P. Villeon, 2003: Global Temperature and Salinity Profile Program Annual Report. Ko, D. S., P. J. Martin, C. D. Rowley, and R. H. Preller, 2008: A real-time coastal ocean prediction experiment for MREA04. Journal of Marine Systems, 69, 17-28. Ko, D. S., S. Y. Chao, P. Huang, and S. F. Lin, 2009: Anomalous Upwelling in Nan Wan: July 2008. Terr Atmos Ocean Sci, 20, 839-852. Le Traon, P. Y., and R. A. Morrow, 2001: Ocean currents and mesoscale eddies. Satellite Altimetry and Earth Sciences. A Handbook of Techniques and Applications, Academic Press, 171-215. Le Traon, P. Y., and G. Dibarboure, 2002: Velocity mapping capabilities of present and future altimeter missions: The role of high-frequency signals. J Atmos Ocean Tech, 19, 2077-2087. Le Traon, P.Y. and G. Dibarboure, 2004. Illustration of the contribution of the tandem mission to mesoscale studies . Marine Geodesy, 27, 3-13 Leipper, D. F., and D. Volgenau, 1972: Hurricane Heat Potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218-224. Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the world ocean. Science, 287, 2225-2229. Levitus, S., J. I. Antonov, J. L. Wang, T. L. Delworth, K. W. Dixon, and A. J. Broccoli, 2001: Anthropogenic warming of Earth's climate system. Science, 292, 267-270. Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955-2003. Geophys Res Lett, 32. Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophys Res Lett, 36. Levitus, S., J. I. Antonov, T. P. Boyer, O. K. Baranova, H. E. Garcia, R. A. Locarnini, A. V. Mishonov, J. R. Reagan, D. Seidov, E. S. Yarosh, and M. M. Zweng, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010, Geophys Res Lett, 39. Lin, I. I., C. C. Wu, K. A. Emanuel, I. H. Lee, C. R. Wu, and I. F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon Weather Rev, 133, 2635-2649. Lin, I. I., C. C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons' intensification. Mon Weather Rev, 136, 3288-3306. Lin, I. I., C. H. Chen, I. F. Pun, W. T. Liu, and C. C. Wu, 2009a: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys Res Lett, 36. Lin, I. I., I. F. Pun, and C. C. Wu, 2009b: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Mon Weather Rev, 137, 3744-3757. Lyman, J. M., J. K. Willis, and G. C. Johnson, 2006: Recent cooling of the upper ocean. Geophys Res Lett, 33. Lyman, J. M., and G. C. Johnson, 2008: Estimating Annual Global Upper-Ocean Heat Content Anomalies despite Irregular In Situ Ocean Sampling. J Climate, 21, 5629-5641. Lyman, J. M., and Coauthors, 2010: Robust warming of the global upper ocean. Nature, 465, 334-337. Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather Forecast, 23, 3-16. Mann, M. E., and K. A. Emanuel, 2006: Atlantic Hurricance Trends Linked to Climate Change. EOS, Trans. Amer. Geophys. Union, 87, 233,238,241. Mellor, G. L., and T. Yamada, 1982: Development of a Turbulence Closure-Model for Geophysical Fluid Problems. Rev Geophys, 20, 851-875. Miller, L., and B. C. Douglas, 2004: Mass and volume contributions to twentieth-century global sea level rise. Nature, 428, 406-409. Millero, F. J., C. T. Chen, K. Schleicher, and A. Bradshaw, 1980: A New High-Pressure Equation of State for Seawater. Deep-Sea Res, 27, 255-264. Morrow, R., F. Birol, D. Griffin, and J. Sudre, 2004: Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys Res Lett, 31. Nerem, R. S., E. Leuliette, and A. Cazenave, 2006: Present-day sea-level change: A review. Cr Geosci, 338, 1077-1083. Pascual, A., Y. Faugere, G. Larnicol, and P. Y. Le Traon, 2006: Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys Res Lett, 33. Pascual, A., C. Boone, G. Larnicol, and P. Y. Le Traon, 2009: On the Quality of Real-Time Altimeter Gridded Fields: Comparison with In Situ Data. J Atmos Ocean Tech, 26, 556-569. Philander, S. G. H., 1990: El Nino, La Nina and the Southern Oscillation. Academic Press, 293 pp. Picot, N., K. Case, S. Desai and P. Vincent, 2003: AVISO and PODAAC User Handbook. IGRDR and GRD Jason Products. SMM-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC). Price, J. F., 1981: Upper Ocean Response to a Hurricane. J Phys Oceanogr, 11, 153-175. Price, J. F., 2009: Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature? Ocean Sci, 5, 351-368. Puillat, L., L. Taupier-Letage, and C. Millot, 2002: Algerian Eddies lifetime can near 3 years. J Marine Syst, 31, 245-259. Pun, I. F., 2005: Estimation of upper-ocean thermal structure in the North West Pacific Ocean by satellite remote sensing and its application to typhoon intensity change, Earth Sciences, National Taiwan Normal University. Pun, I. F., I. I. Lin, C. R. Wu, D. H. Ko, and W. T. Liu, 2007: Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. Ieee T Geosci Remote, 45, 1616-1630. Pun, I. F., Y. T. Chang, I. I. Lin, T. Y. Tang, and R. C. Lien, 2011: Typhoon-ocean interaction in the western North Pacific: Part 2. Oceanography, 24, 32-41. Pun, I. F., I. I. Lin, P. G. Black, and D. S. Ko, 2012: Regression-derived satellite-based upper ocean thermal structure for the Western North Pacific Typhoon Research. Prog Oceanogr. (in revision) Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J Phys Oceanogr, 29, 2471-2486. Qiu, B., 2001: Kuroshio and Oyashio Currents. Encyclopedia of Ocean Sciences, Academic Press, 1413-1425. Qiu, B., and S. M. Chen, 2004: Seasonal modulations in the eddy field of the South Pacific Ocean. J Phys Oceanogr, 34, 1515-1527. Qiu, B., 2010: Interannual Variability of the North Pacific Subtropical Countercurrent and Its Associated Mesoscale Eddy Field. J Phys Oceanogr, 40, 213-225. Rayner, N. A., and Coauthors, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ sice the mid-nineteenth century: The HadSST2 dataset. J Climate, 19, 446-469. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J Climate, 15, 1609-1625. Roemmich, D., and J. Gilson, 2001: Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? J Phys Oceanogr, 31, 675-687. Roemmich, D., S. Riser, R. Davis, and Y. Desaubies, 2004: Autonomous profiling floats: Workhorse for broad-scale ocean observations. Mar Technol Soc J, 38, 21-29. Schade, L. R., and K. A. Emanuel, 1999: The ocean's effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J Atmos Sci, 56, 642-651. Scharroo, R., W. H. F. Smith, and J. L. Lillibridge, 2005: Satellite Altimetry and the Intensification of Hurricane Katrina. EOS, Trans. Amer. Geophys. Union, 86, 366-367. Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon Weather Rev, 128, 1366-1383. Shay, L. K., and J. K. Brewster, 2010: Oceanic Heat Content Variability in the Eastern Pacific Ocean for Hurricane Intensity Forecasting. Mon Weather Rev, 138, 2110-2131. Shewchuk, J. R., 1996: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. First Workshop on Applied Computational Geometry, 124-133. Siegel, D. A., D. J. McGillicuddy, and E. A. Fields, 1999: Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J Geophys Res-Oceans, 104, 13359-13379. SSALTO/DUACS User Handbook, 2012: (M)SLA and (M)ADT Near-Real Time and Delayed Time Products. SALP-MU-P-EA-21065-CLS, edition 3.1, pp. 59. Stephens, C., J. I. Antonov, T. P. Boyer, M. E. Conkright, R. A. Locarnini, T. D. O'Brien, and H. E. Carcia, 2002: World Ocean Atlas 2001 Volume 1: Temperature. NOAA Altas NESDIS 49, S. Levitus, Ed., U.S. Government Printing Office. Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes - a review. Meteorol Atmos Phys, 87, 257-278. Wang, G. H., J. L. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett, 30. Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847-850. Wessel, P., and W. H. F. Smith, 1998: New, improved version of the Generic Mapping Tools Released. EOS, Trans. Amer. Geophys. Union, 79, 579. White, W. B., and C. K. Tai, 1995: Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry. J Geophys Res-Oceans, 100, 24943-24954. Willis, J. K., D. Roemmich, and B. Cornuelle, 2003: Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J Geophys Res-Oceans, 108. Willis, J. K., 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res-Oceans, 109. Willis, J. K., J. M. Lyman, G. C. Johnson, and J. Gilson, 2007: Recent cooling of the upper ocean (vol 33, artn no. L18604, 2006). Geophys Res Lett, 34. Wu, C. C., C. Y. Lee, and I. I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J Atmos Sci, 64, 3562-3578. Wunsch, C., R. M. Ponte, and P. Heimbach, 2007: Decadal trends in sea level patterns: 1993-2004. J Climate, 20, 5889-5911. Wyrtki, K., 1979: Response of Sea-Surface Topography to the 1976-El-Nino. J Phys Oceanogr, 9, 1223-1231. Yasuda, I., K. Okuda, and M. Hirai, 1992: Evolution of a Kuroshio Warm-Core Ring - Variability of the Hydrographic Structure. Deep-Sea Res, 39, S131-&. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8045 | - |
dc.description.abstract | 近年來有很多研究指出颱風的強度變化是跟上層海洋(0-200m)的溫度結構有密切的關系。但是要在大洋中取得上層海洋溫度結構的資訊是非常困難的,傳統上只可以透過實測的方法。而傳統實測資料的時空分佈並不足以代表整個大洋的變化,對颱風強度的研究與預報造成相當大的阻礙。因此,本研究利用先進的衛星測高技術去估計西北太平洋的上層海洋溫度結構,目的是要去彌補海洋觀測資料的不足。
首先,本研究利用測高衛星的海水面高度資料透過簡單的兩層海洋橂式去計算上層海洋的溫度結構,並利用這些資料去研究西北太平洋的超級颱風Dianmu (2004)的強度變化。發現Dianmu的強度變化對海表面溫度冷卻(SST cooling)和動態上層海洋熱容量(dynamic UOHC)最敏感。在2010年臺灣美國合作的ITOP實驗期間,我們就利用這個兩層海洋模式透過衛星的測高資料去提供每天西北太平洋上層海洋溫度結構的資訊,對整個實驗有相當大的幫助。 由於兩層模式相對簡單,而且並不適用在整個西北太平洋上。所以本研究利用>38,000個Argo實測的海洋溫度剖面去建立西北太平洋的線性回歸方法(REGWNP),目的是要去改進衛星對上層海洋溫度結構的估計。之後,再利用>7,000個獨立的Argo剖面去驗證REGWNP的估計。驗證的結果顯示REGWNP可以準確地估計西北太平洋的上層海洋溫度結構。在颱風季節,由REGWNP估計出來的20°C等溫線深度(D20)的誤差為30m、26°C等溫線深度(D26)的誤差為20m、UOHC的誤差為20 kJ cm-2、上層100m平圴溫度(T100)的誤差為 1.5°C。另外也發現用REGWNP對比用傳統兩層模式估計出來的上層海洋溫度結構有顯著的改進;同時也非常接近用完整海洋模式計算出來的結果。 最後,研究過去西北太平洋颱風增強區域的海洋條件變化,發現從1993年到2010年之間,海洋暖渦(warm eddy)增加,冷渦(cold eddy)減少。水下溫度變化方面,在過去18年之間D20、D26和UOHC增加了9-17%,而T100增加了0.16-0.35°C。另外,正海水面異常(SSHA ≧ 10 cm)區域增加,負海水面異常(SSHA ≦ -10 cm)區域減少。這個結果顯示西北太平的海洋條件變得越來越有利颱風的增強作用。 | zh_TW |
dc.description.abstract | This thesis firstly demonstrates the importance of satellite-derived upper ocean thermal structure (UOTS) in typhoon research. Using a simple two-layer model, UOTS can be roughly derived from satellite altimetry and the intensity change of the Supertyphoon Dianmu (2004) is investigated. It is found that Dianmu’s intensity is very sensitive to the during typhoon SST cooling and upper ocean heat content (UOHC). During 2010, UOTS was estimated on a daily basis from satellites for the use in the large international field experiment, Impact of Typhoons on the Ocean in the Pacific (ITOP), showing the advantage of satellite-derived UOTS in typhoon-ocean research.
Secondly, using >38,000 Argo temperature profiles, a linear regression method for the western North Pacific (i.e., REGWNP) is developed. Then, >7,000 in situ profiles are used to assess accuracy of REGWNP-derived UOTS. The results show that REGWNP is able to produce rather reliable UOTS. During the typhoon season, the rms difference for the depth of 20°C isotherm (D20), depth of 26°C isotherm (D26), UOHC and averaged temperature of the upper 100 m (T100) is less than 30 m, 20 m, 20 kJ cm-2, and 1.5°C, respectively. Also, it is found that REGWNP outperforms the traditional two-layer approach and is comparable to a sophisticated full ocean model for producing real-time UOTS field. Finally, based on the sea surface height anomaly (SSHA) record between 1993 and 2010, the long-term changes in ocean conditions in the western North Pacific main typhoon intensification region are investigated. It is found that the activity of warm eddies enhanced while cold eddies weakened. In terms of subsurface variability, D20, D26 and UOHC increased by 9-17%, meanwhile, T100 warmed by 0.16-0.35°C over the 18 years period. Furthermore, it is also found that the total area of positive SSHA (≧ 10 cm) features substantially increased while negative SSHA (≦ -10 cm) features deceased. These results suggest that the western North Pacific ocean conditions are becoming more favorable to typhoon intensification. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T18:04:13Z (GMT). No. of bitstreams: 1 ntu-101-D95229002-1.pdf: 18179721 bytes, checksum: 93d04105788200b4def45f5d11b441dc (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Chapter 1 Introduction 1 1.1 Background and motivation 1 1.1.1 Importance of upper ocean thermal structure 1 1.1.2 Importance of ocean features 3 1.1.3 Estimation of upper ocean thermal structure 5 1.1.4 Ocean conditions in the western North Pacific 7 1.2 Objectives of the study 8 Chapter 2 Review of the two-layer reduced gravity model and its applications to typhoon research 11 2.1 Two-layer reduced gravity approach for the western North Pacific Ocean 11 2.2 Intensity change of Supertyphoon Dianmu (2004) 12 2.3 Implementation of the 2-layer in the ITOP experiment in 2010 17 Chapter 3 Linear regression technique 20 3.1 Data 20 3.1.1 In situ Argo temperature profiles 20 3.1.2 Merged and gridded satellite altimetry SSHA data 21 3.1.3 Satellite microwave SST data 23 3.2 Hydrographic characteristics in the western North Pacific Ocean 24 3.3 Relationship between SSHA and depth variation of isotherms 26 3.4 Linear regression technique 29 3.4.1 Procedure of developing regressions 30 3.4.2 The spatial pattern of the regressions 31 3.4.3 Treatment for mixed layer 33 3.5 Summary 34 Chapter 4 Validation of regression-derived altimetry-based upper ocean thermal structure in the western North Pacific Ocean 36 4.1 Validation 36 4.1.1 Validation for D20 37 4.1.2 Validation for D26 (i.e. warm water thickness) 38 4.1.3 Validation for UOHC and T100 39 4.1.4 Applicability of regression-derived D20, D26, UOHC and T100 for typhoon research 40 4.2 Comparison with the 2-layer, EASNFS full ocean model and AXBT data from ITOP field experiment (2010) 41 4.2.1 Comparison with the 2-layer 41 4.2.2 Inter-comparison with EASNFS full ocean model and AXBT data from ITOP experiment 43 4.3 Accuracy in other isotherm depths 45 4.4 Summary 46 Chapter 5 Eddy identification and variability in the South Eddy Zone of the western North Pacific Ocean 48 5.1 Overview of existing eddy identification techniques 48 5.2 Satellite altimetry data 50 5.3 Automated eddy identification procedure 51 5.3.1 Contour lines of SSHA 51 5.3.2 Criteria for the eddy identification procedure 52 5.4 Results of eddy variability in the SEZ 55 5.4.1 Eddy number 55 5.4.2 Eddy amplitude 58 5.4.3 Eddy size 59 5.5 Discussion 61 5.5.1 Issue of the eddy identification method 61 5.5.2 Comparison with the results obtained using another eddy identification procedure 62 5.5.3 Issue of eddy variability and typhoon intensification in the SEZ 64 5.6 Summary 66 Chapter 6 Changes in ocean conditions in the western North Pacific typhoon intensification region 68 6.1 Typhoon intensification zone of the western North Pacific Ocean 68 6.2 Methodology and Data 69 6.3 Results 70 6.3.1 Variability in SST and SSHA 70 6.3.2 Variability in UOTS 71 6.3.3 Variability in ocean features 72 6.4 Discussion 73 6.4.1 Issue on satellite-estimated UOTS trends 73 6.4.2 Issue on the study domain 75 6.4.3 Issue on SSHA gridded data 76 6.5 Summary 77 Chapter 7 Conclusion and future work 78 References 83 | |
dc.language.iso | en | |
dc.title | 利用衛星測高觀測西北太平洋的上層海洋溫度結構 | zh_TW |
dc.title | Upper Ocean Thermal Structure in the Western North Pacific
from Satellite Altimetry | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳俊傑,唐存勇,許晃雄,趙丰,黃金維 | |
dc.subject.keyword | 衛星測高,上層海洋溫度結構,颱風,海洋渦旋,海洋特徵, | zh_TW |
dc.subject.keyword | satellite altimetry,upper ocean thermal structure,typhoon,ocean eddy,ocean feature, | en |
dc.relation.page | 173 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-08-10 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 17.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。