Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80420
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉(Huei Wang)
dc.contributor.authorKai-Chun Changen
dc.contributor.author張楷儁zh_TW
dc.date.accessioned2022-11-24T03:06:18Z-
dc.date.available2022-01-17
dc.date.available2022-11-24T03:06:18Z-
dc.date.copyright2022-01-17
dc.date.issued2022
dc.date.submitted2022-01-06
dc.identifier.citation[1]C. Carilli and F. Walter, “Cool gas in high redshift galaxies,” Annual Review of Astronomy and Astrophysics, Vol. 51, pp. 105-161, Jan. 2013. [2]Harris et al., “The zpectrometer: an ultra-wideband spectrometer for the green bank telescope,” in From Z-Machines to ALMA: (Sub)millimeter Spectroscopy of Galaxies, A. J. Baker, J. Glenn, A. I. Harris J. G. Mangum and M. S. Yun Eds., ASP Conference Series, vol. 375, 2007. [3]P. A. Oesch et al., “A remarkably luminous galaxy at z=11.1 measured with hubble space telescope grism spectroscopy,” Astrophysical Journal, vol. 819:129, Mar. 2016. [4]M. Morgan and S. Wunduke, “An integrated receiver concept for the ngVLA,” ngVLA Memo 29, Nov., 2017. [5]A. Sulyman et al., “Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands,” IEEE Commun. Mag., vol. 52, no. 9, pp. 78-86, Sep. 2014. [6]Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, June 2011, pp. 101-07. [7]S. Ray and M. M. Hella, 'A 10 Gb/s inductorless AGC amplifier with 40 dB linear variable gain control in 0.13 μm CMOS,' in IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 440-456, Feb. 2016. [8]B. Wang, H. Gao, M. K. Matters-Kammerer and P. G. M. Baltus, 'A 60 GHz 360° phase shifter with 2.7° phase resolution and 1.4° RMS phase error in a 40-nm CMOS Technology,' 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, pp. 144-147. [9]P. Qin and Q. Xue, 'Design of wideband LNA employing cascaded complimentary common gate and common source stages,' in IEEE Microwave and Wireless Components Letters, vol. 27, no. 6, pp. 587-589, June 2017. [10]P. Qin and Q. Xue, 'Compact wideband LNA with gain and input matching bandwidth extensions by transformer,' in IEEE Microwave and Wireless Components Letters, vol. 27, no. 7, pp. 657-659, July 2017. [11]H. Chen, L. Wu, W. Che, Q. Xue and H. Zhu, 'A wideband LNA based on current-reused CS-CS topology and Gm-boosting technique for 5G application,' 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Singapore, 2019. [12]K. Hadipour, A. Ghilioni, A. Mazzanti, M. Bassi and F. Svelto, 'A 40GHz to 67GHz bandwidth 23dB gain 5.8dB maximum NF mm-wave LNA in 28nm CMOS,' 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, 2015. [13]Y. Hu and T. Chi, 'A 27–46-GHz low noise amplifier with dual-resonant input matching and a transformer-based broadband output network,' in IEEE Microwave and Wireless Components Letters, doi: 10.1109/LMWC.2021. [14]J. Dang, P. Sakalas, A. Noculak, M. Hinz and B. Meinerzhagen, 'A K-band high gain, low noise figure LNA using 0.13 μm logic CMOS technology,' 2015 10th European Microwave Integrated Circuits Conference (EuMIC), Paris, 2015. [15]L. Gao and G. M. Rebeiz, ' A 24-43 GHz LNA with 3.1-3.7 dB noise figure and embedded 3-pole elliptic high-pass response for 5G applications in 22 nm FDSOI,' 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019. [16]G. Liu and H. Schumacher, 'Broadband millimeter-wave LNAs (47–77 GHz and 70–140 GHz) using a T-Type matching topology,' in IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2022-2029, Sept. 2013. [17]K. Wang and H. Zhang, 'A 22-to-47 GHz 2-Stage LNA with 22.2 dB peak gain by using coupled L-Type interstage matching inductors,' in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4607-4617, Dec. 2020. [18]S. Zihir and G. M. Rebeiz, 'A wideband 60 GHz LNA with 3.3 dB minimum noise figure,' 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017. [19]J. Zhang, D. Zhao and X. You, 'A 20-GHz 1.9-mW LNA using gm-boost and current-reuse techniques in 65-nm CMOS for satellite communications,' in IEEE Journal of Solid-State Circuits, vol. 55, no. 10, pp. 2714-2723, Oct. 2020. [20]Y. Lin, S. Hsiao, J. Tsai and T. Huang, 'A 0.7-mW V-band transformer-based positive-feedback receiver front-end in a 65-nm CMOS,' in IEEE Microwave and Wireless Components Letters, vol. 30, no. 6, pp. 613-616, June 2020. [21]S. Kong, H. D. Lee, M. Lee and B. Park, 'A V-Band current-reused LNA with a double-transformer-coupling technique,' in IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 942-944, Nov. 2016. [22]Y. Ding, S. Vehring and G. Boeck, 'Design and implementation of an ultracompact LNA with 23.5-dB gain and 3.3-dB noise figure,' in IEEE Microwave and Wireless Components Letters, vol. 29, no. 6, pp. 406-408, June 2019. [23]C. Li, O. El-Aassar, A. Kumar, M. Boenke and G. M. Rebeiz, 'LNA design with CMOS SOI process-l.4dB NF K/Ka band LNA,' 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018, pp. 1484-1486. [24]B. Lu, Y. Wang, Y. Wu, C. Chiong and H. Wang, 'A submilliwatt K-band low-noise amplifier for next generation radio astronomical receivers in 65-nm CMOS process,' in IEEE Microwave and Wireless Components Letters, vol. 30, no. 7, pp. 669-672, July 2020. [25]B. Cui, J. R. Long and D. L. Harame, 'A 1.7-dB minimum NF, 22-32 GHz low-noise feedback amplifier with multistage noise matching in 22-nm SOI-CMOS,' 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 211-214. [26]Y. Chang, T. Lin and H. Lu, 'A low power wideband V-Band LNA using double-transformer-coupling technique and T-Type matching in 90nm CMOS,' 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019. [27]M. Keshavarz Hedayati, A. Abdipour, R. Sarraf Shirazi, C. Cetintepe and R. B. Staszewski, 'A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS,' in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1460-1464, Oct. 2018. [28]T. Wu, C. Zhao, H. Liu, Y. Wu, Y. Yu and K. Kang, 'A 20 ~ 43 GHz VGA with 21.5 dB gain tuning range and low phase variation for 5G communications in 65-nm CMOS,' 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019. [29]S. H. Kim, T. H. Jang, J. H. Kim and C. S. Park, 'A wideband 120-GHz variable gain amplifier with multistage phase compensation,' in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2419-2427, June 2020. [30]W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, '60-GHz 5-bit phase shifter with integrated VGA phase-error compensation,' in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, March 2013. [31]Chia-Yu Hsieh, Jui-Chih Kao, J. Kuo and K. Lin, 'A 57–64 GHz low-phase-variation variable-gain amplifier,' in IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, Jun. 2012, pp. 1-3. [32]J. Tsai and C. Lin, 'A 40-GHz 4-Bit digitally controlled VGA with phase variation using 65-nm CMOS process,' in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019. [33]D. Siao, J. Kao and H. Wang, 'A 60 GHz low phase variation variable gain amplifier in 65 nm CMOS,' in IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014. [34]Y. Yi, D. Zhao and X. You, 'A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,' 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, 2018. [35]Z. Jiang et al., 'A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift,' 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, 2017. [36]S. Lee, J. Park and S. Hong, 'A Ka-Band phase-compensated variable-gain CMOS low-noise amplifier,' in IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 131-133, Feb. 2019. [37]T. -Y. Chiu, Y. Wang and H. Wang, 'A 3.7–43.7-GHz low-power consumption variable gain distributed amplifier in 90-nm CMOS,' in IEEE Microwave and Wireless Components Letters, vol. 31, no. 2, pp. 169-172, Feb. 2021. [38]M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, 'A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS” in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018. [39]Q. Zhang, C. Zhao, Y. Yu, H. Liu, Y. Wu and K. Kang, 'A ka-band CMOS variable gain amplifier with high gain resolution and low phase variation,' 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong, 2020. [40]Y. Lo and J. Kiang, 'Design of wideband LNAs using parallel-to-series resonant matching network between common-gate and common-source stages,' in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 9, pp. 2285-2294, Sept. 2011. [41]Ying Chen, 'Design of microwave ultra-low power low noise amplifier and millimeter-wave Doherty power amplifier, ' National Taiwan University Master Thesis, 2019. [42]D. J. Cassan and J. R. Long, 'A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS,' in IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 427-435, March 2003. [43]K. -C. Chang, B. -Z. Lu, Y. Wang, C. -C. Chiong and H. Wang, 'A 17.7-42.9-GHz low power low noise amplifier with 83% fractional bandwidth for radio astronomical receivers in 65-nm CMOS,' 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020. [44]K. -C. Chang, Y. Wang, and H. Wang, 'A broadband variable gain low noise amplifier covering 28/38GHz bands with low phase variation in 90-nm CMOS for 5G communications, ' in IEEE/MTT-S International Microwave Symposium Digest, June 2021. [45]Di-Sheng Siao, 'Design and Analysis of Millimeter-Wave 60-GHz Key Components and 190-GHz Amplifier, ' National Taiwan University Master Thesis, 2013. [46]K. -C. Chang, Y. Wang, and H. Wang, 'Design of a 1.8-mW K-band low noise amplifier with 19.3-dB gain and 3.3-dB noise figure in 90-nm CMOS,' 2021 IEEE Asia-Pacific Microwave Conference (APMC), 2021. [47]Y. Wang, C. Chen, Y. Wu and H. Wang, 'An E-Band variable gain low noise amplifier in 90-nm CMOS process using body-floating and noise reduction techniques,' 2018 48th European Microwave Conference (EuMC), 2018. [48]E. Cohen, O. Degani and D. Ritter, 'A wideband gain-boosting 8mW LNA with 23dB gain and 4dB NF in 65nm CMOS process for 60 GHz applications,' 2012 IEEE Radio Frequency Integrated Circuits Symposium, 2012. [49]P. Chang, S. Su, S. S. H. Hsu, W. Cho and J. Jin, 'An ultra-low-power transformer-feedback 60 GHz low-noise amplifier in 90 nm CMOS,' in IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, pp. 197-199, April 2012. [50]V. Bhagavatula and J. C. Rudell, 'Analysis and design of a transformer-feedback-based wideband receiver,' in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1347-1358, March 2013. [51]S. H. Kim, T. H. Jang, J. H. Kim and C. S. Park, 'A wideband 120-GHz variable gain amplifier with multistage phase compensation,' in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2419-2427, June 2020. [52]S. Guo, T. Xi, P. Gui, D. Huang, Y. Fan and M. Morgan, 'A transformer feedback Gm-boosting technique for gain improvement and noise reduction in mm-wave cascode LNAs,' in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2080-2090, July 2016. [53]Y. Chang, Y. Chen and H. Lu, 'A 38 GHz Low Power Variable Gain LNA Using PMOS Current-Steering Device and Gm-Boost Technique,' 2018 Asia-Pacific Microwave Conference (APMC), 2018. [54]Noel Deferm, Patrick Reynaert, CMOS Front Ends for Millimeter Wave Wireless Communication Systems, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80420-
dc.description.abstract本論文提出了三個部分。第一部分是應用於無線電天文接收機的寬頻低雜訊放大器,使用65奈米互補式金屬氧化物半導體(CMOS)製程來設計。第二部分是應用於下個世代的無線電天文接收機的K頻段極低功耗的低雜訊放大器,使用90奈米互補式金屬氧化物半導體製程來設計。最後一部分是應用於毫米波第五代行動通訊28和38 GHz頻段的低相位變化可變增益低雜訊放大器,也是使用90奈米互補式金屬氧化物半導體製程來設計。 在第一部分,提出了一個使用65奈米CMOS的高增益、寬頻、且高線性度的低雜訊放大器。此電路採用了共源級架構以實現高增益且低雜訊。為了增加頻寬,輸入與級間網路採用了兩段式匹配網路。量測結果顯示本文提出的低雜訊放大器在32 GHz的頻率下達到20.1 dB的小訊號增益和25.2 GHz的3-dB頻寬,頻寬內有3.6 dB的平均雜訊指數。此外,在18 mW的功耗下,此電路輸出功率的增益1dB壓縮點(OP1dB)達到2.2 dBm,晶片面積為0.4 mm2。 在第二部分,呈現了一個使用90奈米CMOS實現的K頻段極低功耗低雜訊放大器。此電路使用了電流再利用的技術來達到增益提高,單端中和技術也被應用在這個電路。此外,電晶體使用了基極浮接的技術以提高整體增益。量測結果顯示此低雜訊放大器在26 GHz的頻率下有19.3 dB的小訊號增益和且3-dB頻寬達到4.2 GHz。雜訊指數部分,在26 GHz的頻率下有3.3 dB的雜訊指數且頻帶內的雜訊指數皆小於4 dB,且功率消耗為1.8毫瓦。 最後一部分,提出了一個同樣使用90奈米CMOS實現的低相位變化且寬頻的可變增益低雜訊放大器。為了有效提高增益且降低雜訊,此電路採用了閘源極變壓器回授技術來同時達到阻抗和雜訊匹配。此外,為了有效提高穩定度且不犧牲增益,汲源極變壓器回授中和穩定技術(neutralization)也被應用在此電路。相位補償方面,利用兩級電流控制架構(current-steering)並在輸出端建構電感式相位反向網路,藉由相反的相位趨勢來達到相位的補償,使得相位變化盡可能地降低。量測結果顯示此可變增益低雜訊放大器在9.8 dB的增益控制範圍下相位變化小於7.2°,3-dB頻寬包含26~30.5和33.8~40.6 GHz,且最高增益為21.4 dB並在36 GHz達到4.7 dB的雜訊指數,功率消耗為17.9 mW。相較於先前已發表的CMOS低相位變化的可變增益放大器,此顆電路達到了最高的效能指標,顯示了在5G高效率通訊系統中發展的潛力。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:06:18Z (GMT). No. of bitstreams: 1
U0001-0301202222030600.pdf: 5384296 bytes, checksum: a2be4dac59d0950672c8217ea88eb87c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsCONTENTS 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xvii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.2.1 Wideband Low Noise Amplifier 3 1.2.2 Ultra-low-power Low Noise Amplifier 6 1.2.3 Millimeter-wave Variable Gain Low Noise Amplifier with Low Phase Variation 8 1.3 Contributions 11 1.3.1 K/ Ka band LNA for Astronomical Observation of the Universe 11 1.3.2 K-band Ultra-low-power LNA for Next Generation Radio Astronomical Application 12 1.3.3 A Broadband Variable Gain Low Noise Amplifier Covering 28/38 GHz bands with Phase Compensation Technique for 5G Communications 12 1.4 Thesis Organization 14 Chapter 2 A 17.7 to 42.9-GHz Low Power Low Noise Amplifier with 83% Fractional Bandwidth for Radio Astronomical Receivers in 65-nm CMOS 15 2.1 Circuit Design 16 2.1.1 Circuit Architecture 16 2.1.2 Bandwidth Enhancement Technique and Matching Networks 22 2.1.3 Circuit Schematic and Post-Layout Results 29 2.2 Experimental Results 36 2.3 Summary 40 Chapter 3 Design of a 1.8-mW K-band Low Noise Amplifier with 19.3-dB Gain and 3.3-dB Noise Figure in 90-nm CMOS 42 3.1 Circuit Design 44 3.1.1 Biasing Selection and Device Selection 44 3.1.2 Quality Factor of Inductors 49 3.1.3 Body-floating and Current-Reused Technique 56 3.1.4 Gm-boosting and Neutralization Technique 62 3.1.5 Circuit Schematic and Simulation Result 70 3.2 Experimental Results 76 3.3 Summary 80 Chapter 4 A Broadband Variable Gain Low Noise Amplifier Covering 28/38 GHz bands with Low Phase Variation in 90-nm CMOS for 5G Communications 82 4.1 Design Concepts of Low Phase Variation 85 4.1.1 Phase Analysis of Current-steering Topology 85 4.1.2 Phase Analysis of Inductive phase-inversion Network 98 4.1.3 Phase Analysis of Combined Topology 103 4.2 Circuit Design 103 4.2.1 Circuit Architecture 103 4.2.2 Bias Selection and Device Selection 105 4.2.3 The Design of First Stage 108 4.2.4 The Design of Second Stage 113 4.2.5 Wideband Matching Design 117 4.2.6 Circuit Schematic and Post-layout simulations 120 4.3 Experimental Results 125 4.4 Summary 132 Chapter 5 Conclusion 135 REFERENCES 137
dc.language.isoen
dc.subject高速場效電晶體zh_TW
dc.subject互補式金屬氧化物半導體zh_TW
dc.subject低雜訊放大器zh_TW
dc.subject可變增益放大器zh_TW
dc.subject毫米波zh_TW
dc.subjectLow noise amplifieren
dc.subjectField-effect transistoren
dc.subjectMillimeter-waveen
dc.subjectVariable gain amplifieren
dc.subjectCMOSen
dc.title天文接收機之放大器和應用於5G通訊系統之可變增益低雜訊放大器的研究zh_TW
dc.titleResearch of Amplifiers for Astronomical Receivers and Variable Gain Low Noise Amplifiers for 5G Mobile Communicationsen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃天偉(Hsin-Tsai Liu),章朝盛(Chih-Yang Tseng),蔡作敏,蔡政翰
dc.subject.keyword互補式金屬氧化物半導體,低雜訊放大器,可變增益放大器,毫米波,高速場效電晶體,zh_TW
dc.subject.keywordCMOS,Low noise amplifier,Variable gain amplifier,Millimeter-wave,Field-effect transistor,en
dc.relation.page143
dc.identifier.doi10.6342/NTU202200003
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-01-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0301202222030600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved