Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭安理(Ann-Lii Cheng),鄭文芳(Wen-Fang Cheng),郭頌鑫(Sung-Hsin Kuo)
dc.contributor.authorWan-Yu Chenen
dc.contributor.author陳婉瑜zh_TW
dc.date.accessioned2022-11-24T03:06:05Z-
dc.date.available2022-01-18
dc.date.available2022-11-24T03:06:05Z-
dc.date.copyright2022-01-18
dc.date.issued2022
dc.date.submitted2022-01-07
dc.identifier.citation[1] A. Argiris, M.V. Karamouzis, D. Raben, R.L. Ferris, Head and neck cancer, Lancet, 371 (2008) 1695-1709. [2] R.D. Schreiber, L.J. Old, M.J. Smyth, Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion, Science (New York, N.Y.), 331 (2011) 1565-1570. [3] W.H. Fridman, F. Pages, C. Sautes-Fridman, J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nat Rev Cancer, 12 (2012) 298-306. [4] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell, 144 (2011) 646-674. [5] R. Baskar, K.A. Lee, R. Yeo, K.W. Yeoh, Cancer and radiation therapy: current advances and future directions, Int J Med Sci, 9 (2012) 193-199. [6] M.K. Thompson, P. Poortmans, A.J. Chalmers, C. Faivre-Finn, E. Hall, R.A. Huddart, Y. Lievens, D. Sebag-Montefiore, C.E. Coles, Practice-changing radiation therapy trials for the treatment of cancer: where are we 150 years after the birth of Marie Curie?, Br J Cancer, 119 (2018) 389-407. [7] B.D. Lichty, C.J. Breitbach, D.F. Stojdl, J.C. Bell, Going viral with cancer immunotherapy, Nat Rev Cancer, 14 (2014) 559-567. [8] A.K. Singh, J.P. McGuirk, CAR T cells: continuation in a revolution of immunotherapy, Lancet Oncol, 21 (2020) e168-e178. [9] N.E. Papaioannou, O.V. Beniata, P. Vitsos, O. Tsitsilonis, P. Samara, Harnessing the immune system to improve cancer therapy, Ann Transl Med, 4 (2016) 261. [10] Z.S. Guo, B. Lu, Z. Guo, E. Giehl, M. Feist, E. Dai, W. Liu, W.J. Storkus, Y. He, Z. Liu, D.L. Bartlett, Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics, J Immunother Cancer, 7 (2019) 6. [11] K. Guse, V. Cerullo, A. Hemminki, Oncolytic vaccinia virus for the treatment of cancer, Expert Opin Biol Ther, 11 (2011) 595-608. [12] G. McFadden, Poxvirus tropism, Nat Rev Microbiol, 3 (2005) 201-213. [13] H.L. Kaufman, F.J. Kohlhapp, A. Zloza, Oncolytic viruses: a new class of immunotherapy drugs, Nature reviews. Drug discovery, 14 (2015) 642-662. [14] R.D. Timmerman, J. Herman, L.C. Cho, Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice, J Clin Oncol, 32 (2014) 2847-2854. [15] J. Heo, T. Reid, L. Ruo, C.J. Breitbach, S. Rose, M. Bloomston, M. Cho, H.Y. Lim, H.C. Chung, C.W. Kim, J. Burke, R. Lencioni, T. Hickman, A. Moon, Y.S. Lee, M.K. Kim, M. Daneshmand, K. Dubois, L. Longpre, M. Ngo, C. Rooney, J.C. Bell, B.G. Rhee, R. Patt, T.H. Hwang, D.H. Kirn, Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer, Nat Med, 19 (2013) 329-336. [16] M. Kim, M. Nitschké, B. Sennino, P. Murer, B.J. Schriver, A. Bell, A. Subramanian, C.E. McDonald, J. Wang, H. Cha, M.C. Bourgeois-Daigneault, D.H. Kirn, J.C. Bell, N. De Silva, C.J. Breitbach, D.M. McDonald, Amplification of Oncolytic Vaccinia Virus Widespread Tumor Cell Killing by Sunitinib through Multiple Mechanisms, Cancer Res, 78 (2018) 922-937. [17] S. Nakao, Y. Arai, M. Tasaki, M. Yamashita, R. Murakami, T. Kawase, N. Amino, M. Nakatake, H. Kurosaki, M. Mori, M. Takeuchi, T. Nakamura, Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade, Sci Transl Med, 12 (2020). [18] H.J. Chon, W.S. Lee, H. Yang, S.J. Kong, N.K. Lee, E.S. Moon, J. Choi, E.C. Han, J.H. Kim, J.B. Ahn, J.H. Kim, C. Kim, Tumor Microenvironment Remodeling by Intratumoral Oncolytic Vaccinia Virus Enhances the Efficacy of Immune-Checkpoint Blockade, Clin Cancer Res, 25 (2019) 1612-1623. [19] B.L. Jacobs, J.O. Langland, K.V. Kibler, K.L. Denzler, S.D. White, S.A. Holechek, S. Wong, T. Huynh, C.R. Baskin, Vaccinia virus vaccines: past, present and future, Antiviral Res, 84 (2009) 1-13. [20] L.B. John, L.J. Howland, J.K. Flynn, A.C. West, C. Devaud, C.P. Duong, T.J. Stewart, J.A. Westwood, Z.S. Guo, D.L. Bartlett, M.J. Smyth, M.H. Kershaw, P.K. Darcy, Oncolytic virus and anti-4-1BB combination therapy elicits strong antitumor immunity against established cancer, Cancer Res, 72 (2012) 1651-1660. [21] K.G. Potts, C.R. Irwin, N.A. Favis, D.B. Pink, K.M. Vincent, J.D. Lewis, R.B. Moore, M.M. Hitt, D.H. Evans, Deletion of F4L (ribonucleotide reductase) in vaccinia virus produces a selective oncolytic virus and promotes anti-tumor immunity with superior safety in bladder cancer models, EMBO Mol Med, 9 (2017) 638-654. [22] Z. Liu, R. Ravindranathan, P. Kalinski, Z.S. Guo, D.L. Bartlett, Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy, Nat Commun, 8 (2017) 14754. [23] S.J. Advani, L. Buckel, N.G. Chen, D.J. Scanderbeg, U. Geissinger, Q. Zhang, Y.A. Yu, R.J. Aguilar, A.J. Mundt, A.A. Szalay, Preferential replication of systemically delivered oncolytic vaccinia virus in focally irradiated glioma xenografts, Clin Cancer Res, 18 (2012) 2579-2590. [24] D. Mansfield, T. Pencavel, J.N. Kyula, S. Zaidi, V. Roulstone, K. Thway, L. Karapanagiotou, A.A. Khan, M. McLaughlin, Y. Touchefeu, R. Seth, A.A. Melcher, R.G. Vile, H.S. Pandha, K.J. Harrington, Oncolytic Vaccinia virus and radiotherapy in head and neck cancer, Oral Oncol, 49 (2013) 108-118. [25] J.N. Kyula, A.A. Khan, D. Mansfield, E.M. Karapanagiotou, M. McLaughlin, V. Roulstone, S. Zaidi, T. Pencavel, Y. Touchefeu, R. Seth, N.G. Chen, Y.A. Yu, Q. Zhang, A.A. Melcher, R.G. Vile, H.S. Pandha, M. Ajaz, A.A. Szalay, K.J. Harrington, Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-α signaling, Oncogene, 33 (2014) 1700-1712. [26] M.H. Dai, S.L. Liu, N.G. Chen, T.P. Zhang, L. You, Q.Z. F, T.C. Chou, A.A. Szalay, Y. Fong, Y.P. Zhao, Oncolytic vaccinia virus in combination with radiation shows synergistic antitumor efficacy in pancreatic cancer, Cancer Lett, 344 (2014) 282-290. [27] L.M. Whilding, K.M. Archibald, H. Kulbe, F.R. Balkwill, D. Öberg, I.A. McNeish, Vaccinia virus induces programmed necrosis in ovarian cancer cells, Mol Ther, 21 (2013) 2074-2086. [28] H.H. Wang, Z.Q. Wu, D. Qian, N.G. Zaorsky, M.H. Qiu, J.J. Cheng, C. Jiang, J. Wang, X.L. Zeng, C.L. Liu, L.J. Tian, G.G. Ying, M.B. Meng, X.S. Hao, Z.Y. Yuan, Ablative Hypofractionated Radiation Therapy Enhances Non-Small Cell Lung Cancer Cell Killing via Preferential Stimulation of Necroptosis In Vitro and In Vivo, Int J Radiat Oncol Biol Phys, 101 (2018) 49-62. [29] K.Y. Lin, F.G. Guarnieri, K.F. Staveley-O'Carroll, H.I. Levitsky, J.T. August, D.M. Pardoll, T.C. Wu, Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen, Cancer Res, 56 (1996) 21-26. [30] P.L. Earl, B. Moss, Mutational analysis of the assembly domain of the HIV-1 envelope glycoprotein, AIDS Res Hum Retroviruses, 9 (1993) 589-594. [31] Y.L. Chen, M.C. Chang, Y.C. Chiang, H.W. Lin, N.Y. Sun, C.A. Chen, W.Z. Sun, W.F. Cheng, Immuno-modulators enhance antigen-specific immunity and anti-tumor effects of mesothelin-specific chimeric DNA vaccine through promoting DC maturation, Cancer Lett, 425 (2018) 152-163. [32] H. Qin, A.T. Holdbrooks, Y. Liu, S.L. Reynolds, L.L. Yanagisawa, E.N. Benveniste, SOCS3 deficiency promotes M1 macrophage polarization and inflammation, J Immunol, 189 (2012) 3439-3448. [33] A. Polykratis, N. Hermance, M. Zelic, J. Roderick, C. Kim, T.M. Van, T.H. Lee, F.K.M. Chan, M. Pasparakis, M.A. Kelliher, Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo, J Immunol, 193 (2014) 1539-1543. [34] D.L. Veyer, G. Carrara, C. Maluquer de Motes, G.L. Smith, Vaccinia virus evasion of regulated cell death, Immunol Lett, 186 (2017) 68-80. [35] H. Koehler, S. Cotsmire, J. Langland, K.V. Kibler, D. Kalman, J.W. Upton, E.S. Mocarski, B.L. Jacobs, Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3, Proc Natl Acad Sci U S A, 114 (2017) 11506-11511. [36] S. Biton, A. Ashkenazi, NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling, Cell, 145 (2011) 92-103. [37] A. Das, D.G. McDonald, Y.N. Dixon-Mah, D.J. Jacqmin, V.N. Samant, W.A. Vandergrift, 3rd, S.M. Lindhorst, D. Cachia, A.K. Varma, K.N. Vanek, N.L. Banik, J.M. Jenrette, 3rd, J.J. Raizer, P. Giglio, S.J. Patel, RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma, Tumour Biol, 37 (2016) 7525-7534. [38] Y. Wang, M. Zhao, S. He, Y. Luo, Y. Zhao, J. Cheng, Y. Gong, J. Xie, Y. Wang, B. Hu, L. Tian, X. Liu, C. Li, Q. Huang, Necroptosis regulates tumor repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL8 pathway, J Exp Clin Cancer Res, 38 (2019) 461. [39] M.J. Ward, S.M. Thirdborough, T. Mellows, C. Riley, S. Harris, K. Suchak, A. Webb, C. Hampton, N.N. Patel, C.J. Randall, H.J. Cox, S. Jogai, J. Primrose, K. Piper, C.H. Ottensmeier, E.V. King, G.J. Thomas, Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer, Br J Cancer, 110 (2014) 489-500. [40] F. Pages, A. Berger, M. Camus, F. Sanchez-Cabo, A. Costes, R. Molidor, B. Mlecnik, A. Kirilovsky, M. Nilsson, D. Damotte, T. Meatchi, P. Bruneval, P.H. Cugnenc, Z. Trajanoski, W.H. Fridman, J. Galon, Effector memory T cells, early metastasis, and survival in colorectal cancer, N Engl J Med, 353 (2005) 2654-2666. [41] A. Merlo, P. Casalini, M.L. Carcangiu, C. Malventano, T. Triulzi, S. Menard, E. Tagliabue, A. Balsari, FOXP3 expression and overall survival in breast cancer, J Clin Oncol, 27 (2009) 1746-1752. [42] Q. Gao, S.J. Qiu, J. Fan, J. Zhou, X.Y. Wang, Y.S. Xiao, Y. Xu, Y.W. Li, Z.Y. Tang, Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection, J Clin Oncol, 25 (2007) 2586-2593. [43] T.J. Curiel, G. Coukos, L. Zou, X. Alvarez, P. Cheng, P. Mottram, M. Evdemon-Hogan, J.R. Conejo-Garcia, L. Zhang, M. Burow, Y. Zhu, S. Wei, I. Kryczek, B. Daniel, A. Gordon, L. Myers, A. Lackner, M.L. Disis, K.L. Knutson, L. Chen, W. Zou, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat Med, 10 (2004) 942-949. [44] K. Suzuki, K. Kadota, C.S. Sima, J. Nitadori, V.W. Rusch, W.D. Travis, M. Sadelain, P.S. Adusumilli, Clinical impact of immune microenvironment in stage I lung adenocarcinoma: tumor interleukin-12 receptor beta2 (IL-12Rbeta2), IL-7R, and stromal FoxP3/CD3 ratio are independent predictors of recurrence, J Clin Oncol, 31 (2013) 490-498. [45] A.M. Lee, A.J. Clear, M. Calaminici, A.J. Davies, S. Jordan, F. MacDougall, J. Matthews, A.J. Norton, J.G. Gribben, T.A. Lister, L.K. Goff, Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome, J Clin Oncol, 24 (2006) 5052-5059. [46] P. Greaves, A. Clear, R. Coutinho, A. Wilson, J. Matthews, A. Owen, M. Shanyinde, T.A. Lister, M. Calaminici, J.G. Gribben, Expression of FOXP3, CD68, and CD20 at diagnosis in the microenvironment of classical Hodgkin lymphoma is predictive of outcome, J Clin Oncol, 31 (2013) 256-262. [47] P. Salama, M. Phillips, F. Grieu, M. Morris, N. Zeps, D. Joseph, C. Platell, B. Iacopetta, Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer, J Clin Oncol, 27 (2009) 186-192. [48] C. Badoual, S. Hans, J. Rodriguez, S. Peyrard, C. Klein, H. Agueznay Nel, V. Mosseri, O. Laccourreye, P. Bruneval, W.H. Fridman, D.F. Brasnu, E. Tartour, Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers, Clin Cancer Res, 12 (2006) 465-472. [49] D. Wansom, E. Light, D. Thomas, F. Worden, M. Prince, S. Urba, D. Chepeha, B. Kumar, K. Cordell, A. Eisbruch, J. Taylor, J. Moyer, C. Bradford, N. D'Silva, T. Carey, J. McHugh, G. Wolf, Infiltrating lymphocytes and human papillomavirus-16--associated oropharyngeal cancer, The Laryngoscope, 122 (2012) 121-127. [50] S. Ladoire, F. Martin, F. Ghiringhelli, Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer, Cancer immunology, immunotherapy : CII, 60 (2011) 909-918. [51] P. Balermpas, Y. Michel, J. Wagenblast, O. Seitz, C. Weiss, F. Rodel, C. Rodel, E. Fokas, Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer, Br J Cancer, 110 (2014) 501-509. [52] G.T. Wolf, D.B. Chepeha, E. Bellile, A. Nguyen, D. Thomas, J. McHugh, Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: a preliminary study, Oral Oncol, 51 (2015) 90-95. [53] L.V. Distel, R. Fickenscher, K. Dietel, A. Hung, H. Iro, J. Zenk, E. Nkenke, M. Buttner, G. Niedobitek, G.G. Grabenbauer, Tumour infiltrating lymphocytes in squamous cell carcinoma of the oro- and hypopharynx: prognostic impact may depend on type of treatment and stage of disease, Oral Oncol, 45 (2009) e167-174. [54] D. Pretscher, L.V. Distel, G.G. Grabenbauer, M. Wittlinger, M. Buettner, G. Niedobitek, Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma, BMC cancer, 9 (2009) 292. [55] A. Nasman, M. Romanitan, C. Nordfors, N. Grun, H. Johansson, L. Hammarstedt, L. Marklund, E. Munck-Wikland, T. Dalianis, T. Ramqvist, Tumor infiltrating CD8+ and Foxp3+ lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in tonsillar cancer, PloS one, 7 (2012) e38711. [56] D.T. Weed, G. Walker, A.C. De La Fuente, R. Nazarian, J.L. Vella, C.R. Gomez-Fernandez, P. Serafini, FOXP3 subcellular localization predicts recurrence in oral squamous cell carcinoma, PloS one, 8 (2013) e71908. [57] H. Hanakawa, Y. Orita, Y. Sato, M. Takeuchi, K. Ohno, Y. Gion, K. Tsukahara, R. Tamamura, T. Ito, H. Nagatsuka, K. Nishizaki, T. Yoshino, Regulatory T-cell infiltration in tongue squamous cell carcinoma, Acta oto-laryngologica, 134 (2014) 859-864. [58] C. Zhuo, Y. Xu, M. Ying, Q. Li, L. Huang, D. Li, S. Cai, B. Li, FOXP3+ Tregs: heterogeneous phenotypes and conflicting impacts on survival outcomes in patients with colorectal cancer, Immunologic research, 61 (2015) 338-347. [59] Y. Watanabe, F. Katou, H. Ohtani, T. Nakayama, O. Yoshie, K. Hashimoto, Tumor-infiltrating lymphocytes, particularly the balance between CD8(+) T cells and CCR4(+) regulatory T cells, affect the survival of patients with oral squamous cell carcinoma, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 109 (2010) 744-752. [60] C. Nordfors, N. Grun, N. Tertipis, A. Ahrlund-Richter, L. Haeggblom, L. Sivars, J. Du, T. Nyberg, L. Marklund, E. Munck-Wikland, A. Nasman, T. Ramqvist, T. Dalianis, CD8+ and CD4+ tumour infiltrating lymphocytes in relation to human papillomavirus status and clinical outcome in tonsillar and base of tongue squamous cell carcinoma, European journal of cancer (Oxford, England : 1990), 49 (2013) 2522-2530. [61] G. Moreira, L.B. Fulgencio, D.E.M. EF, C.R. Leles, A.C. Batista, D.A.S. TA, T regulatory cell markers in oral squamous cell carcinoma: Relationship with survival and tumor aggressiveness, Oncology letters, 1 (2010) 127-132. [62] J.N. Kyula, A.A. Khan, D. Mansfield, E.M. Karapanagiotou, M. McLaughlin, V. Roulstone, S. Zaidi, T. Pencavel, Y. Touchefeu, R. Seth, N.G. Chen, Y.A. Yu, Q. Zhang, A.A. Melcher, R.G. Vile, H.S. Pandha, M. Ajaz, A.A. Szalay, K.J. Harrington, Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-alpha signaling, Oncogene, 33 (2014) 1700-1712. [63] A. Filatenkov, J. Baker, A.M. Mueller, J. Kenkel, G.O. Ahn, S. Dutt, N. Zhang, H. Kohrt, K. Jensen, S. Dejbakhsh-Jones, J.A. Shizuru, R.N. Negrin, E.G. Engleman, S. Strober, Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions, Clin Cancer Res, 21 (2015) 3727-3739. [64] M.Z. Dewan, A.E. Galloway, N. Kawashima, J.K. Dewyngaert, J.S. Babb, S.C. Formenti, S. Demaria, Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody, Clin Cancer Res, 15 (2009) 5379-5388. [65] A. Soares, L. Govender, J. Hughes, W. Mavakla, M. de Kock, C. Barnard, B. Pienaar, E. Janse van Rensburg, G. Jacobs, G. Khomba, L. Stone, B. Abel, T.J. Scriba, W.A. Hanekom, Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation, Journal of immunological methods, 362 (2010) 43-50. [66] D. Zamarin, R.B. Holmgaard, J. Ricca, T. Plitt, P. Palese, P. Sharma, T. Merghoub, J.D. Wolchok, J.P. Allison, Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity, Nat Commun, 8 (2017) 14340. [67] A.K. Moesta, K. Cooke, J. Piasecki, P. Mitchell, J.B. Rottman, K. Fitzgerald, J. Zhan, B. Yang, T. Le, B. Belmontes, O.F. Ikotun, K. Merriam, C. Glaus, K. Ganley, D.H. Cordover, A.M. Boden, R. Ponce, C. Beers, P.J. Beltran, Local Delivery of OncoVEX(mGM-CSF) Generates Systemic Antitumor Immune Responses Enhanced by Cytotoxic T-Lymphocyte-Associated Protein Blockade, Clin Cancer Res, 23 (2017) 6190-6202. [68] M.R. Crittenden, T. Savage, B. Cottam, K.S. Bahjat, W.L. Redmond, S. Bambina, M. Kasiewicz, P. Newell, A.M. Jackson, M.J. Gough, The peripheral myeloid expansion driven by murine cancer progression is reversed by radiation therapy of the tumor, PloS one, 8 (2013) e69527. [69] F.P. Vendetti, P. Karukonda, D.A. Clump, T. Teo, R. Lalonde, K. Nugent, M. Ballew, B.F. Kiesel, J.H. Beumer, S.N. Sarkar, T.P. Conrads, M.J. O'Connor, R.L. Ferris, P.T. Tran, G.M. Delgoffe, C.J. Bakkenist, ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation, The Journal of clinical investigation, 128 (2018) 3926-3940. [70] N. Woller, E. Gürlevik, B. Fleischmann-Mundt, A. Schumacher, S. Knocke, A.M. Kloos, M. Saborowski, R. Geffers, M.P. Manns, T.C. Wirth, S. Kubicka, F. Kühnel, Viral Infection of Tumors Overcomes Resistance to PD-1-immunotherapy by Broadening Neoantigenome-directed T-cell Responses, Mol Ther, 23 (2015) 1630-1640. [71] D. Zamarin, R.B. Holmgaard, S.K. Subudhi, J.S. Park, M. Mansour, P. Palese, T. Merghoub, J.D. Wolchok, J.P. Allison, Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy, Sci Transl Med, 6 (2014) 226ra232. [72] L. Fend, T. Yamazaki, C. Remy, C. Fahrner, M. Gantzer, V. Nourtier, X. Preville, E. Quemeneur, O. Kepp, J. Adam, A. Marabelle, J.M. Pitt, G. Kroemer, L. Zitvogel, Immune Checkpoint Blockade, Immunogenic Chemotherapy or IFN-alpha Blockade Boost the Local and Abscopal Effects of Oncolytic Virotherapy, Cancer Res, 77 (2017) 4146-4157. [73] S.J. Dovedi, E.J. Cheadle, A.L. Popple, E. Poon, M. Morrow, R. Stewart, E.C. Yusko, C.M. Sanders, M. Vignali, R.O. Emerson, H.S. Robins, R.W. Wilkinson, J. Honeychurch, T.M. Illidge, Fractionated Radiation Therapy Stimulates Antitumor Immunity Mediated by Both Resident and Infiltrating Polyclonal T-cell Populations when Combined with PD-1 Blockade, Clin Cancer Res, 23 (2017) 5514-5526. [74] E.B. Golden, D. Frances, I. Pellicciotta, S. Demaria, M. Helen Barcellos-Hoff, S.C. Formenti, Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death, Oncoimmunology, 3 (2014) e28518. [75] M.C. Chang, Y.L. Chen, H.W. Lin, Y.C. Chiang, C.F. Chang, S.F. Hsieh, C.A. Chen, W.Z. Sun, W.F. Cheng, Irradiation Enhances Abscopal Anti-tumor Effects of Antigen-Specific Immunotherapy through Regulating Tumor Microenvironment, Mol Ther, 26 (2018) 404-419. [76] H. Inoue, K. Tani, Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments, Cell death and differentiation, 21 (2014) 39-49. [77] U. Ros, A. Peña-Blanco, K. Hänggi, U. Kunzendorf, S. Krautwald, W.W. Wong, A.J. García-Sáez, Necroptosis Execution Is Mediated by Plasma Membrane Nanopores Independent of Calcium, Cell Rep, 19 (2017) 175-187. [78] A. Linkermann, D.R. Green, Necroptosis, N Engl J Med, 370 (2014) 455-465. [79] S.H. Lee, J.Y. Kwon, S.Y. Kim, K. Jung, M.L. Cho, Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis, Sci Rep, 7 (2017) 10133. [80] C. Huang, Y. Luo, J. Zhao, F. Yang, H. Zhao, W. Fan, P. Ge, Shikonin kills glioma cells through necroptosis mediated by RIP-1, PloS one, 8 (2013) e66326. [81] I. Chefetz, E. Grimley, K. Yang, L. Hong, E.V. Vinogradova, R. Suciu, I. Kovalenko, D. Karnak, C.A. Morgan, M. Chtcherbinine, C. Buchman, B. Huddle, S. Barraza, M. Morgan, K.A. Bernstein, E. Yoon, D.B. Lombard, A. Bild, G. Mehta, I. Romero, C.Y. Chiang, C. Landen, B. Cravatt, T.D. Hurley, S.D. Larsen, R.J. Buckanovich, A Pan-ALDH1A Inhibitor Induces Necroptosis in Ovarian Cancer Stem-like Cells, Cell Rep, 26 (2019) 3061-3075 e3066. [82] D. Bergamaschi, A. Vossenkamper, W.Y.J. Lee, P. Wang, E. Bochukova, G. Warnes, Simultaneous polychromatic flow cytometric detection of multiple forms of regulated cell death, Apoptosis, 24 (2019) 453-464. [83] Q. Pan, Y. Huang, L. Chen, J. Gu, X. Zhou, SMAC-armed vaccinia virus induces both apoptosis and necroptosis and synergizes the efficiency of vinblastine in HCC, Hum Cell, 27 (2014) 162-171. [84] Z. Huang, M. Epperly, S.C. Watkins, J.S. Greenberger, V.E. Kagan, H. Bayir, Necrostatin-1 rescues mice from lethal irradiation, Biochimica et biophysica acta, 1862 (2016) 850-856. [85] M.A. Nehs, C.I. Lin, D.E. Kozono, E.E. Whang, N.L. Cho, K. Zhu, J. Moalem, F.D. Moore, Jr., D.T. Ruan, Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers, Surgery, 150 (2011) 1032-1039. [86] S. Greiner, J.Y. Humrich, P. Thuman, B. Sauter, G. Schuler, L. Jenne, The highly attenuated vaccinia virus strain modified virus Ankara induces apoptosis in melanoma cells and allows bystander dendritic cells to generate a potent anti-tumoral immunity, Clin Exp Immunol, 146 (2006) 344-353. [87] J.C. Gallego-Gomez, C. Risco, D. Rodriguez, P. Cabezas, S. Guerra, J.L. Carrascosa, M. Esteban, Differences in virus-induced cell morphology and in virus maturation between MVA and other strains (WR, Ankara, and NYCBH) of vaccinia virus in infected human cells, J Virol, 77 (2003) 10606-10622. [88] E. Wennerberg, C. Lhuillier, C. Vanpouille-Box, K.A. Pilones, E. Garcia-Martinez, N.P. Rudqvist, S.C. Formenti, S. Demaria, Barriers to Radiation-Induced In Situ Tumor Vaccination, Front Immunol, 8 (2017) 229. [89] D. Byrd, N. Shepherd, J. Lan, N. Hu, T. Amet, K. Yang, M. Desai, Q. Yu, Primary human macrophages serve as vehicles for vaccinia virus replication and dissemination, J Virol, 88 (2014) 6819-6831. [90] K. Ehrig, M.O. Kilinc, N.G. Chen, J. Stritzker, L. Buckel, Q. Zhang, A.A. Szalay, Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68, J Transl Med, 11 (2013) 79. [91] F. Klug, H. Prakash, P.E. Huber, T. Seibel, N. Bender, N. Halama, C. Pfirschke, R.H. Voss, C. Timke, L. Umansky, K. Klapproth, K. Schakel, N. Garbi, D. Jager, J. Weitz, H. Schmitz-Winnenthal, G.J. Hammerling, P. Beckhove, Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy, Cancer Cell, 24 (2013) 589-602. [92] S. Siva, M.P. MacManus, R.F. Martin, O.A. Martin, Abscopal effects of radiation therapy: a clinical review for the radiobiologist, Cancer Lett, 356 (2015) 82-90. [93] W. Ngwa, O.C. Irabor, J.D. Schoenfeld, J. Hesser, S. Demaria, S.C. Formenti, Using immunotherapy to boost the abscopal effect, Nat Rev Cancer, 18 (2018) 313-322. [94] T. Inoue, T. Byrne, M. Inoue, M.E. Tait, P. Wall, A. Wang, M.R. Dermyer, H. Laklai, J.J. Binder, C. Lees, R. Hollingsworth, L. Maruri-Avidal, D.H. Kirn, D.M. McDonald, Oncolytic Vaccinia Virus Gene Modification and Cytokine Expression Effects on Tumor Infection, Immune Response, and Killing, Molecular cancer therapeutics, 20 (2021) 1481-1494. [95] F. Lohr, K. Hu, Z. Haroon, T.V. Samulski, Q. Huang, J. Beaty, M.W. Dewhirst, C.Y. Li, Combination treatment of murine tumors by adenovirus-mediated local B7/IL12 immunotherapy and radiotherapy, Mol Ther, 2 (2000) 195-203. [96] G. Vijayakumar, P. Palese, P.H. Goff, Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma, EBioMedicine, 49 (2019) 96-105. [97] S.M. O'Cathail, T.D. Pokrovska, T.S. Maughan, K.D. Fisher, L.W. Seymour, M.A. Hawkins, Combining Oncolytic Adenovirus with Radiation-A Paradigm for the Future of Radiosensitization, Frontiers in oncology, 7 (2017) 153.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80411-
dc.description.abstract"本論文研究結合溶瘤病毒和放射線治療。放射治療是癌症治療的重要一環,而溶瘤病毒為癌症免疫治療的一個新方向。溶瘤病毒除了腫瘤消融之外,能促進腫瘤微環境的改變,增加免疫細胞浸潤。研究結合溶瘤病毒和放射線治療對於臨床應用有實際價值。本研究使用免疫健全老鼠模型,研究結合高劑量立體定位放射治療(SBRT)和溶瘤痘苗病毒(vaccinia virus),探討此合併療法的抗腫瘤效果和免疫機轉。研究結果顯示合併高劑量立體定位放射治療和溶瘤痘苗病毒可增加動物體內抗腫瘤效果,增加脾臟之CD4+Ki-67+幫手T細胞和CD8+Ki-67+殺手T細胞。合併療法也會增加腫瘤內浸潤CD3+CD4+幫手T細胞和CD3+CD8+殺手T細胞且降低調控T細胞(regulatory T cells)。並且,合併療法增強體外細胞死亡,部分經由細胞程序性壞死(necroptosis)而釋放出損害相關分子模式( damage-associated molecular patterns, DAMPs),並改變巨噬細胞M1/M2的比例。此合併高劑量立體定位放射治療和溶瘤痘苗病毒的療法可做癌症臨床治療的參考。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:06:05Z (GMT). No. of bitstreams: 1
U0001-0601202210202000.pdf: 3406963 bytes, checksum: 189abeadfbc57bb5a239a8b1089bc15a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 中文摘要 II Abstract III Introduction 1 Materials and Methods 4 Results 15 Discussion 30 Conclusion 42 Prospects 43 Figures 44 Reference 62
dc.language.isoen
dc.subject腫瘤免疫zh_TW
dc.subject放射治療zh_TW
dc.subject溶瘤病毒zh_TW
dc.subjectcancer immunotherapyen
dc.subjectoncolytic virusen
dc.subjectRadiation therapyen
dc.title放射治療與腫瘤免疫反應zh_TW
dc.titleRadiation Therapy and Tumor Immunology: Clinical Tumor Microenvironment and Oncolytic Virus Applicationen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃凱文(Hsin-Tsai Liu),張志隆(Chih-Yang Tseng),劉士任
dc.subject.keyword放射治療,溶瘤病毒,腫瘤免疫,zh_TW
dc.subject.keywordRadiation therapy,oncolytic virus,cancer immunotherapy,en
dc.relation.page73
dc.identifier.doi10.6342/NTU202200016
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-01-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0601202210202000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved