請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80396完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 貝蘇章(Soo-Chang Pei) | |
| dc.contributor.author | Yi-Hsin Hung | en |
| dc.contributor.author | 洪苡馨 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:05:46Z | - |
| dc.date.available | 2021-07-23 | |
| dc.date.available | 2022-11-24T03:05:46Z | - |
| dc.date.copyright | 2021-07-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-24 | |
| dc.identifier.citation | [1] Orin Packer and David R Williams. ”light, the retinal image, and photoreceptors”. The science of color, 2:41–102, 2003. [2] Yuta Asano. ”individual colorimetric observers for personalized color imaging”. 2015. [3] Chiaki Ueda, Tadahiro Azetsu, Noriaki Suetake, and Eiji Uchino. ”improvement in appearance of colors for elderly persons using lightness transform”. Optical Review, 23(6):917–925, 2016. [4] Shanto Rahman, Md Mostafijur Rahman, Mohammad AbdullahAlWadud, Golam Dastegir AlQuaderi, and Mohammad Shoyaib. An adaptive gamma correction for image enhancement. EURASIP Journal on Image and Video Processing, 2016(1):1–13, 2016. [5] Yoshiki Tanaka, Kiyoshi Tanaka, Sho Yokoyama, Hideki Nakamura, Kazuo Ichikawa, and Shoko Tanabe. ”an improved simulation method of color perception by elderly people based on measured luminescence spectrum and color constancy relaxation”. The Journal of the Institute of Image Electronics Engineers of Japan, 40(1):86–95, 2011. [6] color vision. https://www.handprint.com/HP/WCL/color2.html. Accessed: 20210408. [7] Brooke E Schefrin and John S Werner. Loci of spectral unique hues throughout the life span. JOSA A, 7(2):305–311, 1990. [8] Katsunori Okajima and Masanori Takase. ”computerized simulation and chromatic adaptation experiments based on a model of aged human lens”. Optical review, 8(1):64–70, 2001. [9] KuangTsu Shih, JenShuo Liu, Frank Shyu, SuLing Yeh, and Homer H Chen. Blocking harmful blue light while preserving image color appearance. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016. [10] Abhijit Sarkar, Florent Autrusseau, Françoise Viénot, Patrick Le Callet, and Laurent Blondé. From cie 2006 physiological model to improved agedependent and average colorimetric observers. JOSA A, 28(10):2033–2048, 2011. [11] Andrew Stockman. Cone fundamentals and cie standards. Current Opinion in Behavioral Sciences, 30:87–93, 2019. [12] Masataka Okabe and Kei Ito. How to make figures and presentations that are friendly to color blind people. University of Tokyo, 2002. [13] Jacek Rumiński, Jerzy Wtorek, Joanna Rumińska, Mariusz Kaczmarek, Adam Bujnowski, Tomasz Kocejko, and Artur Poliński. Color transformation methods for dichromats. In 3rd International Conference on Human System Interaction, pages 634-641. IEEE, 2010. [14] YiChun Chen, Yunge Guan, Tomoharu Ishikawa, Hiroaki Eto, Takehiro Nakatsue, Jinhui Chao, and Miyoshi Ayama. Preference for colorenhanced images assessed by color deficiencies. Color Research Application, 39(3):234–251, 2014. [15] Joel Pokorny, Vivianne C Smith, and Margaret Lutze. ”aging of the human lens.”. Applied optics, 26(8):1437–1440, 1987. [16] Yuta Asano, Mark D Fairchild, and Laurent Blondé. Individual colorimetric observer model. PloS one, 11(2):e0145671, 2016. [17] Fundamental Chromaticity Diagram with Physiological Axes Part 1. Number 170. in CIE Publication. ISBN: 9783901906466. [18] JD Moreland and EC Alexander. Effect of macular pigment on colour matching with field sizes in the 1 to 10 range. In Colour Vision Deficiencies XIII, pages 363–368. Springer, 1997. [19] Daiki Moriyama, Chiaki Ueda, Tadahiro Azetsu, Noriaki Suetake, and Eiji Uchino. ”image lightness conversion and sharpening taking account of visual features of elderly person”. In 2019 IEEE International Conference on Image Processing (ICIP), pages 4709–4713. IEEE, 2019. [20] Mohd Fikree Hassan, Takumi Kugimiya, Yoshiki Tanaka, Kiyoshi Tanaka, and Raveendran Paramesran. Comparative analysis of the color perception loss for elderly people. In 2015 AsiaPacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pages 1176–1181. IEEE, 2015. [21] Takaaki Suzuki, Yi Qiang, Satoshi Sakuragawa, Hisae Tamura, and Katsunori Okajima. Age-related changes of reaction time and p300 for low-contrast color stimuli: effects of yellowing of the aging human lens. Journal of physiological anthropology, 25(2):179–187, 2006. [22] Jose M Artigas, Adelina Felipe, Amparo Navea, Adriana Fandino, and Cristina Artigas. Spectral transmission of the human crystalline lens in adult and elderly persons: color and total transmission of visible light. Investigative ophthalmology visual science, 53(7):4076–4084, 2012. [23] Dong Guo, Yuan Cheng, Shaojie Zhuo, and Terence Sim. Correcting overexposure in photographs. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 515–521. IEEE, 2010. [24] Syed Waqas Zamir, Javier VazquezCorral, and Marcelo Bertalmio. Vision models for wide color gamut imaging in cinema. IEEE transactions on pattern analysis and machine intelligence, 2019. [25] Barry Winn, David Whitaker, David B Elliott, and Nicholas J Phillips. Factors affecting light-adapted pupil size in normal human subjects. Investigative ophthalmology visual science, 35(3):1132–1137, 1994. [26] Ewald Hering. Outlines of a theory of the light sense. 1964. [27] Daisuke Miyazaki, Kazuki Nakamura, Masashi Baba, Ryo Furukawa, Masahito Aoyama, Shinsaku Hiura, and Naoki Asada. A first introduction to metamerism art. In SIGGRAPH Asia 2012 Posters, pages 1–1. 2012. [28] Vivianne C Smith and Joel Pokorny. ”color matching and color discrimination”. The science of color, 2:103–148, 2003. [29] Jason McDowell. Design of a color sensing system to aid the color blind. IEEE Potentials, 27(4):34–39, 2008. [30] daltonize.py. http://moinmo.in/AccessibleMoin?action=AttachFile do= view target=daltonize.py. (Accessed on 05/19/2021). [31] Hans Brettel, Françoise Viénot, and John D Mollon. Computerized simulation of color appearance for dichromats. JOSA A, 14(10):2647–2655, 1997. [32] Rika Mochizuki, Tatsuya Nakamura, Jinhui Chao, and Reiner Lenz. Colorweak correction by discrimination threshold matching. In Conference on Colour in Graphics, Imaging, and Vision, volume 2008, pages 208–213. Society for Imaging Science and Technology, 2008. [33] Matthew Anderson, Ricardo Motta, Srinivasan Chandrasekar, and Michael Stokes. Proposal for a standard default color space for the internet—srgb. In Color and imaging conference, volume 1996, pages 238–245. Society for Imaging Science and Technology, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80396 | - |
| dc.description.abstract | 此篇論文中,主要是針對老年人視覺模擬的研究與改善。首先會先介紹隨著年紀增加時,人眼內部激素產生的改變,進而影響對於亮度與顏色接收的感知。而後,我們將會模擬兩種基於不同假設下所得到的老年人視覺影像的模擬,在此我們將此兩種模擬方式分別稱為色相保持模型以及黃化模型,並針對這兩種模型模擬出的狀況進行亮度或顏色上的改善。我們的目標是希望能透過將原影像進行亮度或顏色補償,讓老年人觀看經過補償預處理後的影像能得到與年輕人接近的視覺感受。 並且,我們從黃化模型的模擬以及顏色補償的方法延伸至有害藍光濾除的應用,兩個問題可使用相同概念進行模擬以及可以使用相同的補償方式改善原本的模擬影像會出現顏色偏差的問題。另外,我們還會介紹另一個基於不同個體激素濃度差異而的顏色匹配方程式,並比較相同濃度不同年紀下顏色匹配方程式。 最後,我們介紹如何模擬三種色盲顏色外觀的方法,並介紹另一篇論文針對不同程度的色盲進行增強的預處理,希望色盲患者觀看經過增強後的影像,能擁有較好的視覺感受,不過在之後的討論可以看到,此方法僅能改善輕微程度色盲患者的問題。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:05:46Z (GMT). No. of bitstreams: 1 U0001-2801202113323800.pdf: 93320887 bytes, checksum: 2922d77f5d51d252a7e80cff657770dc (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xv List of Tables xxi Chapter 1 Color Vision of the Elderly 1 1.1 Eye Component Related to Color Vision 1 1.1.1 Introduction 1 1.1.2 Lens Pigment 3 1.1.3 Macular Pigment 4 1.1.4 Photopigments 4 1.2 The Vision Problem of the Elderly 5 1.2.1 Introduction 5 1.2.2 The Yellowing of the Crystalline Lens 5 1.2.3 Senile Miosis 5 1.3 The Decreasing Filter of Lens Spectral Transmittance of the Elderly 6 1.3.1 Introduction 6 1.3.2 Step 1: Optical Density of Human Lens by Two-factor Model 6 1.3.3 Step 2: Spectral Transmittance of Crystalline Lens 8 1.3.4 Step 3: Calculate the Decreasing Filter of the Elderly 9 1.4 Conclusion 10 Chapter 2 Hue Preserving Model 11 2.1 Introduction 11 2.2 The Simulation Method of Hue Preserving Model 12 2.2.1 Step1: The Decreasing Filter for Elderly Lens Transmittance 12 2.2.2 Step2: Apply the Decreasing Filter to XYZ 13 2.2.3 Step3: Calculate the Effective Luminance Ratio 14 2.2.4 Step4: Senile Miosis 15 2.3 The Simulation Results 16 Chapter 3 Lightness Compensation of the Hue Preserving Model 19 3.1 Objective and Introduction 19 3.2 Proposed Method 1: Modify the Method of Adaptive Gamma Correction on HSV 21 3.2.1 AGC Method for Image Enhancement 21 3.2.1.1 The AGC Method 24 3.2.1.2 Experimental Results 32 3.2.2 Modify Adaptive Gamma Correction on HSV for V Channel 34 3.2.2.1 Proposed Method 34 3.2.2.2 Experimental Results 37 3.3 Proposed Method 2: Multiply by the Inverse Ratio and Solve the OE Problem 40 3.3.1 Proposed Pipeline 41 3.3.2 Solve the OE Problem 43 3.3.2.1 Over Exposure Map and Likelihood 43 3.3.2.2 Proposed Method 1 for OE Recovery 45 3.3.2.3 Proposed Method 2 for OE Recovery 47 3.3.2.4 Proposed Method 3 for OE Recovery 49 3.3.3 Compare Experimental Results for Solving the OE Problem 52 3.4 Compare Two Lightness Compensation Methods of the Hue Preserving Model 59 3.4.1 Compare Experimental Results 59 3.4.2 Quality Assessment 63 3.4.2.1 Wasserstein Distance 63 3.4.2.2 Compare Results and Discussion 64 3.5 Conclusion 67 Chapter 4 Yellowing Model 69 4.1 Introduction 69 4.2 The Simulation Method of the Yellowing Model 70 4.2.1 Step1: The Decreasing Filter for Elderly Lens Transmittance 70 4.2.2 Step2: The Tristimulus Values for Old People 71 4.2.3 Step3: Effective Components 73 4.2.4 Step4: Senile Miosis Filter 74 4.2.5 Step5: Final Estimated Colors for the Elderly 75 4.3 The Simulation Results 76 4.4 Compare the Differences between the Hue Preserving and Yellowing Model 78 4.4.1 Compare the Simulation Result 78 4.4.2 Compare the Decreasing Ratio 81 4.4.3 Compare the Chromaticity Diagram 82 Chapter 5 Color Appearance Improvement of the Yellowing Model 89 5.1 The Objective 89 5.2 Proposed Method: Color Compensation 91 5.2.1 The Transformation Matrix of RGB to XYZ of the Elderly 91 5.2.2 Color Compensation by the Inverse Transformation Matrix of the Elderly 96 5.3 Experimental Results and Quality Assessments 97 Chapter 6 Effects of Prerecptoral Filtering on Color Appearance 101 6.1 Discussion: The Problem of the Yellowing Model 101 6.2 Loci of Spectral Unique Hues Throughout the Life Span 103 6.2.1 Introduction 103 6.2.2 Unique Hues 103 6.2.3 Results 105 6.3 Computerized Simulation and Chromatic Adaptation Experiments on the Model of Aged Human Lens 108 6.3.1 Introduction 108 6.3.2 Computerized Simulation 108 6.3.3 Computerized Simulation Result 111 6.3.4 Experiment 113 6.4 Conclusion 115 Chapter 7 Blocking Harmful Blue without Changing Color Appearance 117 7.1 Blocking Harmful Blue 118 7.1.1 Introduction 118 7.1.2 Simulation 119 7.1.3 Results and Discussion 122 7.2 Proposed Color Compensation Method 125 7.2.1 Objective 125 7.2.2 Workflow 126 7.2.3 Experimental Results 128 7.2.4 Discussion1: Metamerism of results 130 7.2.5 Discussion2: Compare Different Filtered Sizes and Locations 131 7.2.5.1 Different Filtered Sizes 131 7.2.5.2 Different Filtering Location 135 7.2.6 Discussion3: PSNR on XYZ and RGB 141 Chapter 8 Individual Colorimetric Observer Model 145 8.1 Introduction 145 8.2 CIEPO06 146 8.3 Individual Colorimetric Observer Model 147 8.3.1 Introduction and Workflow 147 8.3.2 Individual Optical Density of Lens and Other Ocular Media 149 8.3.3 The Spectral Optical Density of the Macular Pigment 150 8.3.4 Absorptance Spectra of Cones Photopigments 151 8.3.5 Individual LMSCMFs 152 8.4 Experimental Results and Discussion 154 8.4.1 Lens and Other Ocular Media Optical Density Function 154 8.4.2 Macular Optical Density Function 155 8.4.3 The Cones’ Absorbance and Peak Optical Density 157 8.4.4 LMS CMFs 158 Chapter 9 Color Blind Processing 163 9.1 Color Blind Simulation 163 9.1.1 Introduction 163 9.1.2 The Simulation Method 165 9.1.3 The Simulation Result 167 9.2 Preference for ColorEnhanced Images Assessed by Color Deficiencies 170 9.2.1 Introduction 170 9.2.2 Enhanced Method for Color Deficiency Model 171 9.2.3 Enhancement of Processing 173 9.2.4 Enhanced Results 175 References 177 Appendix A — Tabulation 183 | |
| dc.language.iso | en | |
| dc.subject | 色盲 | zh_TW |
| dc.subject | 老年人視覺模擬 | zh_TW |
| dc.subject | 亮度補償 | zh_TW |
| dc.subject | 顏色補償 | zh_TW |
| dc.subject | 有害藍光濾除 | zh_TW |
| dc.subject | 顏色匹配方程式 | zh_TW |
| dc.subject | Elderly visual simulation | en |
| dc.subject | Color blindness | en |
| dc.subject | Color matching functions | en |
| dc.subject | Harmful blue light filtering | en |
| dc.subject | Color compensation | en |
| dc.subject | Lightness compensation | en |
| dc.title | 老年人色覺處理以及其他色彩外觀的改善 | zh_TW |
| dc.title | Elderly Color Vision Processing and Other Color Appearance Improvements | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁建均(Hsin-Tsai Liu),鍾國亮(Chih-Yang Tseng),黃文良,杭學鳴 | |
| dc.subject.keyword | 老年人視覺模擬,亮度補償,顏色補償,有害藍光濾除,顏色匹配方程式,色盲, | zh_TW |
| dc.subject.keyword | Elderly visual simulation,Lightness compensation,Color compensation,Harmful blue light filtering,Color matching functions,Color blindness, | en |
| dc.relation.page | 185 | |
| dc.identifier.doi | 10.6342/NTU202100228 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-06-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2801202113323800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 91.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
