請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80369完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛承輝(Chun-Hway Hsueh) | |
| dc.contributor.author | Pin-Jie Chen | en |
| dc.contributor.author | 陳品潔 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:05:17Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-24T03:05:17Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-28 | |
| dc.identifier.citation | [1] K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu Rev Phys Chem 58 (2007) 267‒297. [2] Y. Chen, H. Ming, Review of surface plasmon resonance and localized surface plasmon resonance sensor, Photonic Sens. 2(1) (2012) 37‒49. [3] E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing — A review, Anal. Chim. Acta 706(1) (2011) 8‒24. [4] J.B. Gonzalez Diaz, A. Garcia Martin, J.M. Garcia Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, M. Kall, Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity, Small 4(2) (2008) 202‒205. [5] J. Jatschka, A. Dathe, A. Csáki, W. Fritzsche, O. Stranik, Propagating and localized surface plasmon resonance sensing — A critical comparison based on measurements and theory, Sensing and Bio-Sensing Research 7 (2016) 62‒70. [6] L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, Langmuir 14 (1998) 5636‒5648. [7] A.J. Haes, R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors, Anal. Bioanal. Chem. 379(7‒8) (2004) 920‒930. [8] T. Tan, C. Tian, Z. Ren, J. Yang, Y. Chen, L. Sun, Z. Li, A. Wu, J. Yin, H. Fu, LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy, Phys. Chem. Chem. Phys. 15(48) (2013) 21034‒21042. [9] Y. Hong, Y.M. Huh, D.S. Yoon, J. Yang, Nanobiosensors based on localized surface plasmon resonance for biomarker detection, J. Nanomater. 2012 (2012) 1‒13. [10] C. Hou, D.D. Galvan, G. Meng, Q. Yu, Long-range surface plasmon resonance and surface-enhanced Raman scattering on X-shaped gold plasmonic nanohole arrays, Phys. Chem. Chem. Phys. 19(35) (2017) 24126‒24134. [11] M. Sui, S. Kunwar, P. Pandey, J. Lee, Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles, Sci. Rep. 9(1) (2019) 16582‒16595. [12] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric, J. Phys. Chem. B 107 (2002) 668‒677. [13] D.A. Bobb, G. Zhu, M. Mayy, A.V. Gavrilenko, P. Mead, V.I. Gavrilenko, M.A. Noginov, Engineering of low-loss metal for nanoplasmonic and metamaterials applications, Appl. Phys. Lett. 95(15) (2009) 151102‒151105. [14] M.G. Blaber, M.D. Arnold, M.J. Ford, Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material, J. Phys. Condens. Matter 21(14) (2009) 144211‒144219. [15] M. Jablan, H. Buljan, M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24) (2009) 245435‒245441. [16] P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials, Laser Photonics Rev. 4(6) (2010) 795‒808. [17] A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials, Science 331 (2011) 290‒291. [18] X. Zhang, S. Ye, X. Zhang, L. Wu, Optical properties of SiO2@M (M = Au, Pd, Pt) core–shell nanoparticles: material dependence and damping mechanisms, J. Mater. Chem. C 3(10) (2015) 2282−2290. [19] M.D. Malinsky, K.L. Kelly, G.C. Schatz, R.P. Van Duyne, Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers, J. Am. Chem. Soc. 123 (2001) 1471‒1482. [20] A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Lett. 3 (2003) 1057‒1062. [21] C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature 121 (1928) 501‒502. [22] K.J.I. Ember, M.A. Hoeve, S.L. McAughtrie, M.S. Bergholt, B.J. Dwyer, M.M. Stevens, K. Faulds, S.J. Forbes, C.J. Campbell, Raman spectroscopy and regenerative medicine: a review, NPJ Regen. Med. 2 (2017) 12‒21. [23] L. Zeiri, S. Efrima, Surface-enhanced Raman spectroscopy of bacteria: the effect of excitation wavelength and chemical modification of the colloidal milieu, J Raman Spectrosc 36 (2005) 667−675. [24] K. Eberhardt, C. Stiebing, C. Matthaus, M. Schmitt, J. Popp, Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update, Expert Rev. Mol. Diagn. 15(6) (2015) 773‒787. [25] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8(4) (2013) 235‒246. [26] Y. Liu, S. Xu, B. Tang, Y. Wang, J. Zhou, X. Zheng, B. Zhao, W. Xu, Note: Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering, Rev. Sci. Instrum. 81(3) (2010) 036105‒036108. [27] R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, L. Fabris, A Review on surface-enhanced Raman scattering, Biosensors 9(2) (2019) 57‒155. [28] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163‒166. [29] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78 (1997) 1667–1670. [30] P.G. Etchegoin, E.C. Le Ru, A perspective on single molecule SERS: current status and future challenges, Phys. Chem. Chem. Phys. 10(40) (2008) 6079‒6089. [31] S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275 (1997) 1102–1106. [32] A.B. Zrimsek, N.L. Wong, R.P. Van Duyne, Single molecule surface-enhanced Raman spectroscopy: A critical analysis of the bianalyte versus isotopologue proof, J. Phys. Chem. C 120(9) (2016) 5133–5142. [33] Y. Fu, M. Xin, J. Chong, R. Li, M. Huang, Plasmonic gold nanostars@ZIF-8 nanocomposite for the ultrasensitive detection of gaseous formaldehyde, J. Mater. Sci. 56(6) (2020) 4151−4160. [34] S. Pahlow, A. März, B. Seise, K. Hartmann, I. Freitag, E. Kämmer, R. Böhme, V. Deckert, K. Weber, D. Cialla, et al., Bioanalytical application of surface- and tip-enhanced Raman spectroscopy, Eng. Life Sci. 12(2) (2012) 131−143. [35] M. Lin, L. He, J. Awika, L. Yang, D.R. Ledoux, H. Li, A. Mustapha, Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC, J. Food Sci. 73(8) (2008) T129−134. [36] B. Sharma, R.R. Frontiera, A.I. Henry, E. Ringe, R.P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today 15(1−2) (2012) 16−25. [37] G. Macias, M. Alba, L.F. Marsal, A. Mihi, Surface roughness boosts the SERS performance of imprinted plasmonic architectures, J. Mater. Chem. C 4(18) (2016) 3970‒3975. [38] Y. Xue, F. Scaglione, P. Rizzi, L. Battezzati, High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass, Appl. Surf. Sci. 426 (2017) 1113−1120. [39] Q. Zhou, Y. He, J. Abell, Z. Zhang, Y. Zhao, Optical properties and surface enhanced Raman scattering of L-shaped silver nanorod arrays, J. Phys. Chem. C 115(29) (2011) 14131‒14140. [40] J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, et al., Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature 464(7287) (2010) 392‒395. [41] K.D. Alexander, K. Skinner, S. Zhang, H. Wei, R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11) (2010) 4488−4493. [42] N.A. Hatab, C.H. Hsueh, A.L. Gaddis, S.T. Retterer, J.H. Li, G. Eres, Z. Zhang, B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy, Nano Lett. 10(12) (2010) 4952−4955. [43] X. Zhang, Y. Zheng, X. Liu, W. Lu, J. Dai, D.Y. Lei, D.R. MacFarlane, Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy, Adv. Mater. 27(6) (2015) 1090−1096. [44] J. Zhang, C. Cao, X.L. Xu, Tailoring alphabetical metamaterials in optical frequency plasmonic coupling, dispersion, and sensing, ACS Nano 8 (2014) 3796−3806. [45] T. Wu, Y.W. Lin, Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography, Appl. Surf. Sci. 435 (2018) 1143−1149. [46] C. Wang, L.W. Nien, H.C. Ho, Y.C. Lai, C.H. Hsueh, Surface plasmon excited on imprintable thin-film metallic glasses for surface-enhanced Raman scattering applications, ACS Appl. Nano Mater. 1(2) (2018) 908−914. [47] N. Li, W. Chen, L. Liu, Thermoplastic micro-forming of bulk metallic glasses: A review, Jom 68(4) (2016) 1246−1261. [48] L. Jensen, C.M. Aikens, G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering, Chem. Soc. Rev. 37(5) (2008) 1061−1073. [49] C.C. Lee, T.K. Liu, W.C. Hung, I.M. Jiang, M.S. Tsai, C.T. Lee, W.Y. Huang, Varying SiO2 thickness of core–shell noble-grains on a gradient sensing plate to enhance field Raman scattering, Int. J. Adv. Manuf. Technol. 72(1‒4) (2014) 419‒424. [50] C.A. Wang, H.C. Ho, C.H. Hsueh, Periodic ZnO-elevated gold dimer nanostructures for surface-enhanced Raman scattering applications, J. Phys. Chem. C 122(47) (2018) 27016−27023. [51] T.W. Koo, S. Chan, L. Sun, X. Su, J.W. Zhang, A.A. Berlin, Specific chemical effects on surface-enhanced Raman spectroscopy for ultra-sensitive detection of biological molecules, Appl Spectrosc 58(12) (2004) 1401‒1407. [52] M. Sun, S. Liu, M. Chen, H. Xu, Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer, J Raman Spectrosc 40(2) (2009) 137−143. [53] E.J. Blackie, E.C. LeRu, P.G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules, J. Am. Chem. Soc. 131 (2009) 14466−14472. [54] Y. Tan, L. Ma, Z. Gao, M. Chen, F. Chen, Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering, Nano Lett. 17(4) (2017) 2621‒2626. [55] Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, Z. Zhao, Semiconductor SERS enhancement enabled by oxygen incorporation, Nat. Commun. 8(1) (2017) 1993−2002. [56] W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold–silicon alloys, Nature 187(4740) (1960) 869−870. [57] Y. Setsuhara, T. Kamiya, S.I. Yamaura, Novel structured metallic and Inorganic materials, Springer, Japan, 2019. [58] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48(1) (2000) 279−306. [59] C. Suryanarayana, A. Inoue, Metallic Glasses, Ullmann's Encyclopedia of Industrial Chemistry, John Wiley and Sons, New Jersey, 2012. [60] H. Lee, G.Y. Jung, Full wafer scale near zero residual nano-imprinting lithography using UV curable monomer solution, Microelectron Eng 77(1) (2005) 42−47. [61] R.B. Schwarz, W.L. Johnson, Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals, Phys. Rev. Lett. 51(5) (1983) 415‒418. [62] F. Qin, M. Yoshimura, X. Wang, S. Zhu, A. Kawashima, K. Asami, A. Inoue, Corrosion behavior of a Ti-based bulk metallic glass and its crystalline alloys, Mater Trans 48(7) (2007) 1855−1858. [63] C.W. Chu, J.S.C. Jang, S.M. Chiu, J.P. Chu, Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process, Thin Solid Films 517(17) (2009) 4930−4933. [64] F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, P.D. Rack, Fatigue-resistance enhancements by glass-forming metallic films, Mater. Sci. Eng. A 468−470 (2007) 246−252. [65] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, A 200nm thick glass-forming metallic film for fatigue-property enhancements, Appl. Phys. Lett. 88(13) (2006) 131902−131905. [66] L. Zhang, H. Liu, L. Chen, P. Guan, B. Chen, T. Fujita, Y. Yamaguchi, H. Iwasaki, Q.K. Xue, M. Chen, Large-scale growth of sharp gold nano-cones for single-molecule SERS detection, RSC Adv. 6(4) (2016) 2882−2887. [67] L. Petti, R. Capasso, M. Rippa, M. Pannico, P. La Manna, G. Peluso, A. Calarco, E. Bobeico, P. Musto, A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications, Vib Spectrosc 82 (2016) 22−30. [68] Z. Xiong, X. Chen, P. Liou, M. Lin, Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS, Cellulose 24(7) (2017) 2801−2811. [69] M.L. Xu, Y. Gao, X.X. Han, B. Zhao, Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review, J. Agric. Food Chem. 65(32) (2017) 6719−6726. [70] D.D. Galvan, B. Špačková, J. Slabý, F. Sun, Y.-H. Ho, J. Homola, Q. Yu, Surface-Enhanced Raman Scattering on Gold Nanohole Arrays in Symmetrical Dielectric Environments Exhibiting Electric Field Extension, J. Phys. Chem. C 120(44) (2016) 25519−25529. [71] J.S. Wi, S. Tominaka, K. Uosaki, T. Nagao, Porous gold nanodisks with multiple internal hot spots, Phys. Chem. Chem. Phys. 14(25) (2012) 9131−9136. [72] A. Gopalakrishnan, M. Malerba, S. Tuccio, S. Panaro, E. Miele, M. Chirumamilla, S. Santoriello, C. Dorigoni, A. Giugni, R. Proietti Zaccaria, et al., Nanoplasmonic structures for biophotonic applications: SERS overview, Ann Phys 524(11) (2012) 620−636. [73] A.D. Shutov, Z. Yi, J. Wang, A.M. Sinyukov, Z. He, C. Tang, J. Chen, E.J. Ocola, J. Laane, A.V. Sokolov, et al., Giant chemical surface enhancement of coherent Raman scattering on MoS2, ACS Photonics 5(12) (2018) 4960−4968. [74] Y. Sun, C. Zhang, Y. Yuan, M. Xu, J. Yao, The moveable 'hot spots' effect in an Au nanoparticles-Au plate coupled system, Nanoscale 12(46) (2020) 23789−23798. [75] B. Nair, B. Geetha Priyadarshini, Process, structure, property and applications of metallic glasses, AIMS Mater Sci 3(3) (2016) 1022−1053. [76] Z. Li, Z. Huang, F. Sun, X. Li, J. Ma, Forming of metallic glasses: Mechanisms and processes, Mater. Today 7 (2020) 100077−100092. [77] C. Fan, C.T. Liu, H.G. Yan, Mechanical properties of bulk metallic glasses at cryogenic temperatures, Mod Phys Lett B 23 (2009) 2703−2722. [78] S.V. Ketov, R. Joksimovic, G. Xie, A. Trifonov, K. Kurihara, D.V. Louzguine-Luzgin, Formation of nanostructured metallic glass thin films upon sputtering, Heliyon 3(1) (2017) e00228−00243. [79] A. Etiemble, C. Der Loughian, M. Apreutesei, C. Langlois, S. Cardinal, J.M. Pelletier, J.F. Pierson, P. Steyer, Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications, J. Alloys Compd. 707 (2017) 155−161. [80] F.X. Liu, Y.F. Gao, P.K. Liaw, Rate-dependent deformation behavior of Zr-based metallic-glass coatings examined by nanoindentation, Metall Mater Trans A Phys Metall Mater Sci 39(8) (2008) 1862−1867. [81] P. Denis, S.Y. Liu, H.J. Fecht, Growth mode transition in Au-based thin film metallic glasses, Thin Solid Films 665 (2018) 29−35. [82] W. Diyatmika, J.P. Chu, B.T. Kacha, C.C. Yu, C.M. Lee, Thin film metallic glasses in optoelectronic, magnetic, and electronic applications: A recent update, Curr Opin Solid State Mater Sci 19(2) (2015) 95−106. [83] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, et al., Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097−5122. [84] P. Yiu, W. Diyatmika, N. Bönninghoff, Y.C. Lu, B.Z. Lai, J.P. Chu, Thin film metallic glasses: Properties, applications and future, J. Appl. Phys. 127(3) (2020) 030901−030917. [85] T. Li, K. Wu, T. Rindzevicius, Z. Wang, L. Schulte, M.S. Schmidt, A. Boisen, S. Ndoni, Wafer-scale nanopillars derived from block copolymer lithography for surface-enhanced Raman spectroscopy, ACS Appl. Mater. Interfaces 8(24) (2016) 15668−15675. [86] D. Zhang, S. Yang, X.Y. Zhang, N. Ma, B. Han, W. Zhao, S. Chi, Y. Liu, J. Yang, L. Chen, Damping resonance and refractive index effect on the layer-by-layer sputtering of Ag and Al2O3 on the polystyrene template, Spectrochim. Acta A Mol. Biomol. Spectrosc. 238 (2020) 118430−118436. [87] L. Le Thi Ngoc, T. Yuan, N. Oonishi, J. van Nieuwkasteele, A. van den Berg, H. Permentier, R. Bischoff, E.T. Carlen, Suppression of surface-enhanced Raman scattering on gold nanostructures by metal adhesion layers, J. Phys. Chem. C 120(33) (2016) 18756−18762. [88] P. Dawson, K.B. Alexander, J.R. Thompson, J.W. Haas, 3rd, T.L. Ferrell, Influence of metal grain size on surface-enhanced Raman scattering, Phys. Rev., B Condens. Matter 44(12) (1991) 6372−6381. [89] L. Yang, X. Qin, X. Jiang, M. Gong, D. Yin, Y. Zhang, B. Zhao, SERS investigation of ciprofloxacin drug molecules on TiO2 nanoparticles, Phys. Chem. Chem. Phys. 17(27) (2015) 17809−17815. [90] Y. Shen, P. Miao, C. Hu, J. Wu, M. Gao, P. Xu, SERS-based plasmon-driven reaction and molecule detection on a single Ag@MoS2 microsphere: Effect of thickness and crystallinity of MoS2, ChemCatChem 10(16) (2018) 3520−3525. [91] P. Miao, Y. Ma, M. Sun, J. Li, P. Xu, Tuning the SERS activity and plasmon-driven reduction of p-nitrothiophenol on a Ag@MoS2 film, Faraday Discuss. 214(0) (2019) 297−307. [92] K. Zhang, Y. Xiang, X. Wu, L. Feng, W. He, J. Liu, W. Zhou, S. Xie, Enhanced Optical Responses of Au@Pd Core/Shell Nanobars, Langmuir 25 (2009) 1162−1168. [93] S. Li, M.L. Pedano, S.H. Chang, C.A. Mirkin, G.C. Schatz, Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods, Nano Lett. 10(5) (2010) 1722−1727. [94] E. Hao, G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys. 120(1) (2004) 357−366. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80369 | - |
| dc.description.abstract | 本研究的目的是製造出不同結晶度、具週期性奈米結構的金基金屬玻璃薄膜(TFMG),並應用於表面增強拉曼散射(SERS)。為了實現這一目標,我們先採用磁控共濺鍍的方式製備出完全非晶的金-銅-矽金屬玻璃薄膜,並在薄膜之過冷液相區中採用熱壓印法將商用陽極氧化鋁模板壓印在鍍製的薄膜上,以形成週期性的奈米結構於薄膜上。最後再對壓印後的金-銅-矽金屬玻璃薄膜進行不同溫度的熱處理來達到不同結晶度。薄膜之表面形貌、結晶性、介電性質、光學性質以及表面增強拉曼散射效應將會分別由掃描式電子顯微鏡、X射線繞射儀(以及穿透式電子顯微鏡)、橢圓偏光儀、紫外光–可見光–近紅外光分光光譜儀以、及拉曼光譜儀來進行量測。同時也進行時域有限差分法模擬壓印薄膜之反射率,並與實驗結果進行比較。本研究發現熱處理非晶薄膜將會造成薄膜之結晶化,並由於晶界處的散射降低了拉曼強度。然而,在較高的熱處理溫度下,薄膜會開始晶粒成長並減少晶界面積,進而造成拉曼強度的增加。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:05:17Z (GMT). No. of bitstreams: 1 U0001-1306202115150300.pdf: 2792273 bytes, checksum: cfde86001401ec5bebc07bd4a7b0a798 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii Chapter 1 Motivation 1 Chapter 2 Literature Review 2 2.1 Surface Plasmon Resonance (SPR) 2 2.1.1 Localized Surface Plasmon Resonance (LSPR) 4 2.1.2 Surface-Enhanced Raman Scattering (SERS) 7 2.2 Metallic Glasses (MGs) 10 2.2.1 Criteria of Metallic Glass Formation 13 2.2.2 Critical Cooling Rate of Metallic Glass 15 2.2.3 Thermoplastic Behavior of Metallic Glass 17 2.2.4 Thin Film Metallic Glasses (TFMGs) 19 Chapter 3 Introduction 20 3.1 Experimental Details 24 3.1.1 Synthesis of Au-Cu-Si TFMGs 24 3.1.2 Thermal Imprint and Heat Treatment 25 3.1.3 Characterization 26 Chapter 4 Results and Discussion 28 4.1 Sputtering and Nanoimprint 28 4.2 Structure 30 4.3 Dielectric and Optical Properties 35 4.4 Simulations 39 4.5 Raman Spectra 41 4.6 Conclusions 45 References 46 Appendix 61 | |
| dc.language.iso | en | |
| dc.subject | 表面增強拉曼散射 | zh_TW |
| dc.subject | 金属玻璃 | zh_TW |
| dc.subject | 薄膜 | zh_TW |
| dc.subject | 熱壓印 | zh_TW |
| dc.subject | 結晶度 | zh_TW |
| dc.subject | crystallinity | en |
| dc.subject | thin film | en |
| dc.subject | metallic glass | en |
| dc.subject | SERS | en |
| dc.subject | thermal imprint | en |
| dc.title | 不同結晶度之可壓印金基金屬玻璃薄膜對表面增強拉曼散射之效應 | zh_TW |
| dc.title | Imprintable Au-based Thin-Film Metallic Glasses with Different Crystallinities for Surface-Enhanced Raman Scattering | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李佳翰(Hsin-Tsai Liu),李志偉(Chih-Yang Tseng) | |
| dc.subject.keyword | 金属玻璃,薄膜,熱壓印,結晶度,表面增強拉曼散射, | zh_TW |
| dc.subject.keyword | metallic glass,thin film,thermal imprint,crystallinity,SERS, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202101005 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1306202115150300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
