Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80365
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊維(Chun-Wei Chen)
dc.contributor.authorChien-Tai Chengen
dc.contributor.author鄭謙泰zh_TW
dc.date.accessioned2022-11-24T03:05:13Z-
dc.date.available2026-06-14
dc.date.available2022-11-24T03:05:13Z-
dc.date.copyright2021-07-23
dc.date.issued2021
dc.date.submitted2021-06-17
dc.identifier.citation[1] Dean, Cory R., et al. 'Boron nitride substrates for high-quality graphene electronics.' Nature nanotechnology 5.10 (2010): 722-726. [2] Zhang, Xingwang, et al. 'Recent progress of boron nitrides.' Ultra-Wide Bandgap Semiconductor Materials. Elsevier (2019): 347-419. [3] Schwetz, Karl A. 'Boron carbide, boron nitride, and metal borides.' Ullmann's Encyclopedia of Industrial Chemistry (2000). [4] Wang, Jingang, et al. 'Graphene, hexagonal boron nitride, and their heterostructures: properties and applications.' RSC advances 7.27 (2017): 16801-16822. [5] Liu, Fang, et al. 'Ab initio calculation of ideal strength and phonon instability of graphene under tension.' Physical Review B 76.6 (2007): 064120. [6] Lee, Changgu, et al. 'Measurement of the elastic properties and intrinsic strength of monolayer graphene.' science 321.5887 (2008): 385-388. [7] Song, Li, et al. 'Large scale growth and characterization of atomic hexagonal boron nitride layers.' Nano letters 10.8 (2010): 3209-3215. [8] Kudin, Konstantin N., et al. 'C2F, BN, and C nanoshell elasticity from ab initio computations.' Physical Review B 64.23 (2001): 235406. [9] Ouyang, Tao, et al. 'Thermal transport in hexagonal boron nitride nanoribbons.' Nanotechnology 21.24 (2010): 245701. [10] Cai, Qiran, et al. 'High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion.' Science advances 5.6 (2019): eaav0129. [11] Lindsay, L., et al. 'Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride.' Physical Review B 84.15 (2011): 155421. [12] Li, Lu Hua, et al. 'Strong oxidation resistance of atomically thin boron nitride nanosheets.' ACS nano 8.2 (2014): 1457-1462. [13] Liu, Zheng, et al. 'Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride.' Nature communications 4.1 (2013): 1-8. [14] Lee, Gwan-Hyoung, et al. 'Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage.' ACS nano 9.7 (2015): 7019-7026. [15] Jariwala, Deep, et al. 'Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides.' ACS nano 8.2 (2014): 1102-1120. [16] Radisavljevic, Branimir, et al. 'Single-layer MoS2 transistors.' Nature nanotechnology 6.3 (2011): 147-150. [17] Britnell, Liam, et al. 'Electron tunneling through ultrathin boron nitride crystalline barriers.' Nano letters 12.3 (2012): 1707-1710. [18] Bhanu, Udai, et al. 'Photoluminescence quenching in gold-MoS2 hybrid nanoflakes.' Scientific reports 4.1 (2014): 1-5. [19] Sheng, Yuewen, et al. 'Mixed multilayered vertical heterostructures utilizing strained monolayer WS2.' Nanoscale 8.5 (2016): 2639-2647. [20] Liu, Zheng, et al. 'In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes.' Nature nanotechnology 8.2 (2013): 119-124. [21] Lin, Yi, et al. 'Soluble, exfoliated hexagonal boron nitride nanosheets.' The Journal of Physical Chemistry Letters 1.1 (2010): 277-283. [22] Pacile, D., et al. 'The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes.' Applied Physics Letters 92.13 (2008): 133107. [23] Kim, Ki Kang, et al. 'Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition.' Nano letters 12.1 (2012): 161-166. [24] Jang, A-Rang, et al. 'Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire.' Nano letters 16.5 (2016): 3360-3366. [25] Wolf, G., et al. 'Calorimetric process monitoring of thermal decomposition of B–N–H compounds.' Thermochimica Acta 343.1-2 (2000): 19-25. [26] Kim, Ki Kang, et al. 'Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices.' ACS nano 6.10 (2012): 8583-8590. [27] Lee, Joo Song, et al. 'Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation.' Science 362.6416 (2018): 817-821. [28] Hu, M. G., et al. 'The thermal decomposition of ammonia borane.' Thermochimica Acta 23.2 (1978): 249-255. [29] Baitalow, Felix, et al. 'Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods.' Thermochimica Acta 391.1-2 (2002): 159-168. [30] Chen, Tse-An, et al. 'Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111).' Nature 579.7798 (2020): 219-223. [31] Kim, Gwangwoo, et al. 'Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil.' Nano letters 13.4 (2013): 1834-1839. [32] Sonde, Sushant, et al. 'Ultrathin, wafer-scale hexagonal boron nitride on dielectric surfaces by diffusion and segregation mechanism.' 2D Materials 4.2 (2017): 025052. [33] Suzuki, Satoru, et al. 'Growth of atomically thin hexagonal boron nitride films by diffusion through a metal film and precipitation.' Journal of Physics D: Applied Physics 45.38 (2012): 385304. [34] Sonde, Sushant, et al. 'Ultrathin, wafer-scale hexagonal boron nitride on dielectric surfaces by diffusion and segregation mechanism.' 2D Materials 4.2 (2017): 025052. [35] Chakrabarti, D. J., et al. 'The B-Cu (Boron-Copper) system.' Journal of Phase Equilibria 3.1 (1982): 45-48. [36] Okamoto, Hiroaki. 'Phase diagrams of binary iron alloys.' ASM International (1993): 12-28. [37] Frueh, Samuel, et al. 'Pyrolytic decomposition of ammonia borane to boron nitride.' Inorganic chemistry 50.3 (2011): 783-792. [38] Denney, Melanie C., et al. 'Efficient catalysis of ammonia borane dehydrogenation.' Journal of the American Chemical Society 128.37 (2006): 12048-12049. [39] Song, Xiuju, et al. 'Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation.' Nano Research 8.10 (2015): 3164-3176. [40] Tay, Roland Yingjie, et al. 'Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper.' Nano letters 14.2 (2014): 839-846. [41] Wang, Lifeng, et al. 'Growth and etching of monolayer hexagonal boron nitride.' Advanced Materials 27.33 (2015): 4858-4864. [42] Venables, John. Introduction to surface and thin film processes. Cambridge University Press, 2000. [43] Chang, Ren-Jie, et al. 'Growth of large single-crystalline monolayer hexagonal boron nitride by oxide-assisted chemical vapor deposition.' Chemistry of Materials 29.15 (2017): 6252-6260. [44] Liu, Yuanyue, et al. 'BN white graphene with “colorful” edges: The energies and morphology.' Nano letters 11.8 (2011): 3113-3116. [45] Wang, Yuting, et al. 'Effect of ambient gas and temperature on crystallization of boron nitride spheres prepared by vapor phase pyrolysis of ammonia borane.' Journal of the American Ceramic Society 92.4 (2009): 787-792. [46] Han, Jaehyun, et al. 'Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition.' Nanotechnology 25.14 (2014): 145604. [47] Koepke, Justin C., et al. 'Role of pressure in the growth of hexagonal boron nitride thin films from ammonia-borane.' Chemistry of Materials 28.12 (2016): 4169-4179. [48] Vlassiouk, Ivan, et al. 'Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene.' ACS nano 5.7 (2011): 6069-6076. [49] Bhaviripudi, Sreekar, et al. 'Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst.' Nano letters 10.10 (2010): 4128-4133. [50] Golberg, Dmitri, et al. 'Boron nitride nanotubes and nanosheets.' ACS nano 4.6 (2010): 2979-2993. [51] Blake, P., et al. 'Making graphene visible.' Applied physics letters 91.6 (2007): 063124. [52] Lee, Changgu, et al. 'Frictional characteristics of atomically thin sheets.' science 328.5974 (2010): 76-80. [53] Westheimer, Gerald. 'Optimal magnification in visual microscopy.' JOSA 62.12 (1972): 1502-1504. [54] Gorbachev, Roman V., et al. 'Hunting for monolayer boron nitride: optical and Raman signatures.' Small 7.4 (2011): 465-468. [55] Novoselov, Kostya S., et al. 'Two-dimensional atomic crystals.' Proceedings of the National Academy of Sciences 102.30 (2005): 10451-10453. [56] Blase, Xavier, et al. 'Quasiparticle band structure of bulk hexagonal boron nitride and related systems.' Physical review B 51.11 (1995): 6868. [57] Gao, Yang, et al. 'Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils.' ACS nano 7.6 (2013): 5199-5206. [58] Laskowski, Robert, et al. 'Ab initio study of h-BN nanomeshes on Ru (001), Rh (111), and Pt (111).' Physical Review B 81.7 (2010): 075418. [59] Yuzuriha, T. H., et al. 'Structural and optical properties of plasma-deposited boron nitride films.' Thin Solid Films 140.2 (1986): 199-207. [60] Chang, Ren-Jie, et al. 'Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition.' Nanoscale 9.6 (2017): 2324-2329. [61] Geick, R., et al. 'Normal modes in hexagonal boron nitride.' Physical Review 146.2 (1966): 543. [62] Arenal, Raul, et al. 'Raman spectroscopy of single-wall boron nitride nanotubes.' Nano letters 6.8 (2006): 1812-1816. [63] Nemanich, R. J., et al. 'Light scattering study of boron nitride microcrystals.' Physical Review B 23.12 (1981): 6348. [64] Trehan, R., et al. 'Auger and x‐ray electron spectroscopy studies of h-BN, c-BN, and N+2 ion irradiation of boron and boron nitride.' Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films 8.6 (1990): 4026-4032. [65] Panayiotatos, Y., et al. 'Homogeneous and amorphous sputtered sp3-bonded BN films at RT: a stress, spectroscopic ellipsometry and XPS study.' Diamond and related materials 12.3-7 (2003): 1151-1156. [66] Geanangel, R. A., et al. 'Evidence from mass spectra and X-ray photoelectron spectra concerning the structure of poly (aminoborane).' Inorganica chimica acta 97.1 (1985): 59-64. [67] Huang, Jianyu Y., et al. 'HRTEM and EELS studies on the amorphization of hexagonal boron nitride induced by ball milling.' Journal of the American Ceramic Society 83.2 (2000): 403-409. [68] Meyer, Jannik C., et al. 'Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes.' Nano letters 9.7 (2009): 2683-2689. [69] Luo, Zhengtang, et al. 'Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure.' Chemistry of Materials 23.6 (2011): 1441-1447. [70] Jia, Chuancheng, et al. 'Direct optical characterization of graphene growth and domains on growth substrates.' Scientific reports 2.1 (2012): 1-6. [71] Lu, Guangyuan, et al. 'Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy.' Nature communications 6.1 (2015): 1-7. [72] Wu, Qinke, et al. 'Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains.' Scientific reports 5.1 (2015): 1-8. [73] Li, Xuemei, et al. 'Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation.' Nanotechnology 25.10 (2014): 105701. [74] Ku, Che‐Kuei, et al. 'Creation of 3D Textured Graphene/Si Schottky Junction Photocathode for Enhanced Photo‐Electrochemical Efficiency and Stability.' Advanced Energy Materials 9.29 (2019): 1901022. [75] Preobrajenski, A. B., et al. 'Adsorption-induced gap states of h-BN on metal surfaces.' Physical Review B 77.8 (2008): 085421.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80365-
dc.description.abstract六方氮化硼在許多領域中都是極具潛力的候選人,特別是介電層、保護性鍍膜或透明薄膜。在此實驗中,我們系統性地探討製程參數對於以低壓化學氣相沉積法成長六方氮化硼於多晶銅箔上的影響;包含前驅物的量、前驅物的加熱溫度、爐管溫度、氫氣流量於退火及成長階段等對於六方氮化硼成長的影響。低通式的化學氣相沉積製程可有效減少成長源氣氛進入爐管的量,使成核密度降低,且提升結晶性。於成長階段,氫氣流量大時,成長由氫氣的蝕刻效果主導;氫氣流量小時,成長則由氫氣的催化效果主導。於退火階段,越大的氫氣流量使得銅箔表面狀態越平整以減少異質成核點,有利於成長出典型地三角形的六方氮化硼晶域。我們也發現六方氮化硼適合作為光沉積白金的模板,其為高表面積的奈米粒子,不僅可以提供優良的產氫效率,且使入射光仍能進入矽基板被吸收以提供元件足夠的光電壓。以光電化學的量測,此元件的起始電位達0.131 V,飽和電流密度為27 mA/cm2。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:05:13Z (GMT). No. of bitstreams: 1
U0001-1006202117295700.pdf: 13487661 bytes, checksum: 0f360acbf2da60dfc4d03d334bf0ae22 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsCONTENTS 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 研究動機 1 Chapter 2 六方氮化硼的性質及應用 2 2.1 晶體結構 2 2.2 物理性質 4 2.2.1 機械性質 4 2.2.2 熱傳性質 5 2.3 化學性質 6 2.4 應用 8 2.4.1 抗氧化鍍層 8 2.4.2 封裝材料 9 2.4.3 穿隧電流阻擋層 10 2.4.4 異質結構 11 Chapter 3 以化學氣相沉積法製備六方氮化硼 14 3.1 前驅物 14 3.2 以銅作為成長基板 16 3.2.1 六方氮化硼薄膜的層數控制 17 3.2.2 六方氮化硼晶域尺寸的提升 19 3.3 六方氮化硼 19 3.3.1 成長機制 19 3.3.2 幾何形狀 21 3.4 成長的控制 22 3.4.1 銅基板 22 3.4.2 前驅物的進料速率 24 3.4.3 來自於前驅物的副產物 24 3.4.4 腔體壓力 25 Chapter 4 六方氮化硼的鑑定 27 4.1 光學對比 27 4.2 膜厚測量 28 4.2.1 高度輪廓 28 4.2.2 能隙寬度 29 4.2.3 拉曼光譜分析 30 4.3 元素分析 30 4.3.1 X射線電子能譜學 30 4.3.2 電子能量損失譜 31 4.4 結晶取向 33 4.4.1 晶域方向 33 4.4.2 電子繞射圖 34 Chapter 5 實驗與分析方法 35 5.1 實驗方法 35 5.1.1 基板前處理 35 5.1.2 化學氣相沉積製程-傳統式 36 5.1.3 化學氣相沉積製程-低通式 38 5.1.4 成長基板的氧化 40 5.1.5 六方氮化硼的轉印 40 5.2 六方氮化硼的分析與應用 41 5.2.1 光學顯微鏡 41 5.2.2 拉曼光譜儀 41 5.2.3 原子力顯微鏡 42 5.2.4 掃描式電子顯微鏡 43 5.2.5 歐傑電子能譜儀 43 5.2.6 穿透式電子顯微鏡 44 5.2.7 光沉積白金於六方氮化硼及其光電化學的量測 44 Chapter 6 結果與討論 45 6.1 化學氣相沉積製程-傳統式 45 6.2 化學氣相沉積製程-低通式 48 6.2.1 最佳化硼烷氨的重量及其加熱溫度 49 6.2.2 氫氣流量於成長階段的影響 53 6.2.3 氫氣流量於退火階段的影響 54 6.2.4 成長溫度的選擇 55 6.2.5 最佳的成長參數 56 6.2.6 應用 59 Chapter 7 結論與未來展望 63 REFERENCE 64
dc.language.isozh-TW
dc.subject六方氮化硼zh_TW
dc.subject低通/低流量zh_TW
dc.subject化學氣相沉積法zh_TW
dc.subject光沉積白金zh_TW
dc.subject光電化學zh_TW
dc.subject產氫反應zh_TW
dc.subjecthydrogen evolution reaction (HER)en
dc.subjecthexagonal boron nitride (h-BN)en
dc.subjectlow-passen
dc.subjectlow pressure chemical vapor deposition (LPCVD)en
dc.subjectphoto-deposited platinum (Pt)en
dc.subjectphoto-electrochemistry (PEC)en
dc.title以化學氣相沉積法成長六方氮化硼於多晶銅箔上zh_TW
dc.titleGrowth of Hexagonal Boron Nitride on Polycrystalline Copper Foil via Chemical Vapor Depositionen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor溫政彥(Cheng-Yen Wen)
dc.contributor.oralexamcommittee張文豪(Hsin-Tsai Liu),何清華(Chih-Yang Tseng)
dc.subject.keyword六方氮化硼,低通/低流量,化學氣相沉積法,光沉積白金,光電化學,產氫反應,zh_TW
dc.subject.keywordhexagonal boron nitride (h-BN),low-pass,low pressure chemical vapor deposition (LPCVD),photo-deposited platinum (Pt),photo-electrochemistry (PEC),hydrogen evolution reaction (HER),en
dc.relation.page71
dc.identifier.doi10.6342/NTU202100991
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-06-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2026-06-14-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-1006202117295700.pdf
  未授權公開取用
13.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved