請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8035完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 冀宏源(Hung-Yuan Chi) | |
| dc.contributor.author | Hsiao-Han Ko | en |
| dc.contributor.author | 柯曉涵 | zh_TW |
| dc.date.accessioned | 2021-05-19T18:03:45Z | - |
| dc.date.available | 2023-12-31 | |
| dc.date.available | 2021-05-19T18:03:45Z | - |
| dc.date.copyright | 2013-07-31 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-25 | |
| dc.identifier.citation | REFERENCES
1. Acquaviva, L., Szekvolgyi, L., Dichtl, B., Dichtl, B.S., de La Roche Saint Andre, C., Nicolas, A., and Geli, V. (2013). The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science (New York, NY) 339, 215-218. 2. Ajimura, M., Leem, S.H., and Ogawa, H. (1993). Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133, 51-66. 3. Alani, E., Padmore, R., and Kleckner, N. (1990). Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419-436. 4. Arora, C., Kee, K., Maleki, S., and Keeney, S. (2004). Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Molecular cell 13, 549-559. 5. Baudat, F., and Nicolas, A. (1997). Clustering of meiotic double-strand breaks on yeast chromosome III. Proceedings of the National Academy of Sciences of the United States of America 94, 5213-5218. 6. Bellani, M.A., Boateng, K.A., McLeod, D., and Camerini-Otero, R.D. (2010). The expression profile of the major mouse SPO11 isoforms indicates that SPO11beta introduces double strand breaks and suggests that SPO11alpha has an additional role in prophase in both spermatocytes and oocytes. Molecular and cellular biology 30, 4391-4403. 7. Blat, Y., and Kleckner, N. (1999). Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249-259. 8. Blat, Y., Protacio, R.U., Hunter, N., and Kleckner, N. (2002). Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111, 791-802. 9. Bullard, S.A., Kim, S., Galbraith, A.M., and Malone, R.E. (1996). Double strand breaks at the HIS2 recombination hot spot in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 93, 13054-13059. 10. Cao, L., Alani, E., and Kleckner, N. (1990). A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61, 1089-1101. 11. Cole, F., Keeney, S., and Jasin, M. (2010). Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes & development 24, 1201-1207. 12. Diaz, R.L., Alcid, A.D., Berger, J.M., and Keeney, S. (2002). Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Molecular and cellular biology 22, 1106-1115. 13. Engebrecht, J., Hirsch, J., and Roeder, G.S. (1990). Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell 62, 927-937. 14. Engebrecht, J.A., Voelkel-Meiman, K., and Roeder, G.S. (1991). Meiosis-specific RNA splicing in yeast. Cell 66, 1257-1268. 15. Game, J.C., Sitney, K.C., Cook, V.E., and Mortimer, R.K. (1989). Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast. Genetics 123, 695-713. 16. Glynn, E.F., Megee, P.C., Yu, H.G., Mistrot, C., Unal, E., Koshland, D.E., DeRisi, J.L., and Gerton, J.L. (2004). Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS biology 2, E259. 17. Henderson, K.A., Kee, K., Maleki, S., Santini, P.A., and Keeney, S. (2006). Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell 125, 1321-1332. 18. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. Journal of bacteriology 153, 163-168. 19. Ivanov, E.L., Korolev, V.G., and Fabre, F. (1992). XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132, 651-664. 20. Janssens, F.A. (1909). Spermatogenese dans les Batraciens. V. La theorie de la chiasmatypie. Nouvelles interpretation des cineses de maturation. Cellule 25, 387-411. 21. Keeney, S., Giroux, C.N., and Kleckner, N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375-384. 22. Kleckner, N. (1996). Meiosis: how could it work? Proceedings of the National Academy of Sciences of the United States of America 93, 8167-8174. 23. Lichten, M., and Goldman, A.S. (1995). Meiotic recombination hotspots. Annual review of genetics 29, 423-444. 24. Menees, T.M., Ross-MacDonald, P.B., and Roeder, G.S. (1992). MEI4, a meiosis-specific yeast gene required for chromosome synapsis. Molecular and cellular biology 12, 1340-1351. 25. Meuwissen, R.L., Offenberg, H.H., Dietrich, A.J., Riesewijk, A., van Iersel, M., and Heyting, C. (1992). A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. The EMBO journal 11, 5091-5100. 26. Moses, M.J. (1958). The relation between the axial complex of meiotic prophase chromosomes and chromosome pairing in a salamander (Plethodon cinereus). The Journal of biophysical and biochemical cytology 4, 633-638. 27. Nakagawa, T., and Ogawa, H. (1997). Involvement of the MRE2 gene of yeast in formation of meiosis-specific double-strand breaks and crossover recombination through RNA splicing. Genes to cells : devoted to molecular & cellular mechanisms 2, 65-79. 28. Nandabalan, K., and Roeder, G.S. (1995). Binding of a cell-type-specific RNA splicing factor to its target regulatory sequence. Molecular and cellular biology 15, 1953-1960. 29. Neale, M.J., Pan, J., and Keeney, S. (2005). Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053-1057. 30. Ogawa, H., Johzuka, K., Nakagawa, T., Leem, S.H., and Hagihara, A.H. (1995). Functions of the yeast meiotic recombination genes, MRE11 and MRE2. Advances in biophysics 31, 67-76. 31. Panizza, S., Mendoza, M.A., Berlinger, M., Huang, L., Nicolas, A., Shirahige, K., and Klein, F. (2011). Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146, 372-383. 32. Petronczki, M., Siomos, M.F., and Nasmyth, K. (2003). Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423-440. 33. Ridley, S.P., Sommer, S.S., and Wickner, R.B. (1984). Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Molecular and cellular biology 4, 761-770. 34. Rockmill, B., Engebrecht, J.A., Scherthan, H., Loidl, J., and Roeder, G.S. (1995). The yeast MER2 gene is required for chromosome synapsis and the initiation of meiotic recombination. Genetics 141, 49-59. 35. Roeder, G.S. (1995). Sex and the single cell: meiosis in yeast. Proceedings of the National Academy of Sciences of the United States of America 92, 10450-10456. 36. Schalk, J.A., Dietrich, A.J., Vink, A.C., Offenberg, H.H., van Aalderen, M., and Heyting, C. (1998). Localization of SCP2 and SCP3 protein molecules within synaptonemal complexes of the rat. Chromosoma 107, 540-548. 37. Schmekel, K., Meuwissen, R.L., Dietrich, A.J., Vink, A.C., van Marle, J., van Veen, H., and Heyting, C. (1996). Organization of SCP1 protein molecules within synaptonemal complexes of the rat. Experimental cell research 226, 20-30. 38. Sommermeyer, V., Beneut, C., Chaplais, E., Serrentino, M.E., and Borde, V. (2013). Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Molecular cell 49, 43-54. 39. Sun, H., Treco, D., Schultes, N.P., and Szostak, J.W. (1989). Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338, 87-90. 40. Wilkins, A.S., and Holliday, R. (2009). The evolution of meiosis from mitosis. Genetics 181, 3-12. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8035 | - |
| dc.description.abstract | 減數分裂中,計畫性的雙股脫氧核糖核酸斷裂 (DNA double-strand breaks) 是必要的條件,缺乏雙股脫氧核糖核酸斷裂的染色體無法形成交叉 (chiasmata),最終染色體不能正常分配至配子中,這會導致配子中染色體數目異常,造成配子死亡。在出芽酵母菌 (budding yeast) 中,至少有十個基因參與雙股脫氧核糖核酸斷裂的形成,而Mer2 (meiotic recombination protein 2) 是其中之一。酵母菌遺傳研究發現,剔除Mer2的酵母菌其表現型為無法產生雙股脫氧核糖核酸斷裂,使減數分裂完的孢子無法存活。在Panizza (2011) 等人的文獻研究指出,在減數分裂時,Mer2會在染色體上聚集,並召集Mei4與Rec114形成複合體,最後促成雙股脫氧核糖核酸斷裂。作者更進一步推測Mer2可能具有結合雙股脫氧核糖核酸能力,但體內 (in vivo) 實驗無法證明Mer2是否能直接結合雙股脫氧核糖核酸。因此我們的實驗首先想要證實,Mer2是否具有雙股脫氧核糖核酸結合能力;其次Mer2結合雙股脫氧核糖核酸的能力,是否在減數分裂中造成雙股脫氧核糖核酸斷裂扮演重要角色。我的初步實驗結果發現:(1) 利用純化出的Mer2蛋白運用膠體電泳位移分析 (DNA mobility shift assay),證實Mer2的確能直接結合雙股脫氧核糖核酸。(2) 發現Mer2至少有兩個區域能結合雙股脫氧核糖核酸。我們進一步利用序列分析這兩段區域的鹼性胺基酸,並藉由Mer2鹼性胺基酸突變蛋白,希望在體外 (in vitro) 能找出Mer2結合雙股脫氧核糖核酸的主要鹼性胺基酸。另一方面,在體內實驗我們可以將雙股脫氧核糖核酸結合突變的Mer2基因送回缺乏Mer2的酵母菌中,觀察是否能回復孢子存活率,來證實Mer2結合雙股脫氧核糖核酸的能力,對於減數分裂產生雙股脫氧核糖核酸斷裂的重要性。 | zh_TW |
| dc.description.abstract | Programmed double-strand breaks (DSBs) are essential for a proper chromosome segregation during meiosis, because DSBs initiate physical connection between two homologous chromosomes through homologous recombination (HR). Dysegulation of DSBs formation can lead to the aneuploid of inviable gamete caused by abnormal chromosome disjunction. In the budding yeast, Saccharomyces cerevisiae, there are at least ten genes mediated the formation of DSBs including Mer2. The deletion of mer2 in yeast exhibits no DSB formation and poor meiotic spore. Recent study by Panizza et al. (2011) further infers that Mer2 protein accumulates on chromosome and recruits it’s interacting partners ; Mei4 and Rec114, to promote the formation of DSBs. However, it still remains largely unknown whether Mer2 itself possesses physical interaction with double-strand DNA and whether the DNA binding activity of Mer2 is prerequisite for generating DSBs. We aim to address this question by employing highly purified recombinant Mer2 protein for in vitro DNA binding analysis. Our results indicate that Mer2 is a DNA binding protein and possesses at least two DNA binding motifs. We further narrowed down the clusters of positive charge amino acids within Mer2 that contributes to its DNA binding ability, and currently in the progression of identifying those key residues. Besides identifying DNA binding defective mutant variants of Mer2, we will also examine whether those Mer2 mutants can rescue the phenotype of poor spore viability in the deletion of mer2 strain. We have successfully generated mer2 deletion in SK1 strain, and as reported, mer2 null showed poor spore viability. In the future, we will delineate whether Mer2 DNA-binding defective mutant variants can rescue the mer2 null phenotype by complementation experiments. Our findings will shield light on the mechanism of DNA binding property of Mer2 in contributing to make DNA double-strand breaks during meiosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T18:03:45Z (GMT). No. of bitstreams: 1 ntu-102-R00b46005-1.pdf: 5451266 bytes, checksum: a7cff855d88f4e15e381ff176853e912 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii CHAPTER 1:Introduction 1 1-1 The Biology of Meiosis 1 1-2 The Importance of Meiotic Chiasmata 2 1-3 The Mechanism of Homologous Recombination (HR) in Meiosis 3 1-4 Formation of Double-Strand Breaks (DSBs) during Meiosis 4 1-5 Spo11-mediated DSBs Machinery 5 1-6 The Functional Role of Mer2 the Formation of Meiotic DSBs 6 1-7 Motivation of My Thesis Studies 8 CHAPTER 2:Materials and Methods 9 2-1 DNA substrates 9 2-2 E. coli strain 9 2-3 Plasmids 9 2-4 Protein expression and purification 10 2-4.1 GST-Mer2-His expression and purification 10 2-4.2 Mer2 1-202-His expression and purification 11 2-4.3 Mer2 1-202-His AATA expression and purification 12 2-4.4 Mer2 203-314-His expression and purification 13 2-4.5 Mer2 203-314-His AQAAA expression and purification 13 2-4.6 Mer2 203-314-His AAAA expression and purification 13 2-4.7 Mer2 1-136-His expression and purification 14 2-5 DNA mobility shift assay 15 2-6 Yeast strains 15 2-7 Yeast MER2 gene deletion 15 2-7.1 Lithium transformation 15 2-7.2 Verify knockout primer design Primer designs to verify MER2 gene deletion status in SK1 16 2-7.3 Colony polymerase chain reaction 16 2-7.4 Tetrad dissection 17 CHAPTER 3:Results 18 3-1 Expression and purification of recombinant Mer2 protein 18 3-2 Mer2 harbors DNA binding property 18 3-3 Mer2 possesses at least two DNA binding domains 19 3-4 Mer2 1-136 protein fragment is devoid of DNA binding activity 20 3-5 Basic amino acid clusters of Mer2 contribute the DNA binding ability 21 3-6 Establish the Mer2 deletion in Saccharomyces cerevisiae SK1 strain 23 CHAPTER 4:Conclusion and Discussion 25 4-1 Summary of Key Findings 25 4-2 Discussions and Future Directions 26 4-2.1 The DNA binding property of Mer2: sequence or/and structure specificity 26 4-2.2 Biochemical property of Mer2 phosphorylation 27 4-2.3 The stoichiometry of Mer2 protein 28 4-2.4 Complementation experiments with DNA-binding defective mutants of Mer2 28 4-2.5 The biochemical properties of Mer2 variants 29 FIGURES 31 REFERENCES 48 APPENDIX 52 A-1 On-line prediction of Mer2 secondary structure prediction 52 A-2 On-line prediction of potential DNA binding amino acids in Mer2 protein 57 A-3 Design sequences of DSB-hot, DSB-cold and axis sites 61 A-4 The prediction of nuclear localization signal (NLS) in Mer2 62 A-5 The amino acid polymorphism between S288C and SK1 63 | |
| dc.language.iso | en | |
| dc.title | 闡釋Mer2與DNA結合之生化特性在減數分裂所扮演的角色 | zh_TW |
| dc.title | Deciphering the role of DNA binding activity of Mer2 in meiotic DNA double-strand breaks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李弘文(Hung-Wen Li),董桂書(Kuei-Shu Tung),鄧述諄(Shu-Chun Teng) | |
| dc.subject.keyword | Mer2,減數分裂,雙股脫氧核糖核酸斷裂,同源重組,交叉, | zh_TW |
| dc.subject.keyword | Mer2,meiosis,DNA double strand breaks,homologous recombination,chiasmata, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-07-25 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-12-31 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 5.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
