請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80325完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊東漢(Tung-Han Chuang) | |
| dc.contributor.author | Ya-Hui Hsu | en |
| dc.contributor.author | 許雅惠 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:04:31Z | - |
| dc.date.available | 2021-07-23 | |
| dc.date.available | 2022-11-24T03:04:31Z | - |
| dc.date.copyright | 2021-07-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-29 | |
| dc.identifier.citation | [1]陳信文,陳立軒,林永森,陳志銘,電子構裝技術與材料 (2005) [2]Harry A. Schafft,FAILURE ANALYSIS OF WIRE BONDS,11th Reliability Physics Symposium,IEEE,Las Vegas, NV, USA,(1973) p.98 [3]C.D.Breach,New observations on intermetallic compound formation in gold ball bonds: general growth patterns and identification of two forms of Au4Al ,Microelectronics Reliability ,vol.44 no.6, (2004)p.973-p.981 [4]Bernd K Appelt, Andy Tseng and Yi-Shao Lai,Copper Wire Bonding Experiences from a Manufacturing Perspective,18th European Microelectronics Packaging Conference, IEEE ,Brighton, UK (2011) [5]YuelinWuK.N.SubramanianScott CalabreseBartonAndreLee,Electrochemical studies of Pd-doped Cu and Pd-doped Cu-Al intermetallics for understanding corrosion behavior in wire-bonding packages ,Microelectronics Reliability,vol.78 ,(2017)p.355–p.361 [6]Teck Kheng Lee, C.D Breach and Wei Ling Chong,Comparsion of Au/Al and Cu/Al in Wirebonding Assembly and Reliability , 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference,IEEE, Taipei, Taiwan Dol:10.1109/IMPACT.2011.6117164 (2011) [7]HUSSEIN M. NAGUIB AND BLAIR K. MAcLAURIN,Silver Migration and the Reliability of Pd/Ag Conductors in Thick-Film Dielectric Crossover Structures,IEEE transactions on components,hybrids and manufacturing technology,vol.2 no.2, (1979) [8]H.K.Charles Jr,Microelectronic Packaging:Electrical Interconnections,Encyclopedia of Materials:Science and Technology (Second Edition) ,Elsevier Ltd , Amsterdam (2001)p.5616-p.5635 [9]Harry K. CharlesJr, Advanced Wire Bonding Technology: Materials, Methods, and Testing, Materials for Advanced Packaging , Springer Cham ,Germany(2017) p.131-p.198 [10]YangyangLongJensTwiefelJörgWallaschek, A review on the mechanisms of ultrasonic wedge-wedge bonding, Journal of Materials Processing Technology vol.245, (2017), p. 241-p.258 [11]Hsing-Hua Tsaia, , Chih-Hsin Tsai, Jun-Der Lee , Dennis Chang , Yu-Ting Shih , Chun-Hao Chen , and Tung-Han Chuang ,Applications of Ag-alloy Stud Bump for IC and LED Packages, 9th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT),IEEE, Taipei, Taiwan(2014) [12]Charlie Lu,Review on Silver Wire Bonding,8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), IEEE,Taipei Taiwan(2013) [13]Yahong Du, Zhi-Quan Liu, Hongjun Ji, Mingyu Li ,Ming Wen, The mechanism of Pd distribution in the process of FAB formation during Pd-coated Cu wire bonding, Journal of Materials Science: Materials in Electronics, vol.29 no.16(2018) p.13774-13781 [14]Chen, Q., Pagba, A., Reynoso, D., Thomas, S., Toc, H. J,Cu wire and beyond-Ag wire an alternative to Cu?, 12th Electronics Packaging Technology Conference ,IEEE,Singapore(2010)p. 591-596 [15]J. J. PAUL GAGNE,Sliver Migration Model for Ag-Au-Pd Conductors, IEEE Transactions on Components, Hybrids, and Manufacturing Technology vol.5, Issue. 4 (1982)p.402-407 [16]J. C. Lin, J. Y. Chan, On the resistance of sliver migration in Ag-Pd conductive thick films under humid environment and applied dc field, Mat. Chem. And Phys,vol.43 Issue.3 (1996),p.256-265 [17]J. C. Lin, J. Chuang, Resistance to silver electrolytic migration for thick film conductors prepared from mixed and alloyed powers of Ag-15Pd and Ag-30Pd, J. Electrochem. Soc,vol.144 no.5(1997),p.1652-1659 [18]Yu-Zhen He ,Effect of Pd Contect on Ion Migration of Ag-alloy Bonding Wires,(2016)p.40-41 [19]Kim Vu, Silver Migration – The Mechanism and Effects on Thick-Film Conductors, Material Science Engineering 234 ,Chem. And Mat. Sci. Dep, San Jose Univeristy(2003),p.1-p.21 [20]G. T. KOHMAN, H. W. HERMANCE, G. H. DOWNES, Silver Migration in Electrical Insulation, The bell system technical journal ,vol.34 Issue.6(1995)p.1115-p.1147 [21]Yu-Zhen He ,Effect of Pd Contect on Ion Migration of Ag-alloy Bonding Wires(2016)p.55 [22]Gam‚S.A.‚et al.‚Effect of Cu and Pd addition on Au bonding wire/Al pad interfacial reactions and bond reliability reliability. Journal of Electronic materials‚vol.35 no.11(2006)p.2048-p.2055. [23]Kyosuke Kobayashi, Ikuo Shohji and Mitsuo Yamashita Effect of third element addition on joint strength of low-Ag lead-free solder , IEEE 17th Electronics Packaging and Technology Conference (EPTC),IEEE, Singapore(2015) [24]Mitsuo Yamashita, Noboru Hidaka,Ikuo Shohji The Effects of Ag, Ni, and Ge elements in Lead-free Sn Base Solder Alloy , 10th Electronics Packaging Technology Conference,IEEE, Singapore(2008) [25]Ying-Ta Chiu, Yong-Sheng Zou, Ting-Chun Lin, Heng- Yu Kung The effects of minor element on performance of Ag alloy wires on Al pad in the package ,3rd International Conference on Green Technology and Sustainable Development (GTSD), IEEE,Kaohsiung, Taiwan (2016) [26]Teng,TuXianhuaChen,TaoChen,YuanYuan,FushengPan, New high-modulus and high-strength Mg-Gd-Ag-Mn-Ge alloys, Materials Science and Engineering: A vol. 805 no.23 (2021) [27]J.C. Lin J.Y. Chan, On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field, Materials Chemistry and Physics,vol.43, Issue.3(1996)p.256-p.265 [28]Simeon J. Krumbein, Metallic Electromigration Phenomena, IEEE Transactions on Components, Hybrids, and Manufacturing Technology ,vol.11 Issue.1 (1995) [29]J.Steppan, J. Roth, L. Hall, D. Jeannotte and S. Carbone, A Review of Corrosion Failure Mechanisms during Accelerated Test, Journal of The Electrochemical Society, vol.134 no.1 (1987) p.175-188 [30]G. T. KOHMAN, H. W. HERMANCE, G. H. DOWNES, Silver Migration in Electrical Insulation, The Bell System Technical Journal ,vol.34 Issue: 6(1955)p.1115-p.1147 [31]Xiankang Zhong, Longjun Chen, B´alint Medgyes, Zhi Zhang, Shujun Gao and L´aszl´o Jakab, Electrochemical migration of Sn and Sn solder alloys,RSC Adv, Issue 45 (2017) p.28186–p.28206 [32]Giulio DiGiacomo, Metal Migration (Ag, Cu, Pb) in Encapsulated Modules and Time-to-Fail Model as a Function of the Environment and Package Properties, 20th International Reliability Physics Symposium,IEEE,San Diego, CA, USA(1982) [33]J. Dryzek, Migration of vacancies in deformed silver studied by positron annihilation, Materials Science Forum, vol. 255-257(1997)p.533-535. [34]Y. R. Yoo and Y. S. Kim, Infuence of electrochemical properties on electrochemical migration of SnPb and SnBi solders, Met. Mater. Int,vol.16 no.5(2010)p.739-p.745 [35]J.Steppan, J. Roth, L. Hall, D. Jeannotte and S. Carbone, A Review of Corrosion Failure Mechanisms during Accelerated Test, Journal of The Electrochemical Society, 134 no.1(1987) p.175-188 [36]GEORGE J. KAHAN, Silver Migration in Glass Dams Between Silver-Palladium Interconnections, IEEE Transactions on Electrical Insulation ( vol.EI-10, Issue.3(1975)p.86-p.94 [37]P S Ho and T Kwok, Electromigration in metals, Reports on Progress in Physics, vol.52 no.3(1989) p.303 [38]James.R.Black,Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices, Proceedings of the IEEE vol.57 no. 9. (1969)p.1587-1594 [39]v. Petrescu and W. Schoenmaker, Modeling of Electromigration in Interconnects, Predictive Simulation of Semiconductor Processing, Springer-Verlag Berlin Heidelberg (2004)p.390 [40]P S Ho and T Kwok, Electromigration in metals, Reports on Progress in Physics, vol.52 no.3(1989) p.310 [41]H. B. HUNTINGTON and A. R. CRONE, CURRENT-INDUCED MARKER MOTION IN GOLD WIRES,J, Phys. Chem. Solids Pergamon Press, vol.20, Issues 1–2,(1961) p.76-p.87 [42]JAMES R. BLACK,Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices, PROCEEDINGS OF THE IEEE. Vol.57, Issue: 9(1969)p.1587-p.1594 [43]A. LODDER, THE DRIVING FORCE IN ELECTROMIGRATION, Physica A:Statistical Mechanics and its Aplications vol.158 Issue 3 (1989) p.723-p.739 [44]H.R.Patil H.B.Huntington, ELECTROMIGRATION AND VOID OBSERVATION IN SILVER, J. Phys. Chem. Solids.Journal of Physics and Chemistry of Solids vol.27 Issue 8(1966) p.1319-p.1329 [45]I. A. Blech, Electromigration in thin aluminum films on titanium nitride, Journal of Applied Physics, vol.47, Issue.4(1976)p.1203-p.1208 [46]Shenggang Wang, Liming Gao, Ming Li1Dacheng Huang,Ken Qian, Hope Chiu, Electro-migration of silver alloy wire with its application on bonding, 14th International Conference on Electronic Packaging Technology,IEEE, Dalian, China(2013) [47]O. Kraft, J.E. Sanchez Jr., M. Bauer, E. Arzt,Quantitative analysis of electromigration damage in Al-based conductor lines. Journal of Materials Research vol.12 Issue.8 (1997) p.2027-p.2037 [48]R. J. Gleixner, W. D. Nix, Effect of ‘‘bamboo’’ grain boundaries on the maximum electromigration-induced stress in microelectronic interconnect lines, JOURNAL OF APPLIED PHYSICS, vol.83, Issue.7(1998)p.3595 [49]James R. Black,Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices,proceedings of the IEEE vol.57 Issue: 9 (1969)p.1587-p.1593 [50]Ken Wu, William Baerg, and Peter Jupiter, Effects of aluminum microstructure on electromigration using a new reactive ion etching and scanning electron microscopy technique, Appl. Phys. Lett vol.58, Issue.12 (1991)p.1299-p.1301 [51]K.C.Chen,W.W.W.,C.N.Liao,L.J.Chen and K.N Tu,Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science Vol. 321, Issue 5892,(2008)p.1066-p.1069 [52]林欣蓉,退火孿晶銀鈀合金線之熱穩定性及電遷移現象研究,台大博士論文(2015)p.72-p.77 [53]J, Cho and C. V. Thompson, Grain size dependence of electromigration .. inauced failures in narrow interconnects, Appl. Phys. Lett. vol.54, Issue 25 (1989)p.2577-p.2579 [54]Stephen Kilgore, Electromigration in Gold Interconnects, ARIZONA STATE UNIVERSITY,PhD thesis (2013) [55]Julia R. Greer, Nanotwinned metals It's all about imperfections, Nature Materials volume 12,(2013) p.689-690 [56]Yuan Jin. Annealing twin formation mechanism. Materials. Ecole Nationale Supérieure des Mines de Paris, English (2014) [57]H. B. HUNTINGTON and A. R. CRONE, CURRENT-INDUCED MARKER MOTION IN GOLD WIRES, Journal of Physics and Chemistry of Solids ,vol.20, Issues 1–2 (1961)p.76-p.87, [58]A. R. GRONE, CURRENT-INDUCED MARKER MOTION IN COPPER, Journal of Physics and Chemistry of Solids ,vol.20, Issues 1–2(1961) p. 88-p.93 [59]Shinji Yokogawa, Hideaki Tsuchiya, Effects of Al doping on the electromigration performance of damascene Cu interconnects, JOURNAL OF APPLIED PHYSICS vol.101, Issue 1(2007) [60]F. M. D'HEURLE, The Effect of Copper Additions on Electromigration In Aluminum Thin Films, METALLURGICAL TRANSACTIONSVOLUME ,vol2, (1971)p.683-p.689 [61]Minhua Lu,Da-Yuan Shih, Sung K. Kang, Charles Goldsmith,and Philip Flaitz, Effect of Zn doping on SnAg solder microstructure and electromigration stability, JOURNAL OF APPLIED PHYSICS ,Volume 106, Issue 5(2009) [62]William D. Callister Jr., David G. Rethwisch,Fundamentals of Materials Science and Engineering: An Integrated Approach, 5th Edition , John Wiley Sons , Hoboken, New Jersey(2018) p.321 [63]Qin-fang HOU, Xin YAO, Hao-jie LI, Jian-xing LENG,Zheng-ye WANG, De-kai HUANG, Creep-Fatigue Behavior and Crack Analysis of Ti-6Al-4V ELI, OCEANS 2019 - Marseille,IEEE, Marseille, France (2019) [64]Fulong Zhu, Honghai Zhang, Rongfeng Guan, and Sheng Liu, Investigation of Creep Behavior of a Lead-Free Solder Alloy Sn96.5Ag3.5, 7th International Conference on Electronic Packaging Technology,IEEE, Shanghai, China (2006) [65]Junhui Li, Abhijit Dasgupta, Failure-Mechanism Models for Creep and Creep Rupture, IEEE Transactions on Reliability ,Volume: 42, Issue: 3 (1993) [66]Wei Dai, Zhiyuan Lu, Jian Chu, Yu Zhao, Creep Behavior Analysis, Optimization and Reliability Evaluation for Bolted Joints of Engine Rotor, Annual Reliability and Maintainability Symposium (RAMS) ,IEEE, Tucson, AZ, USA (2016) [67]Amit Bhaduri, Creep and Stress Rupture, Mechanical Properties and Working of Metals and Alloys. Springer Series in Materials Science, vol 264. Springer, Singapore(2018) p.257-.p.316 [68]SAUL DUSHMAN, L. W. DUNBAR, AND H. HUTHSTEINER, Creep of Metals, Journal of Applied Physics ,vol.15, Issue 2 (1944) [69]VSrivastavaK.RMcNeeHJonesG.WGreenwood, The effect of low stresses on creep and surface profiles of thin copper wires, Acta Materialia Volume 51, Issue 15, (2003)p. 4611-p.4619 [70]HARRY K. JAMES, Resolution of the Gold Wire Grain Growth Failure Mechanism in Plastic Encapsulated Microelectronic Devices, IEEE Transactions on Components, Hybrids, and Manufacturing Technology vol.3, Issue.3, (1980)p.370-p.374 [71]E. Glickman,N. Osipov and A. Ivanov,M. Nathan, Diffusional creep as a stress relaxation mechanism in electromigration, J. Appl. Phys, vol.83, Issue 1 (1998)p.100-p.107 [72]I.A.BlechE.Kinsbron, Electromigration in thin gold films on molybdenum surfaces, Thin Solis Films,vol.25, Issue 2 (1975) p.327-p.334 [73]Hongmei Liu , Yungui Chen, Yongbai Tang , Shanghai Wei , Gao Niu, microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)%Sn alloys, Journal of Alloys and Compounds, vol.440, Issues 1–2 (2007) p.122–p.126 [74]H. J. Tsai C. G. Kuo C. G. Chao T. F. Liu, Investigation of the Microstructures and Mechanical Properties of the Mg-(2, 5, 8) wt.% Sn Alloys at high temperatures after an ECAE Thermo-Mechanical Treatment, J. Alloys Compd., Vol. 320 (2001) [75]Masao SAKANE, Kota YAGI, Takamoto ITOH, Mitsuo YAMASHITAand Hiroaki HOKAZONO, Aging Effect on Creep Properties of SnBi Solders, 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC) [76]Fulong Zhu, Honghai Zhang, Rongfeng Guan, and Sheng Liu, Investigation of Creep Behavior of a Lead-Free Solder Alloy Sn96.5Ag3.5, IEEE. 2006 7th International Conference on Electronics Packaging Technology [77]莊東漢,材料破損分析,五南圖書出版公司p.116 [78]Peter Rhys Lewis, Sample Examination and Analysis, Forensic Polymer Engineering (Second Edition), Woodhead Publishing , Sawston, Cambridge (2016)p.33-69 [79]P.G. KOSSAKOWSK, Influence of Initial Porosity on Strength Properties of S235JR Steel at Low Stress Triaxiality, ARCHIVES OF CIVIL ENGINEERING, LVIII,vol.58 no.3 (2012)p.293-p.308 [80]PavloMaruschak IgorKonovalenko OlegasPrentkovskis OleksandrTsyrulnyk, Digital Analysis of Shape and Size of Dimples of Ductile Tearing on Fracture Surface of Long-Operated Steel, Procedia Engineering vol.134(2016) p.437-p.442 [81]Anatoli Kovalev and Dmitry L. Wainstein, 2 Design Simulation of Kinetics of Multicomponent Grain Boundary Segregations in the Engineering Steels Under Quenching and Tempering, Marcel Dekker, Inc, Moscow, Russia (2003) [82]NaoyukiTsutsuiHirokazuKoizumi, Intergranular/transgranular fracture in the liquid metal embrittlement of polycrystalline zinc, Procedia Structural Integrity Volume 13, (2018) p. 849-p.854 [83]MingyangLi SeldaOterkusaErkanOterkus, Investigation of the effect of porosity on intergranular brittle fracture using peridynamics, Procedia Structural Integrity Volume 28 (2020) p. 472-p.481 [84]T. Suzudo, K. Ebihara, and T. Tsuru, Brittle-fracture simulations of curved cleavage cracks in α-iron: A molecular dynamics study, AIP Advances ,vol.10, Issue 11(2020) [85]G.M. Hughes , G.E.Smith , P.E.J.Flewitt and A.G.Crocker, AN INVESTIGATION OF THE PROPAGATION OF BRITTLE FRACTURE IN POLYCRYSTALLINE ZINC, Conference Proceeding,International Conference on Fracture XI , Italy(2005) [86]A. Ya. Krasovskii ,V. A. Vainshtok, Crystallography of cleavage in BCC metals, Strength of Materials vol.9,(1977)p.1091–p.1099 [87]Shungo Imamura, Hirokazu Muramoto, Yoshinori Murata, Yusuke Shimada, Yoichi Kayamori ,Tetsuya Tagawa, Crystallographic orientation analysis of cleavage facets adjacent to a fracture trigger in low carbon steel,International Journal of Fracture vol.192, (2015)p.253–p.257 [88]Michael Panzenböck, Scanning Electron Microscope, an Essential Equipment for Failure Analysis, Microsc. Microanal,Cambridge University Press, Cambridge, England (2018) [89]林欣蓉,退火孿晶銀鈀合金線之熱穩定性及電遷移現象研究,台大材料所博士論文(2015) p.56 [90]M.Singleton and P.Nash,Bulletin of Alloy Phase Diagrams, Springer Verlag,vol.8 no.2, (1987)p.121 [91]何禹箴 ,鈀含量對銀合金線銲線離子遷移之影響,台大材料所碩士論文 (2016)p.36 [92]Karakaya,I.andW.T.Thompson,The Ag-Pd(Silver-Palladium) system. Bulletin of Alloy Phase Diagrams, vol 9(3(1988)p.237-243 [93]GABOR RIPKA, GABOR HARSANYI, ELECTROCHEMICAL MIGRATION IN THICK-FILM ICs, Electrocomp. Sci. and Tech., Vol. 11. (1985)p.281-p.290 [94]F.X.Gil‚D.Rodri´guez ,J.A.Planell,GRAIN GROWTH KINETICS OF PORE TITANIUM,Scripta Metallurgica et Materialia‚Vol.33‚No.8(1995)p.1361-p.1366 [95]Wonho Jeong, Kyeongtae Kim, Youngsang Kim, Woochul Lee Pramod Reddy,Characterization of nanoscale temperature fields during electromigration of nanowires,Scienific reports ,vol.4 (2014) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80325 | - |
| dc.description.abstract | 使用電子構裝中之打線接合線材為樣品進行一系列的實驗,使用的線材是銀鈀合金線材添加不同含量鍺,總共有六種不同含量,含鍺量由低到高編號為G0~G5,透過各種不同的試驗探討少量添加鍺對於線材的影響,在純銀線中添加鈀的目的為減緩其離子遷移,而選擇少量添加鍺的原因是其具有抗氧化的功用,原先添加鍺的目的使為了使線材可以抗硫化。 實驗可以分為兩個部分,第一部分是Ag-6Pd-XGe alloy wires的線材特性,此部分針對添加不同含量鍺之銀合金線進行原始線材機械性質量測,分析鍺的添加對線材所造成的影響,可得知隨鍺的添加,Ag-6Pd-XGe alloy wires的Breaking Load、電阻會上升,Elogation會下降,但當鍺的添加量達到0.5%時,會有鍺析出的現象,使得Breaking Load、電阻皆下降。 第二個部分進行離子遷移、電遷移及潛變試驗,同時針對電遷移及退火的線材利用FIB分析其外表及內部晶粒結構,當電遷移通電時間到達線材電遷移壽命時,線材外貌會呈現不連續的階梯狀,內部晶粒結構會因為電子風及熱效應導致晶粒成長,內部呈現竹節狀。且經由比對電遷移及退火可以得知在低溫時進行電遷移,在線材內部電子風對晶粒成長的貢獻較大,而在潛變試驗中發現微量添加鍺會大大提升線材的潛變斷裂時間。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:04:31Z (GMT). No. of bitstreams: 1 U0001-2306202119083700.pdf: 9481953 bytes, checksum: 7304a0ad2ace71d5c9cdf3535d85b5b6 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 XI 第一章、前言 1 1.1研究背景 1 1.2研究動機 4 第二章、文獻回顧 6 2.1電子封裝技術 6 2.2打線接合線材 9 2.3添加Pd、Ge效應 11 2.4離子遷移 14 2.4.1銀離子遷移 16 2.4.2銀離子遷移機制 17 2.5電遷移 19 2.5.1電遷移機制 21 2.5.2材料微結構對電遷移之影響 25 2.5.3摻雜元素對電遷移影響 30 2.6潛變 32 2.6.1線材潛變對於電子元件影響 37 2.6.2添加元素對潛變影響 39 2.7材料恆力破壞微觀形貌 41 第三章、實驗方法 44 3.1實驗流程 44 3.2線材製備 45 3.3離子遷移 45 3.4電遷移 47 3.5退火 47 3.6潛變試驗 47 第四章、結果與討論 49 4.1 Ag-6Pd-XGe線材機械性質 49 4.2 離子遷移試驗分析 52 4.3電遷移試驗 61 4.4退火試驗 73 4.4.1比較電遷移及退火之晶粒成長 98 4.5潛變 100 4.5.1潛變曲線 100 4.5.2 FIB晶粒結構 104 4.5.3潛變線材破斷面 120 第五章、結論 125 參考文獻 127 | |
| dc.language.iso | zh-TW | |
| dc.subject | 銀合金線材 | zh_TW |
| dc.subject | 打線接合 | zh_TW |
| dc.subject | 離子遷移 | zh_TW |
| dc.subject | 電遷移 | zh_TW |
| dc.subject | 潛變 | zh_TW |
| dc.subject | electromigration | en |
| dc.subject | creep | en |
| dc.subject | wire bonding | en |
| dc.subject | ion migration | en |
| dc.subject | silver alloy wires | en |
| dc.title | Ag-6Pd-XGe銀合金線材特性 | zh_TW |
| dc.title | Characteristics of Ag-6Pd-XGe silver alloy wires | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡幸樺(Hsin-Tsai Liu),陳勝吉(Chih-Yang Tseng),王彰盟,陳俊豪 | |
| dc.subject.keyword | 打線接合,離子遷移,電遷移,潛變,銀合金線材, | zh_TW |
| dc.subject.keyword | wire bonding,ion migration,electromigration,creep,silver alloy wires, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU202101107 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-06-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2306202119083700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
