請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8030完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈偉強 | |
| dc.contributor.author | Yi-Hsuan | en |
| dc.contributor.author | 賴羿璇 | zh_TW |
| dc.date.accessioned | 2021-05-19T18:03:30Z | - |
| dc.date.available | 2023-08-14 | |
| dc.date.available | 2021-05-19T18:03:30Z | - |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | Abe, Y., Suzuki, T., Ono, C., Iwamoto, K., Hosobuchi, M., Yoshikawa, H. 2002. Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol. Genet. Genomics 267:636-646.
Andersen, B., Smedsgaard, J., Jorring, I., Skouboe, P., and Pedersen, L. H. 2006. Real-time PCR quantification of the AM-toxin gene and HPLC qualification of toxigenic metabolites from Alternaria species from apples. Int. J. Food Microbiol. 111:105-111. Armaleo, D., Ye, G. N., Klein, T. M., Shark, K. B., Sanford, J. C., and Johnston, S. A. 1990. Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr. Genet. 17:97-103. Aver'yanov, A. A., Lapikova, V. P., Lebrun, M. H. 2007. Tenuazonic acid, toxin of rice blast fungus, induces disease resistance and reactive oxygen production in plants. Russ. J. Plant Physiol. 54:749-754. Bohnert, H. U., Fudal, I., Dioh, W., Tharreau, D., Notteghem, J. L., and Lebrun, M. H. 2004. A putative polyketide synthase peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499-2513. Bennett, J. W., Klich, M. 2003. Mycotoxins. Clin. Microbiol. Rev. 16:497-516. Bergmann, S., Schuemann, J., Scherlach, K., Lange, C., Brakhage, A. A., and Hertweck, C. 2007. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol. 3:213-217. Brzonkalik, K., Herrling, T., Syldatk, C., Neumann, A. 2011. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata. Int. J. Food Microbiol. 147:120-126. Campbell, C.D., Vederas, J. C. 2010. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers 93:755-763. Cao, J., Schneeberger, K., Ossowski, S., Gunther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Muller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K. J., and Weigel, D. 2011. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genet. 43:956-963. Cary, J. W., and Stovall, M. E. 1992. Optimum conditions for the release and regeneration of protoplasts of Alternaria alternata. Lett. Appl. Microbiol. 14:100-103. Chen, S. G., Xu, X. M., Dai, X. B., Yang, C. L., Qiang, S. 2007. Identification of tenuazonic acid as a novel type of natural photosystem II inhibitor binding in Q(B)-site of Chlamydomonas reinhardtii. Biochim. Biophys. Acta-Bioenerg. 1767:306-318. Chen, S.G., Yin, C. Y., Dai, X. B., Qiang, S., Xu, X. M. 2008. Action of tenuazonic acid, a natural phytotoxin, on photosystem II of spinach. Environ. Exp. Bot. 62:279-289. Chen, S.G., Yin, C. Y., Qiang, S., Zhou, F. Y., Dai, X. B. 2010. Chloroplastic oxidative burst induced by tenuazonic acid, a natural photosynthesis inhibitor, triggers cell necrosis in Eupatorium adenophorum Spreng. Biochim. Biophys. Acta-Bioenerg. 1797:391-405. Chiang, Y.-M., Oakley, B. R., Keller, N. P., Wang, C. C. C. 2010. Unraveling polyketide synthesis in members of the genus Aspergillus. Appl. Microbiol. Biotechnol. 86:1719-1736. Chiang, Y.-M., Szewczyk, E., Davidson, A. D., Keller, N., Oakley, B. R., Wang, C. C. C. 2009. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 131:2965-2970. Cho, Y., Davis, J. W., Kim, K. H., Wang, J., Sun, Q. H., Cramer, R. A., Jr., and Lawrence, C. B. 2006. A high throughput targeted gene disruption method for Alternaria brassicicola functional genomics using linear minimal element (LME) constructs. Mol. Plant-Microbe Interact. 19:7-15. Cho, Y., Kim, K.-H., La Rota, M., Scott, D., Santopietro, G., Callihan, M., Mitchell, T. K., and Lawrence, C. B. 2009. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol. Microbiol. 72:1316-1333. Cho, Y., Cramer, R. A., Jr., Kim, K. H., Davis, J., Mitchell, T. K., Figuli, P., Pryor, B. M., Lemasters, E., and Lawrence, C. B. 2007. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet. Biol. 44:543-553. Chung, K.-R., Shilts, T., Li, W., and Timmer, L. W. 2002. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett. 213:33-39. Collemare, J., Billard, A., Bohnert, H. U., Lebrun, M.-H. 2008a. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycol. Res. 112:207-215. Collemare, J., Pianfetti, M., Houlle, A.-E., Morin, D., Camborde, L., Gagey, M.-J., Barbisan, C., Fudal, I., Lebrun, M.-H., Bohnert, H. U. 2008b. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol. 179:196-208. Craven, K. D., Velez, H., Cho, Y., Lawrence, C. B., and Mitchell, T. K. 2008. Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot. Cell 7:675-683. Ebbole, D. J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathol. 45:437-456. Eley, K. L., Halo, L. M., Song, Z., Powles, H., Cox, R. J., Bailey, A. M., Lazarus, C. M., and Simpson, T. J. 2007. Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8:289-297. Felenbok, B. 1991. The ethanol utilization regulon of Aspergillus nidulans: the alcA-alcR system as a tool for the expression of recombinant proteins. J. Biotechnol. 17:11-17. Finking, R., and Marahiel, M. A. 2004. Biosynthesis of nonribosomal peptides. Annu. Rev. Microbiol. 58:453-488. Fleck, S. C., Burkhardt, B., Pfeiffer, E., and Metzler, M. 2012. Alternaria toxins: Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol. Lett. 214:27-32. Forment, J. V., Ramon, D., and MacCabe, A. P. 2006. Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr. Genet. 50:217-224. Fox, E. M., and Howlett, B. J. 2008. Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol. 11:481-487. Fudal, I., Collemare, J., Bohnert, H. U., Melayah, D., Lebrun, M.-H. 2007. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryot. Cell 6:546-554. Gallardo, G. L., Pena, N. I., Chacana, P., Terzolo, H. R., and Cabrera, G. M. 2004. L-Tenuazonic acid, a new inhibitor of Paenibacillus larvae. World J. Microbiol. Biotechnol. 20:609-612. Georgianna, D. R., and Payne, G. A. 2009. Genetic regulation of aflatoxin biosynthesis: From gene to genome. Fungal Genet. Biol. 46:113-125. Gitterman, C.O. 1965. Antitumor, cytotoxic, and antibacterial activities of tenuazonic acid and congeneric tetramic acids. J. Med. Chem. 8:483-486. Griffin, G. F., and Chu, F. S. 1983. Toxicity of the Alternaria metabolites alternariol, alternariol methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay. Appl. Environ. Microbiol. 46:1420-1422. Grigoriev, I. V., Nordberg, H., Shabalov, I., Aerts, A., Cantor, M., Goodstein, D., Kuo, A., Minovitsky, S., Nikitin, R., Ohm, R. A., Otillar, R., Poliakov, A., Ratnere, I., Riley, R., Smirnova, T., Rokhsar, D., and Dubchak, I. 2012. The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 40:D26-32. Halo, L. M., Marshall, J. W., Yakasai, A. A., Song, Z., Butts, C. P., Crump, M. P., Heneghan, M., Bailey, A. M., Simpson, T. J., Lazarus, C. M., and Cox, R. J. 2008. Authentic heterologous expression of the tenellin iterative polyketide synthase nonribosomal peptide synthetase requires coexpression with an enoyl reductase. Chembiochem 9:585-594. Harris, S. A., Fisher, L. V., Folkers, K. 1965. The synthesis of tenuazonic an congeneric tetramic acids. J. Med. Chem. 8:478-482. Hashimoto, M., Higuchi, Y., Takahashi, S., Osada, H., Sakaki, T., Toyomasu, T., Sassa, T., Kato, N., and Dairi, T. 2009. Functional analyses of cytochrome P450 genes responsible for the early steps of brassicicene C biosynthesis. Bioorg. Med. Chem. Lett. 19:5640-5643. Hilber, U. W., Bodmer, M., Smith, F. D., and Koller, W. 1994. Biolistic transformation of conidia of Botryotinia fuckeliana. Curr. Genet. 25:124-127. Iwasaki, S., Muro, H., Nozoe, S., Okuda, S. 1972. Isolation of 3, 4-dihydro-3, 4, 8-trihydroxy-1(2H)-naphthalenone and tenuazonic acid from Pyricularia oryzae Cavara. Tetrahedron Lett. 13:13-16. Joshi, A., Min, Z., Brumley, W. C., Dreifuss, P. A., Yang, G. C., and Sphon, J. A. 1984. Mass-spectrometry of the copper salt of tenuazonic acid. Biomed. Mass Spectrom. 11:101-104. Keller, N. P., Turner, G., and Bennett, J. W. 2005. Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol. 3:937-947. Kennedy, J., Auclair, K., Kendrew, S. G., Park, C., Vederas, J. C., and Hutchinson, C. R. 1999. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368-1372. Khaldi, N., Collemare, J., Lebrun, M.-H., and Wolfe, K. H. 2008. Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol. 9:R18. Kim, K. H., Cho, Y., La Rota, M., Cramer, R. A., Jr., and Lawrence, C. B. 2007. Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction. Mol. Plant Pathol. 8:23-39. Kim, K. H., Willger, S. D., Park, S. W., Puttikamonkul, S., Grahl, N., Cho, Y., Mukhopadhyay, B., Cramer, R. A., Jr., and Lawrence, C. B. 2009. TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog. 5:e1000653. Knox-Davies, P. S. 1979. The nuclei of Alternaria brassicicola. T. Brit. Mycol. Soc. 72:81-90. Lebrun, M.-H., Duvert, P., Gaudemer, F., Gaudemer, A., Deballon, C., , and Boucly, P. 1985. Complexation of the fungal metabolite tenuazonic acid with copper (II), iron (III), nickel (II), and magnesium (II) ions. J. Inorg. Biochem. 24:167-181. Liu, X.Y., and Walsh, C. T. 2009a. Characterization of cyclo-acetoacetyl-L-tryptophan dimethylallyltransferase in cyclopiazonic acid biosynthesis: Substrate promiscuity and site directed mutagenesis studies. Biochemistry 48:11032-11044. Liu, X.Y., and Walsh, C. T. 2009b. Cyclopiazonic acid biosynthesis in Aspergillus sp.: Characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry 48:8746-8757. Lorito, M., Hayes, C. K., Di Pietro, A., and Harman, G. E. 1993. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr. Genet. 24:349-356. Maiya, S., Grundmann, A., Li, X., Li, S. M., and Turner, G. 2007. Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem 8:1736-1743. Meronuck, R. A., Steele, J. A., Mirocha, C. J., and Christensen, C. M. 1972. Tenuazonic acid, a toxin produced by Alternaria alternata. Appl. Microbiol. 23:613-617. Misiek, M., and Hoffmeister, D. 2007. Fungal genetics, genomics, and secondary metabolites in pharmaceutical sciences. Planta Med. 73:103-115. Mukherjee, A. K., Carp, M. J., Zuchman, R., Ziv, T., Horwitz, B. A., and Gepstein, S. 2010. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J. Proteomics 73:709-720. Oka, K., Akamatsu, H., Kodama, M., Nakajima, H., Kawada, T., and Otani, H. 2005. Host-specific AB-toxin production by germinating spores of Alternaria brassicicola is induced by a host-derived oligosaccharide. Physiol. Mol. Plant Pathol. 66:12-19. Osbourn, A. 2010. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet. 26:449-457. Pedras, M.S., Chumala, P.B., Jin, W., Islam, M.S., and Hauck, D.W. 2009. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394-402. Pero, R.W., Posner, H., Blois, M., Harvan, D., and Spalding, J. W. 1973. Toxicity of metabolites produced by the Alternaria. Environ. Health Perspect. 4:87-94. Pochon, S., Terrasson, E., Guillemette, T., Iacomi-Vasilescu, B., Georgeault, S., Juchaux, M., Berruyer, R., Debeaujon, I., Simoneau, P., and Campion, C. 2012. The Arabidopsis thaliana-Alternaria brassicicola pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi. Plant Methods 8:16. Qui, J., Castro-Concha, L., Garcia-Sosa, K., Pena-Rodriguez, L., and Miranda-Ham, M. 2009. Differential effects of phytotoxic metabolites from Alternaria tagetica on Tagetes erecta cell cultures. J. Gen. Plant Pathol. 75:331-339. Roettig, M., Medema, M. H., Blin, K., Weber, T., Rausch, C., and Kohlbacher, O. 2011. NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39:W362-W367. Rosett, T., Sankhala, R. H., Stickings, C. E., Taylor, M. E. U., and Thomas, R. 1957. Studies in the biochemistry of micro-organisms.103. Metabolites of Alternaria tenuis auct.: - culture filtrate products. Biochem. J. 67:390-400. Rotem, J. 1994. The genus Alternaria: biology, epidemiology, and pathogenicity. American Phytopathological Society, St Paul. Royles, B.J.L. 1995. Naturally Occurring Tetramic Acids: Structure, Isolation, and Synthesis. Chemical Reviews 95:1981-2001. Saha, D., Fetzner, R., Burkhardt, B., Podlech, J., Metzler, M., Dang, H., Lawrence, C., and Fischer, R. 2012. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata. PLoS ONE 7:e40564. Sakai, K., Kinoshita, H., and Nihira, T. 2012. Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl. Microbiol. Biotechnol. 93:2011-2022. Sanchez, J. F., Entwistle, R., Hung, J.-H., Yaegashi, J., Jain, S., Chiang, Y.-M., Wang, C.C.C., and Oakley, B. R. 2011. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J. Am. Chem. Soc. 133:4010-4017. Schwarz, C., Kreutzer, M., and Marko, D. 2012. Minor contribution of alternariol, alternariol monomethyl ether and tenuazonic acid to the genotoxic properties of extracts from Alternaria alternata infested rice. Toxicol. Lett. 214:46-52. Scott, P.M. 2001. Analysis of agricultural commodities and foods for Alternaria mycotoxins. J. AOAC Int. 84:1809-1817. Seshime, Y., Juvvadi, P. R., Tokuoka, M., Koyama, Y., Kitamoto, K., Ebizuka, Y., and Fujii, I. 2009. Functional expression of the Aspergillus flavus PKS–NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid. Bioorg. Med. Chem. Lett. 19:3288-3292. Shephard, G. S., Thiel, P. G., Sydenham, E. W., Vleggaar, R., and Marasas, W. F. O. 1991. Revesed-phase high-performance liquid-chromatography of tenuazonic acid and related tetramic acids. J. Chromatogr.-Biomed. 566:195-205. Shigeura, H. T., and Gordon, C. N. 1963. The biological activity of tenuazonic acid. Biochemistry 2:1132-1137. Shimizu, T., Kinoshita, H., Ishihara, S., Sakai, K., Nagai, S., and Nihira, T. 2005. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl. Environ. Microbiol. 71:3453-3457. Siegel, D., Merkel, S., Koch, M., and Nehls, I. 2010. Quantification of the Alternaria mycotoxin tenuazonic acid in beer. Food Chem. 120:902-906. Siegel, D., Rasenko, T., Koch, M., and Nehls, I. 2009. Determination of the Alternaria mycotoxin tenuazonic acid in cereals by high-performance liquid chromatography-electrospray ionization ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. J. Chromatogr. A 1216:4582-4588. Simpson, T. J., and Cox, R. J. 2012. Polyketides in Fungi. Pages 143-161 in: Natural Products in Chemical Biology, John Wiley & Sons, Inc. Sims, J. W., Fillmore, J. P., Warner, D. D., and Schmidt, E.W. 2005. Equisetin biosynthesis in Fusarium heterosporum. Chem. Commun. 2:186-188. Slot, J. C., and Rokas, A. 2011. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr. Biol. 21:134-139. Smith, D. J., Earl, A.J., and Turner, G. 1990. The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J. 9:2743-2750. Song, Z., Cox, R. J., Lazarus, C. M., and Simpson, T. T. 2004. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem 5:1196-1203. Srivastava, A., Ohm, R. A., Oxiles, L., Brooks, F., Lawrence, C. B., Grigoriev, I. V., and Cho, Y. 2012. A zinc-finger-family transcription factor, AbVf19, is required for the induction of a gene subset important for virulence in Alternaria brassicicola. Mol. Plant-Microbe Interact. 25:443-452. Steyn, P. S., and Rabie, C. J. 1976. Characterization of magnesium and calcium tenuazonate from Phoma sorghina. Phytochemistry 15:1977-1979. Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A., and Oakley, B. R. 2006. Fusion PCR and gene targeting in Aspergillus nidulans. Nat. Protoc. 1:3111-3120. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. Taniwaki, M. H., Pitt, J. I., Iamanaka, B. T., Sartori, D., Copetti, M. V., Balajee, A., Fungaro, M. H. P., and Frisvad, J. C. 2012. Aspergillus bertholletius sp. nov. from Brazil Nuts. PLoS ONE 7:e42480. Trail, F., and Koller, W. 1993. Diversity of cutinases from plant pathogenic fungi: Purification and characterization of two cutinases from Alternaria brassicicola. Physiol. Mol. Plant Pathol. 42:205-220. Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N., and Keller, U. 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261:133-141. van Wees, S. C. M., Chang, H.-S., Zhu, T., and Glazebrook, J. 2003. Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol. 132:606-617. von Nussbaum, F. 2003. Stephacidin B - A new stage of complexity within prenylated indole alkaloids from fungi. Angew. Chem. Int. Ed. 42:3068-3071. Waring, R. B., May, G. S., and Morris, N. R. 1989. Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119-130. Wight, W. D., Kim, K. H., Lawrence, C. B., and Walton, J. D. 2009. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. Mol. Plant-Microbe Interact. 22:1258-1267. Xu, W., Cai, X., Jung, M. E., and Tang, Y. 2010. Analysis of intact and dissected fungal polyketide synthase-nonribosomal peptide synthetase in vitro and in Saccharomyces cerevisiae. J. Am. Chem. Soc. 132:13604-13697. Yao, C. L.and Koller., W. 1995. Diversity of cutinases from plant pathogenic fungi: Different cutinases are expressed during saprophytic and pathogenic stages of Alternaria brassicicola. Mol. Plant-Microbe Interact. 8:122-130. Yu, J.-H., and Keller, N. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43:437-458. Yu, J., Chang, P.-K., Ehrlich, K. C., Cary, J. W., Bhatnagar, D., Cleveland, T. E., Payne, G. A., Linz, J. E., Woloshuk, C. P., and Bennett, J. W. 2004. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70:1253-1262. Zhao, H. P., Cui, Z. P., Gu, Y. C., Liu, Y. X., and Wang, Q. M. 2011. The phytotoxicity of natural tetramic acid derivatives. Pest Manag. Sci. 67:1059-1061. Zhou, B., and Qiang, S. 2008. Environmental, genetic and cellular toxicity of tenuazonic acid isolated from Alternaira alternata. Afr. J. Biotechnol. 7:1151-1156. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8030 | - |
| dc.description.abstract | Brassica black spot disease fungus, Alternaria brassicicola is an important plant pathogenic fungus that produces plenty of secondary metabolites under both in vitro and in vivo conditions, including 3 most well-known mycotoxins: alternariol (AOH), alternariol-9-methyl ether (AME) and tenuazonic acid (TA). Thus far, very limited information is available concerning their biosynthesis and roles in pathogenesis. In this study, we aim to identify the genes involved in the biosynthesis of TA in A. brassicicola. With the knowledge of structural discovery and isotope feeding researches on TA, the activities of both polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) are speculated to be essential in the biosynthesis of TA while isoleucine and acetoacetate were identified to be its precursors. We first examined the TA production in A. brassicicola wild type strain by agar diffusion assay on honey foulbrood disease pathogen, Paenibacillus larvae subsp. larvae. Candidate genes were identified from the genome database of A. brassicicola and applied to bioinformatical analysis on evolutionary relationship and functional domain prediction with known PKS/NRPS genes. Further, AB04556.1 gene was chosen from candidate genes for constructing a gene-disrupted mutant on basis of gene expression level examined by qPCR. The transformants which constructed via biolistic transformation were purified and compared gene expression as well as TA production with wild type. Additionally, we construct a heterologous expression system on Aspergillus nidulans LO2026 strain in order to find out the role that AB04556.1 gene played in the biosynthesis of TA. In this study, we found a potentially candidate gene from the genomic database of A. brassicicola and generated a gene-disrupted mutant for analyzing of the biosynthesis of TA. Ultimately, inoculation was held to understand how TA affects to the pathogenesis during infection. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T18:03:30Z (GMT). No. of bitstreams: 1 ntu-102-R99633003-1.pdf: 2134144 bytes, checksum: 67343f24111d56612d9240adfcc0da6f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Table of Contents
中文摘要 i Abstract iii List of figures viii List of tables viii List of appendix ix Chapter I Introduction 1 1.1 Fungal secondary metabolites (polyketides, non-ribosomal peptides, terpenes, and alkaloids) 1 1.2 PKS-NRPS hybrids 4 1.3 Mycotoxin studies of Alternaria brassicicola 5 1.4 Tenuazonic acid 6 Chapter II Materials and methods 8 2.1 Fungal strain and growth conditions 8 2.2 Bioinformatics 8 2.2.1 Characterization of PKS/NRPS genes in A. brassicicola 8 2.2.2 Alignment 8 2.3 Induction of toxin production in A. brassicicola 9 2.4 RNA extraction and reverse transcription 9 2.5 Real-time PCR 10 2.6 Tenuazonic acid assay 10 2.6.1 Chemical analysis (TLC/HPLC) 10 2.6.2 Bioassay 11 2.7 Construction of gene disruption mutant 12 2.7.1 Generation of a disruption plasmid pBSAB1 12 2.7.2 Biolistic transformation 12 2.8 Southern blot 13 2.8.1 Genomic DNA preparation 13 2.8.2 Southern blot 14 2.9 Heterologous expression 17 2.9.1 Construction of expression plasmid 17 2.9.2 Protoplast transformation 18 2.9.3 Induction of heterologous expression 19 2.10 Inoculation 20 Chapter III Results 21 3.1 Bioinformatical analysis 21 3.2 TA induction and gene expression (real-time PCR) 22 3.3 Gene disruption mutants 23 3.3.1 Generation of mutants 23 3.3.2 Analysis of TA biosynthesis through down-regulation 24 3.4 Heterologous expression in Aspergillus nidulans LO2026 26 3.5 Inoculation 27 Chapter IV Discussion 29 Figures and tables 38 Appendix 54 References 57 | |
| dc.language.iso | en | |
| dc.title | 十字花科黑斑病菌生合成tenuazonic acid之PKS-NRPS基因鑑定 | zh_TW |
| dc.title | Identification of a PKS-NRPS gene involved in the biosynthesis of tenuazonic acid in Alternaria brassicicola | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉瑞芬,呂廷璋,王嘉駿,李宗徽 | |
| dc.subject.keyword | 十字花科黑斑病菌 (Alternaria brassicicola),二級代謝 (secondary metabolites),tenuazonic acid,異源表現 (heterologous expression), | zh_TW |
| dc.subject.keyword | Alternaria brassicicola,secondary metabolites,tenuazonic acid,heterologous expression, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-14 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 2.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
