請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80278完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉光勝(Kuang-Sheng Yeh) | |
| dc.contributor.author | Te-Heng Lee | en |
| dc.contributor.author | 李得亨 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:03:44Z | - |
| dc.date.available | 2023-07-01 | |
| dc.date.available | 2022-11-24T03:03:44Z | - |
| dc.date.copyright | 2021-07-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-02 | |
| dc.identifier.citation | 1. 衛生福利部:邁向全球衛生安全-抗生素抗藥性管理行動策略計畫 (109年至113年). 臺灣2019, 行政院108年7月11日院臺衛字第1080021810號函核定. 2. 周偉惠, 曾淑慧, 柯玉芬:台灣抗生素抗藥性管理政策與國家型抗生素管理計畫. 感染控制雜誌 2015, 25(3):133-139. 3. Otten H: Domagk and the development of the sulphonamides. J Antimicrob Chemother 1986, 17(6):689-690. 4. Payne DJ, Miller LF, Findlay D, Anderson J, Marks L: Time for a change: addressing R D and commercialization challenges for antibacterials. Philos Trans R Soc Lond, B, Biol Sci 2015, 370(1670):20140086-20140086. 5. O'Neill J: Tackling drug-resistant infections globally: final report and recommendations: Government of the United Kingdom; 2016. 6. Rushton J: Anti-microbial use in animals: How to assess the trade-offs. Zoonoses Public Health 2015, 62 Suppl 1:10-21. 7. Lee MH, Lee HJ, Ryu PD: Public health risks: Chemical and antibiotic residues - review. Asian-Australas J Anim Sci 2001, 14(3):402-413. 8. Obimakinde S, Fatoki O, Opeolu B, Olatunji O: Veterinary pharmaceuticals in aqueous systems and associated effects: an update. Environ Sci Pollut Res Int 2017, 24(4):3274-3297. 9. Chang S-C, Chen M-W, Lin M-C, Hu O-Y: Antibiotic consumption in human and animal in Taiwan. Infect Control Journal 2003, 13:334-345. 10. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R: Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 2015, 112(18):5649-5654. 11. Hosain MZ, Kabir SML, Kamal MM: Antimicrobial uses for livestock production in developing countries. Vet World 2021, 14(1):210-221. 12. Neogi SB, Islam MM, Islam SKS, Akhter A, Sikder MMH, Yamasaki S, Kabir SML: Risk of multi-drug resistant Campylobacter spp. and residual antimicrobials at poultry farms and live bird markets in Bangladesh. BMC Infect Dis 2020, 20(1):278. 13. Masud AA, Rousham EK, Islam MA, Alam MU, Rahman M, Mamun AA, Sarker S, Asaduzzaman M, Unicomb L: Drivers of antibiotic use in poultry production in Bangladesh: Dependencies and dynamics of a patron-client relationship. Front Vet Sci 2020, 7:78. 14. Hutchings MI, Truman AW, Wilkinson B: Antibiotics: past, present and future. Curr Opin Microbiol 2019, 51:72-80. 15. D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R et al: Antibiotic resistance is ancient. Nature 2011, 477(7365):457-461. 16. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD: Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 2012, 7(4):e34953. 17. ECDC/EMEA: European Centre for Disease Prevention and Control Joint Report with EMEA: The Bacterial I: Time to React. In. Stockholm; 2009. 18. CDC: Antibiotic resistance threats in the United States. In. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. 19. Lee NY, Lee HC, Ko NY, Chang CM, Shih HI, Wu CJ, Ko WC: Clinical and economic impact of multidrug resistance in nosocomial Acinetobacter baumannii bacteremia. Infect Control Hosp Epidemiol 2007, 28(6):713-719. 20. Hudspeth MK, Smith TC, Barrozo CP, Hawksworth AW, Ryan MA, Gray GC: National department of defense surveillance for invasive Streptococcus pneumoniae: antibiotic resistance, serotype distribution, and arbitrarily primed polymerase chain reaction analyses. J Infect Dis 2001, 184(5):591-596. 21. Holmer I, Salomonsen CM, Jorsal SE, Astrup LB, Jensen VF, Høg BB, Pedersen K: Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Vet Res 2019, 15(1):449. 22. Werner M, Suchodolski JS, Straubinger RK, Wolf G, Steiner JM, Lidbury JA, Neuerer F, Hartmann K, Unterer S: Effect of amoxicillin-clavulanic acid on clinical scores, intestinal microbiome, and amoxicillin-resistant Escherichia coli in dogs with uncomplicated acute diarrhea. J Vet Intern Med 2020, 34(3):1166-1176. 23. Founou LL, Founou RC, Essack SY: Antibiotic resistance in the food chain: A developing country-perspective. Front Microbiol 2016, 7:1881. 24. Valsamatzi-Panagiotou A, Popova KB, Penchovsky R: Methods for prevention and constraint of antimicrobial resistance: a review. Environ Chem Lett 2021. 25. Smith AD, Panickar KS, Urban JF, Dawson HD: Impact of micronutrients on the immune response of animals. Annu Rev Anim Biosci 2018, 6(1):227-254. 26. Sahu Suresh Kumar, S.K. M: Prepartum micronutrient supplementation and its effect on control of sub-clinical mastitis. Intas Polivet 2014, 15(2):185-187. 27. Krömker V, Pfannenschmidt F, Friedrich J: New infection rate of bovine mammary glands after application of an internal teat seal at dry off. Berl Munch Tierarztl Wochenschr 2010, 123(5-6):215-220. 28. Thakuria B, Lahon K: The beta lactam antibiotics as an empirical therapy in a developing country: An update on their current status and recommendations to counter the resistance against them. J Clin Diagnostic Res 2013, 7(6):1207-1214. 29. Watkins RR, Bonomo RA: β-lactam antibiotics. Infectious Diseases 4th edn. Edited by Cohen J, Powderly WG, Opal SM: Elsevier; 2017: 1203-1216.e1202. 30. Pandey N, M Cascella: Beta lactam antibiotics. StatPearls [Internet]: Treasure Island (FL): StatPearls Publishing; 2021. 31. Williams JD, Naber KG, Bryskier A, Høby N, Gould IM, Periti P, Giamarellou H, Rouveix B: Classification of oral cephalosporins. A matter for debate. Int J Antimicrob Agents 2001, 17(6):443-450. 32. Reygaert WC: Antimicrobial Mechanisms of Escherichia coli. Escherichia coli- Recent advances in physiology, pathogenesis and biotechnological applications. Edited by Samie A: IntechOpen; 2017. 33. Paterson DL, Bonomo RA: Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005, 18(4):657-686. 34. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z: Extended spectrum Beta-lactamases: Definition, classification and epidemiology. Curr Issues Mol Biol 2015, 17:11-21. 35. Bush K, Jacoby GA: Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010, 54(3):969-976. 36. Bush K: The ABCD’s of β-lactamase nomenclature. J Infect Chemother 2013, 19(4):549-559. 37. Bonnet R: Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004, 48(1):1-14. 38. Shahid M, Singh A, Sobia F, Patel M, Khan HM, Malik A, Shukla I: An overview of CTX-M β-lactamases. Rev Med Microbiol 2011, 22(2). 39. Kaper JB, Nataro JP, Mobley HLT: Pathogenic Escherichia coli. Nat Rev Microbiol 2004, 2(2):123-140. 40. Nataro JP, Kaper JB: Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998, 11(1):142-201. 41. Varma JK, Greene KD, Reller ME, DeLong SM, Trottier J, Nowicki SF, DiOrio M, Koch EM, Bannerman TL, York ST et al: An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. JAMA 2003, 290(20):2709-2712. 42. Nagy B, Fekete PZ: Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet Res 1999, 30(2-3):259-284. 43. Pitari GM, Zingman LV, Hodgson DM, Alekseev AE, Kazerounian S, Bienengraeber M, Hajnóczky G, Terzic A, Waldman SA: Bacterial enterotoxins are associated with resistance to colon cancer. Proc Natl Acad Sci USA 2003, 100(5):2695-2699. 44. Hicks S, Candy DC, Phillips AD: Adhesion of enteroaggregative Escherichia coli to pediatric intestinal mucosa in vitro. Infect Immun 1996, 64(11):4751-4760. 45. Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, Mayhew GF, Plunkett G, 3rd, Rose DJ, Darling A et al: Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 2003, 71(5):2775-2786. 46. Buchrieser C, Glaser P, Rusniok C, Nedjari H, D'Hauteville H, Kunst F, Sansonetti P, Parsot C: The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 2000, 38(4):760-771. 47. Peiffer I, Servin AL, Bernet-Camard MF: Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells. Infect Immun 1998, 66(9):4036-4042. 48. Tieng V, Le Bouguénec C, du Merle L, Bertheau P, Desreumaux P, Janin A, Charron D, Toubert A: Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc Natl Acad Sci USA 2002, 99(5):2977-2982. 49. Reygaert WC: An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018, 4(3):482-501. 50. Hooper DC, Jacoby GA: Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 2015, 1354(1):12-31. 51. Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L: Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob Agents Chemother 2011, 55(2):921-924. 52. Blair JM, Richmond GE, Piddock LJ: Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014, 9(10):1165-1177. 53. Bakken JS, Sanders CC, Thomson KS: Selective ceftazidime resistance in Escherichia coli: Association with changes in outer membrane protein. J Infect Dis 1987, 155(6):1220-1225. 54. Quinn JP, Miyashiro D, Sahm D, Flamm R, Bush K: Novel plasmid-mediated beta-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1989, 33(9):1451-1456. 55. Bush K: Extended-spectrum β-lactamases in North America, 1987–2006. Clin Microbiol Infect 2008, 14:134-143. 56. Goossens H, Grabein B: Prevalence and antimicrobial susceptibility data for extended-spectrum β-lactamase– and AmpC-producing Enterobacteriaceae from the MYSTIC Program in Europe and the United States (1997–2004). Diagn Microbiol Infect Dis 2005, 53(4):257-264. 57. Moland ES, Hanson ND, Black JA, Hossain A, Song W, Thomson KS: Prevalence of newer β-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002. J Clin Microbiol 2006, 44(9):3318-3324. 58. Moland ES, Black J, Hossain A, Hanson ND, Thomson K, Pottumarthy S: Discovery of CTX-M-like extended-spectrum β-lactamases in Escherichia coli isolates from five US states. Antimicrob Agents Chemother 2003, 47(7):2382-2383. 59. Lewis JS, 2nd, Herrera M, Wickes B, Patterson JE, Jorgensen JH: First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother 2007, 51(11):4015-4021. 60. Villegas MV, Kattan JN, Quinteros MG, Casellas JM: Prevalence of extended-spectrum β-lactamases in South America. Clin Microbiol Infect 2008, 14:154-158. 61. Guzmán-Blanco M, Casellas JM, Sader HS: Bacterial resistance to antimicrobial agents in Latin America: The giant is awakening. Infect Dis Clin North Am 2000, 14(1):67-81. 62. Guzmrn-Blanco M, Labarca JA, Villegas MV, Gotuzzo E: Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis 2014, 18:421-433. 63. Ben-Ami R, Rodríguez-Baño J, Arslan H, Pitout JD, Quentin C, Calbo ES, Azap ÖK, Arpin C, Pascual A, Livermore DM: A multinational survey of risk factors for infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 2009, 49(5):682-690. 64. Cantón R, Coque TM: The CTX-M β-lactamase pandemic. Curr Opin Microbiol 2006, 9(5):466-475. 65. Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, Coque TM: Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008, 14:144-153. 66. Bauernfeind A, Schweighart S, Grimm H: A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection 1990, 18(5):294-298. 67. System EARS: EARSS annual report 2007. Bilthoven, Netherlands: National Institute for Public Health and the Environment 2008. 68. Valverde A, Coque TM, Sánchez-Moreno MP, Rollán A, Baquero F, Cantón R: Dramatic increase in prevalence of fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J Clin Microbiol 2004, 42(10):4769-4775. 69. Hernández JR, Pascual A, Cantón R, Martínez-Martínez L: Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in spanish hospitals (GEIH-BLEE Project 2002). Enferm Infecc Microbiol Clin 2003, 21(2):77-82. 70. Storberg V: ESBL-producing Enterobacteriaceae in Africa - a non-systematic literature review of research published 2008-2012. Infect Ecol Epidemiology 2014, 4:10.3402/iee.v3404.20342. 71. Saravanan M, Ramachandran B, Barabadi H: The prevalence and drug resistance pattern of extended spectrum β–lactamases (ESBLs) producing Enterobacteriaceae in Africa. Microb Pathog 2018, 114:180-192. 72. Hawkey PM: Prevalence and clonality of extended-spectrum β-lactamases in Asia. Clin Microbiol Infect 2008, 14:159-165. 73. Ho P, Tsang D, Que T, Ho M, Yuen K: Comparison of screening methods for detection of extended‐spectrum β‐lactamases and their prevalence among Escherichia coli and Klebsiella species in Hong Kong. Apmis 2000, 108(3):237-240. 74. Pai H: The characteristics of extended-spectrum β-lactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J 1998, 39(6):514-519. 75. Ryoo NH, Kim E-C, Hong SG, Park YJ, Lee K, Bae IK, Song EH, Jeong SH: Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother 2005, 56(4):698-702. 76. Muratani T, Matsumoto T: Urinary tract infection caused by fluoroquinolone-and cephem-resistant Enterobacteriaceae. Int J Antimicrob Agents 2006, 28:10-13. 77. Hirakata Y, Matsuda J, Miyazaki Y, Kamihira S, Kawakami S, Miyazawa Y, Ono Y, Nakazaki N, Hirata Y, Inoue M: Regional variation in the prevalence of extended-spectrum β-lactamase–producing clinical isolates in the Asia-Pacific region (SENTRY 1998–2002). Diagn Microbiol Infect Dis 2005, 52(4):323-329. 78. Huang Y-S, Lai L-C, Chen Y-A, Lin K-Y, Chou Y-H, Chen H-C, Wang S-S, Wang J-T, Chang S-C: Colonization with multidrug-resistant organisms among healthy adults in the community setting: Prevalence, risk factors, and composition of gut microbiome. Front Microbiol 2020, 11(1402). 79. Lee S, Mir RA, Park SH, Kim D, Kim H-Y, Boughton RK, Morris JG, Jeong KC: Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol 2020, 46(1):1-14. 80. Saliu E-M, Vahjen W, Zentek J: Types and prevalence of extended–spectrum beta–lactamase producing Enterobacteriaceae in poultry. Anim Health Res Rev 2017, 18(1):46-57. 81. Apostolakos I, Mughini-Gras L, Fasolato L, Piccirillo A: Assessing the occurrence and transfer dynamics of ESBL/pAmpC-producing Escherichia coli across the broiler production pyramid. PLoS One 2019, 14(5):e0217174. 82. Agersø Y, Jensen JD, Hasman H, Pedersen K: Spread of extended spectrum cephalosporinase-producing Escherichia coli clones and plasmids from parent animals to broilers and to broiler meat in a production without use of cephalosporins. Foodborne Pathog Dis 2014, 11(9):740-746. 83. Blaak H, van Hoek AHAM, Hamidjaja RA, van der Plaats RQJ, Kerkhof-de Heer L, de Roda Husman AM, Schets FM: Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PLoS One 2015, 10(8):e0135402. 84. Wu C, Wang Y, Shi X, Wang S, Ren H, Shen Z, Wang Y, Lin J, Wang S: Rapid rise of the ESBL and mcr-1 genes in Escherichia coli of chicken origin in China, 2008-2014. Emerging Infect Dis 2018, 7(1):30-30. 85. Geser N, Stephan R, Hächler H: Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet Res 2012, 8(1):21. 86. Nuangmek A, Rojanasthien S, Chotinun S, Yamsakul P, Tadee P, Thamlikitkul V, Tansakul N, Patchanee P: Antimicrobial resistance in ESBL-producing Escherichia coli isolated from layer and pig farms in Thailand. Acta Sci Vet 2018, 46(1):8. 87. Chuang Y-C: The prevalence of colistin resistance gene mcr-1 and antimicrobial resistance genes related to ESBLs in Enterobacteriaceae from chickens in central Taiwan. MS thesis, National Chung Hsing University; 2020. 88. Guo S, Aung KT, Leekitcharoenphon P, Tay MYF, Seow KLG, Zhong Y, Ng LC, Aarestrup FM, Schlundt J: Prevalence and genomic analysis of ESBL-producing Escherichia coli in retail raw meats in Singapore. J Antimicrob Chemother 2021, 76(3):601-605. 89. Nahar A, Awasthi SP, Hatanaka N, Okuno K, Hoang PH, Hassan J, Hinenoya A, Yamasaki S: Prevalence and characteristics of extended-spectrum β-lactamase-producing Escherichia coli in domestic and imported chicken meats in Japan. J Vet Med Sci 2018, 80(3):510-517. 90. Casella T, Nogueira MCL, Saras E, Haenni M, Madec J-Y: High prevalence of ESBLs in retail chicken meat despite reduced use of antimicrobials in chicken production, France. Int J Food Microbiol 2017, 257:271-275. 91. Crecencio RB, Brisola MC, Bitner D, Frigo A, Rampazzo L, Borges KA, Furian TQ, Salle CTP, Moraes HLS, Faria GA et al: Antimicrobial susceptibility, biofilm formation and genetic profiles of Escherichia coli isolated from retail chicken meat. Infect Genet Evol 2020, 84:104355. 92. Dame-Korevaar A, Fischer EAJ, van der Goot J, Stegeman A, Mevius D: Transmission routes of ESBL/pAmpC producing bacteria in the broiler production pyramid, a literature review. Prev Vet Med 2019, 162:136-150. 93. Cohen Stuart J, van den Munckhof T, Voets G, Scharringa J, Fluit A, Hall ML: Comparison of ESBL contamination in organic and conventional retail chicken meat. Int J Food Microbiol 2012, 154(3):212-214. 94. Dohmen W, Dorado-García A, Bonten MJM, Wagenaar JA, Mevius D, Heederik DJJ: Risk factors for ESBL-producing Escherichia coli on pig farms: A longitudinal study in the context of reduced use of antimicrobials. PLoS One 2017, 12(3):e0174094-e0174094. 95. Liu X, Liu H, Wang L, Peng Q, Li Y, Zhou H, Li Q: Molecular characterization of extended-spectrum β-lactamase-producing multidrug resistant Escherichia coli from swine in Northwest China. Front Microbiol 2018, 9:1756-1756. 96. Samanta A, Mahanti A, Chatterjee S, Joardar SN, Bandyopadhyay S, Sar TK, Mandal GP, Dutta TK, Samanta I: Pig farm environment as a source of beta-lactamase or AmpC-producing Klebsiella pneumoniae and Escherichia coli. Ann Microbiol 2018, 68(11):781-791. 97. Lee W-C, Yeh K-S: Characteristics of extended-spectrum β-lactamase-producing Escherichia coli isolated from fecal samples of piglets with diarrhea in central and southern Taiwan in 2015. BMC Vet Res 2017, 13(1):66-66. 98. Michael GB, Kaspar H, Siqueira AK, de Freitas Costa E, Corbellini LG, Kadlec K, Schwarz S: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008–2014. Vet Microbiol 2017, 200:142-150. 99. Xu G, An W, Wang H, Zhang X: Prevalence and characteristics of extended-spectrum β-lactamase genes in Escherichia coli isolated from piglets with post-weaning diarrhea in Heilongjiang province, China. Front Microbiol 2015, 6(1103). 100. Kaesbohrer A, Bakran-Lebl K, Irrgang A, Fischer J, Kämpf P, Schiffmann A, Werckenthin C, Busch M, Kreienbrock L, Hille K: Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Vet Microbiol 2019, 233:52-60. 101. Bergšpica I, Kaprou G, Alexa EA, Prieto M, Alvarez-Ordóñez A: Extended spectrum β-lactamase (ESBL) producing Escherichia coli in pigs and pork meat in the European Union. Antibiotics 2020, 9(10):678. 102. Sapugahawatte DN, Li C, Zhu C, Dharmaratne P, Wong KT, Lo N, Ip M: Prevalence and characteristics of extended-spectrum-β-lactamase-producing and carbapenemase-producing Enterobacteriaceae from freshwater fish and pork in wet markets of Hong Kong. mSphere 2020, 5(2):e00107-00120. 103. Dantas Palmeira J, Ferreira HMN: Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Heliyon 2020, 6(1):e03206. 104. Shiraki Y, Shibata N, Doi Y, Arakawa Y: Escherichia coli producing CTX-M-2 beta-lactamase in cattle, Japan. Emerg Infect Dis 2004, 10(1):69-75. 105. Schmid A, Hörmansdorfer S, Messelhäusser U, Käsbohrer A, Sauter-Louis C, Mansfeld R: Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl Environ Microbiol 2013, 79(9):3027-3032. 106. Sudarwanto MB, Lukman DW, Latif H, Pisestyani H, Sukmawinata E, Akineden Ö, Usleber E: CTX-M producing Escherichia coli isolated from cattle feces in Bogor slaughterhouse, Indonesia. Asian Pac J Trop Biomed 2016, 6(7):605-608. 107. Zheng B, Feng C, Xu H, Yu X, Guo L, Jiang X, Song X: Detection and characterization of ESBL-producing Escherichia coli expressing mcr-1 from dairy cows in China. J Antimicrob Chemother 2018, 74(2):321-325. 108. Geser N, Stephan R, Kuhnert P, Zbinden R, Kaeppeli U, Cernela N, Haechler H: Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in swine and cattle at slaughter in Switzerland. J Food Prot 2011, 74(3):446-449. 109. Chen C-M, Ke S-C, Li C-R, Wu Y-C, Chen T-H, Lai C-H, Wu X-X, Wu L-T: High diversity of antimicrobial resistance genes, class 1 integrons, and genotypes of multidrug-resistant Escherichia coli in beef carcasses. Microb Drug Resist 2017, 23(7):915-924. 110. Ali T, ur Rahman S, Zhang L, Shahid M, Zhang S, Liu G, Gao J, Han B: ESBL-producing Escherichia coli from cows suffering mastitis in China contain clinical class 1 integrons with CTX-M linked to ISCR1. Front Microbiol 2016, 7(1931). 111. Su Y, Yu CY, Tsai Y, Wang SH, Lee C, Chu C: Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in Southern Taiwan. J Microbiol Immunol Infect 2016, 49(6):892-901. 112. Kamaruzzaman EA, Abdul Aziz S, Bitrus AA, Zakaria Z, Hassan L: Occurrence and characteristics of extended-spectrum β-lactamase-producing Escherichia coli from dairy cattle, milk, and farm environments in Peninsular Malaysia. Pathogens 2020, 9(12). 113. Lee S, Teng L, DiLorenzo N, Weppelmann TA, Jeong KC: Prevalence and molecular characteristics of extended-spectrum and AmpC β-lactamase producing Escherichia coli in grazing beef cattle. Front Microbiol 2020, 10(3076). 114. Shaheen BW, Oyarzabal OA, Boothe DM: The role of class 1 and 2 integrons in mediating antimicrobial resistance among canine and feline clinical E. coli isolates from the US. Vet Microbiol 2010, 144(3):363-370. 115. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MCJ, Ochman H et al: Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006, 60(5):1136-1151. 116. Hansen KH, Damborg P, Andreasen M, Nielsen SS, Guardabassi L: Carriage and fecal counts of cefotaxime M-producing Escherichia coli in pigs: a longitudinal study. Appl Environ Microbiol 2013, 79(3):794-798. 117. Uyanga F, Ekundayo E, Nwankwo E, Inimfon A: Evaluation of CHROMagar ESBL and double disk synergy test (DDST) for screening of extended spectrum beta-lactamase producing uropathogens in South-South Nigeria. J. adv. Microbiol. 2019:1-11. 118. Hajian-Tilaki K: Sample size estimation in epidemiologic studies. Caspian J Intern Med 2011, 2(4):289-298. 119. Lupo A, Saras E, Madec J-Y, Haenni M: Emergence of blaCTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. J Antimicrob Chemother 2018, 73(4):867-872. 120. Zheng H, Zeng Z, Chen S, Liu Y, Yao Q, Deng Y, Chen X, Lv L, Zhuo C, Chen Z et al: Prevalence and characterisation of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China. Int J Antimicrob Agents 2012, 39(4):305-310. 121. Cunha MPV, Lincopan N, Cerdeira L, Esposito F, Dropa M, Franco LS, Moreno AM, Knöbl T: Coexistence of CTX-M-2, CTX-M-55, CMY-2, FosA3, and QnrB19 in extraintestinal pathogenic from poultry in Brazil. Antimicrob Agents Chemother 2017, 61(4):e02474-02416. 122. Extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae from broiler liver in the center of Algeria, with detection of CTX-M-55 and B2/ST131-CTX-M-15 in Escherichia coli. Microb Drug Resist 2021, 27(2):268-276. 123. Park H, Kim J, Ryu S, Jeon B: Predominance of blaCTX-M-65 and blaCTX-M-55 in extended-spectrum β-lactamase-producing Escherichia coli from raw retail chicken in South Korea. J Glob Antimicrob Resist 2019, 17:216-220. 124. Nguyen VT, Jamrozy D, Matamoros S, Carrique-Mas JJ, Ho HM, Thai QH, Nguyen TNM, Wagenaar JA, Thwaites G, Parkhill J et al: Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis. J Antimicrob Chemother 2019, 74(3):561-570. 125. Madec J-Y, Lazizzera C, Châtre P, Meunier D, Martin S, Lepage G, Ménard M-F, Lebreton P, Rambaud T: Prevalence of fecal carriage of acquired expanded-spectrum cephalosporin resistance in Enterobacteriaceae strains from cattle in France. J Clin Microbiol 2008, 46(4):1566-1567. 126. Delmas J, Robin F, Bittar F, Chanal C, Bonnet R: Unexpected enzyme TEM-126: role of mutation Asp179Glu. Antimicrob Agents Chemother 2005, 49(10):4280-4287. 127. Norizuki C, Kawamura K, Wachino J-i, Suzuki M, Nagano N, Kondo T, Arakawa Y: Detection of Escherichia coli producing CTX-M-1-group extended-spectrum β-lactamases from pigs in Aichi Prefecture, Japan, between 2015 and 2016. Jpn J Infect Dis 2018, 71(1):33-38. 128. Song J, Oh S-S, Kim J, Park S, Shin J: Clinically relevant extended-spectrum β-lactamase–producing Escherichia coli isolates from food animals in South Korea. Front Microbiol 2020, 11(604). 129. Hoang TAV, Nguyen TNH, Ueda S, Le QP, Tran TTN, Nguyen TND, Dao TVK, Tran MT, Le TTT, Le TL et al: Common findings of bla (CTX-M-55)-encoding 104-139 kbp plasmids harbored by extended-spectrum β-lactamase-producing Escherichia coli in pork meat, wholesale market workers, and patients with urinary tract infection in Vietnam. Curr Microbiol 2017, 74(2):203-211. 130. Dohmen W, Van Gompel L, Schmitt H, Liakopoulos A, Heres L, Urlings BA, Mevius D, Bonten MJM, Heederik DJJ: ESBL carriage in pig slaughterhouse workers is associated with occupational exposure. Epidemiol Infect 2017, 145(10):2003-2010. 131. Huang Y-H, Kuan N-L, Yeh K-S: Characteristics of extended-spectrum β-lactamase–producing Escherichia coli from dogs and cats admitted to a veterinary teaching hospital in Taipei, Taiwan from 2014 to 2017. Front Vet Sci 2020, 7(395). 132. Rao L, Lv L, Zeng Z, Chen S, He D, Chen X, Wu C, Wang Y, Yang T, Wu P et al: Increasing prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in food animals and the diversity of CTX-M genotypes during 2003–2012. Vet Microbiol 2014, 172(3):534-541. 133. Patil S, Chen X, Lian M, Wen F: Phenotypic and genotypic characterization of multi-drug-resistant Escherichia coli isolates harboring bla(CTX-M) group extended-spectrum β-lactamases recovered from pediatric patients in Shenzhen, southern China. Infect Drug Resist 2019, 12:1325-1332. 134. Giamarellou H: Multidrug resistance in Gram-negative bacteria that produce extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect 2005, 11(s4):1-16. 135. Pana ZD, Zaoutis T: Treatment of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBLs) infections: what have we learned until now? F1000Res 2018, 7:F1000 Faculty Rev-1347. 136. Bonardi S, Pitino R: Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital J Food Saf 2019, 8(2):7956-7956. 137. Ronco T, Stegger M, Olsen RH, Sekse C, Nordstoga AB, Pohjanvirta T, Lilje B, Lyhs U, Andersen PS, Pedersen K: Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production. BMC Genomics 2017, 18(1):13. 138. Du P, Zhang P, Wang J, Li R, Fanning S, Bai L: Molecular characterization of two novel NDM-1-producing atypical enteroaggregative Escherichia coli isolates from patients. Plasmid 2021, 115:102568. 139. Tewari R, Mitra S, Ganaie F, Das S, Chakraborty A, Venugopal N, Shome R, Rahman H, Shome BR: Dissemination and characterisation of Escherichia coli producing extended-spectrum β-lactamases, AmpC β-lactamases and metallo-β-lactamases from livestock and poultry in Northeast India: A molecular surveillance approach. J Glob Antimicrob Resist 2019, 17:209-215. 140. Hayashi W, Ohsaki Y, Taniguchi Y, Koide S, Kawamura K, Suzuki M, Kimura K, Wachino J-i, Nagano Y, Arakawa Y et al: High prevalence of blaCTX-M-14 among genetically diverse Escherichia coli recovered from retail raw chicken meat portions in Japan. Int J Food Microbiol 2018, 284:98-104. 141. Zurfluh K, Nüesch-Inderbinen M, Klumpp J, Poirel L, Nordmann P, Stephan R: Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and food. Antimicrob Resist Infect Control 2017, 6(1):91. 142. Grönthal T, Österblad M, Eklund M, Jalava J, Nykäsenoja S, Pekkanen K, Rantala M: Sharing more than friendship – transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Eurosurveillance 2018, 23(27):1700497. 143. Hammad AM, Hoffmann M, Gonzalez-Escalona N, Abbas NH, Yao K, Koenig S, Allué-Guardia A, Eppinger M: Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. Infect Genet Evol 2019, 73:126-131. 144. Zhao S-Y, Wang Y-C, Xiao S-Z, Jiang X-F, Guo X-K, Ni Y-X, Han L-Z: Drug susceptibility and molecular epidemiology of Escherichia coli in bloodstream infections in Shanghai, China, 2011–2013. Infect Dis 2015, 47(5):310-318. 145. Wang S, Zhao SY, Xiao SZ, Gu FF, Liu QZ, Tang J, Guo XK, Ni YX, Han LZ: Antimicrobial resistance and molecular epidemiology of Escherichia coli causing bloodstream infections in three hospitals in Shanghai, China. PLoS One 2016, 11(1):e0147740. 146. Li Y, Ma X, Li C, Dai X, Zhang L: Occurrence and genomic characterization of ESBL-producing Escherichia coli ST29 strains from swine with abundant virulence genes. Microb Pathog 2020, 148:104483. 147. Zweifel C, Cernela N, Stephan R: Detection of the emerging Shiga toxin-producing Escherichia coli O26:H11/H- sequence type 29 (ST29) clone in human patients and healthy cattle in Switzerland. Appl Environ Microbiol 2013, 79(17):5411-5413. 148. Chattaway MA, Jenkins C, Ciesielczuk H, Day M, DoNascimento V, Day M, Rodríguez I, van Essen-Zandbergen A, Schink A-K, Wu G et al: Evidence of evolving extraintestinal enteroaggregative Escherichia coli ST38 clone. Emerging Infect Dis 2014, 20(11):1935-1937. 149. Kuo S-C, Huang W-C, Wang H-Y, Shiau Y-R, Cheng M-F, Lauderdale T-L: Colistin resistance gene mcr-1 in Escherichia coli isolates from humans and retail meats, Taiwan. Antimicrob Agents Chemother 2016, 71(8):2327-2329. 150. Aeksiri N, Toanan W, Sawikan S, Suwannarit R, Pungpomin P, Khieokhajonkhet A, Niumsup PR: First detection and genomic insight into mcr-1 encoding plasmid-mediated colistin-resistance gene in Escherichia coli ST101 isolated from the migratory bird species hirundo rustica in Thailand. Microb Drug Resist 2019, 25(10):1437-1442. 151. Freitag C, Michael GB, Kadlec K, Hassel M, Schwarz S: Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet Microbiol 2017, 200:151-156."……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80278 | - |
| dc.description.abstract | "超廣譜乙內醯胺酶 (extend-spectrum β-lactamase, ESBL) 為一種能夠破壞乙內醯胺類抗生素的酵素,包含第三代頭孢菌素,從而使細菌產生抗藥性。大腸桿菌為常見的共生菌,廣泛存在於動物腸道中,並能透過污染食物鏈的方式影響人體健康。因此,帶有ESBL的大腸桿菌 (ESBL-producing E. coli) 為公共健康的隱患之一。本研究旨在調查2020年間ESBL-producing E. coli在台灣健康產食動物中的盛行率與特性分析。總計共分析490株大腸桿菌,其ESBL-producing E. coli的盛行率在雞、豬及牛分別為10.9% (17/156)、4.27% (7/164) 及8.82% (15/170)。總體盛行率為7.96% (39/490)。ESBL基因型檢測結果顯示,在雞隻檢體中,檢測到CTX-M-1group與TEM group。而豬隻檢體則有CTX-M-1group、CTX-M-2 group、CTX-M-9 group與TEM group。牛隻除了沒有檢測到CTX-M-2 group 以外,其餘的基因型與豬隻檢體相同。綜合三個物種來說,檢出率最高的基因型為CTX-M-1 group (32/46, 69.6%),而CTX-M-8、CTX-M-25與SHV基因型則均未檢出。針對常見的13種抗生素進行藥物敏感性試驗,包括amoxicillin/clavulanic acid、ampicillin、cephalothin、ceftiofur、nalidixic acid、ciprofloxacin、enrofloxacin、tetracycline、doxycycline、amikacin、streptomycin、gentamicin、sulfamethoxazole/trimethoprim。結果顯示所有的ESBL-producing E. coli都具有多重抗藥性,除了對乙內醯胺類抗生素具有高比例的抗藥性外,對四環黴素、磺胺劑與鏈黴素也同樣具有高比例的抗藥性。這些細菌對於amoxicillin/clavulanic acid、氨基配糖體類 (鏈黴素除外) 與奎諾酮類抗生素,則呈現較高的感受性。另外,接合試驗結果顯示,多數菌株具有水平轉移ESBL基因的能力。在牛隻檢體中100% 均可轉移,而在雞隻與豬隻檢體中,則分別為94.1% 與54.1%。多重序列分型法結果顯示ESBL-producing E. coli的分型具有高度多樣性,共分離出28種不同的序列分型。最常見的為ST162與ST1249,分別各有4株。依照物種進行菌株的親緣樹分析,發現物種內的菌株間無緊密的親緣關係,因此沒有特定的演化趨勢可循。本研究提供了健康產食動物中ESBL-producing E. coli的盛行率與特性分析,可做為流行病學研究或抗藥性監測的初步參考。ESBL-producing microorganism的檢測應持續進行,以便擬定合適的抗生素使用策略並期許能減緩抗藥性細菌的浮現。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:03:44Z (GMT). No. of bitstreams: 1 U0001-3006202119211400.pdf: 3308002 bytes, checksum: 47ad80a3bf47ab78d83248bb81f38d2e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "中文摘要 i Abstract iii 目錄 v 第一章 文獻探討 1 第一節 抗生素的使用與抗藥性 1 2-1-1 抗生素簡史 1 2-1-2 抗生素在產食動物中的使用 2 2-1-3 抗生素抗藥性的危害 3 2-1-4 抗生素抗藥性的預防措施 5 第二節 β-lactam類抗生素(乙內醯胺類抗生素) 10 第三節 超廣譜乙內醯胺酶 (Extend-Spectrum-β-lactamase) 12 2-3-1 β-lactamase分類 13 2-3-2 ESBLs 基因型分類 16 第四節 大腸桿菌 17 2-4-1 大腸桿菌型態與特徵 17 2-4-2 致病性大腸桿菌分類 18 2-4-3大腸桿菌抗藥性機制 23 第五節 ESBL-producing microorganism流行現況與趨勢 25 2-5-1 ESBLs在人醫領域之流行情況 25 2-5-2 ESBLs在產食動物領域之流行情況 30 第六節 研究目的 33 第二章 材料與方法 34 第一節 菌株來源 34 第二節 ESBL E. coli初步篩選 34 第三節 ESBL E. coli表現型確認試驗 34 第四節 ESBL菌株DNA樣本萃取 35 第五節 β-lactamases基因型檢測及定序分析 36 第六節 multilocus sequence typing (MLST) 分析及親緣樹建構 37 第七節 藥物敏感性試驗 (紙錠擴散法) 38 第八節 接合作用 (conjugation) 試驗 38 第三章 研究結果 40 第一節 各物種ESBL-producing E. coli盛行率 40 第二節 β-lactamase基因型檢測結果 40 第三節 抗微生物藥物敏感性試驗結果 41 第四節 接合試驗結果 42 第五節 MLST分析結果 43 第四章 討論 44 第一節 ESBL-producing E. coli盛行率分析 44 第二節 ESBL基因型分析 47 第三節 藥物敏感性試驗分析 49 第四節 接合試驗分析 51 第五節 MLST親緣樹分析 51 第五章 參考文獻 55 表次 71 Table1. The primers used in this study. 71 Table 2. The prevalence of the ESBL-producing E. coli in chicken, pigs, and cattle. 72 Table 3. The ESBL genes profiles and the sequence types from the 17 chicken ESBL-producing E. coli. 73 Table 4. The ESBL genes profiles and the sequence types from the 7 pigs ESBL-producing E. coli. 74 Table 5. The ESBL genes profiles and the sequence types from the 15 cattle ESBL-producing E. coli. 75 Table 6. The conjugation test result. 76 圖次 78 Figure1. Minimum spanning tree of ESBL-producing E. coli from chicken. 78 Figure2. Minimum spanning tree of ESBL-producing E. coli from pigs. 79 Figure 3. Minimum spanning tree of ESBL-producing E. coli from cattle 80 Figure 4. The antibiotic susceptibility profile of ESBL-producing E. coli from chicken isolates. 81 Figure 5. The antibiotic susceptibility profile of ESBL-producing E. coli from pigs.. 82 Figure 6. The antibiotic susceptibility profile of ESBL-producing E. coli from cattle. 83 附錄 84 Appendix 1. The geographical distribution of the slaughterhouses participating in the present study 84 Appendix 2. The MLST sequencing results of the ESBL-producing E. coli from the chicken samples. 85 Appendix 3. The MLST sequencing results of the ESBL-producing E. coli from the pigs samples. 86 Appendix 4. The MLST sequencing results of the ESBL-producing E. coli from the cattle samples. 87" | |
| dc.language.iso | zh-TW | |
| dc.subject | 接合試驗 | zh_TW |
| dc.subject | 超廣譜乙內醯胺酶 | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | 多重抗藥性 | zh_TW |
| dc.subject | 多重序列分型法 | zh_TW |
| dc.subject | 產食動物 | zh_TW |
| dc.subject | multidrug resistance | en |
| dc.subject | multilocus sequence typing | en |
| dc.subject | conjugation | en |
| dc.subject | food animals | en |
| dc.subject | extend-spectrum β-lactamases | en |
| dc.subject | Escherichia. coli | en |
| dc.title | 2020臺灣產食動物中所分離帶有超廣譜乙內醯胺酶大腸桿菌之盛行率及特性分析 | zh_TW |
| dc.title | The Prevalence and the Characteristics of the Extended-Spectrum β-Lactamases-Producing Escherichia coli from Food Animals in Taiwan in 2020 | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張惠雯(Hsin-Tsai Liu),陳正文(Chih-Yang Tseng) | |
| dc.subject.keyword | 超廣譜乙內醯胺酶,大腸桿菌,多重抗藥性,產食動物,接合試驗,多重序列分型法, | zh_TW |
| dc.subject.keyword | extend-spectrum β-lactamases,Escherichia. coli,multidrug resistance,food animals,conjugation,multilocus sequence typing, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202101218 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-02 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-07-01 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3006202119211400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
