請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80265完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
| dc.contributor.author | Szu-Yung Huang | en |
| dc.contributor.author | 黃思詠 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:03:30Z | - |
| dc.date.available | 2021-08-04 | |
| dc.date.available | 2022-11-24T03:03:30Z | - |
| dc.date.copyright | 2021-08-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-10 | |
| dc.identifier.citation | 1. Denkov, N.; Velev, O.; Kralchevski, P.; Ivanov, I.; Yoshimura, H.; Nagayama, K., Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 1992, 8 (12), 3183-3190. 2. Ormonde, A. D.; Hicks, E. C. M.; Castillo, J.; Van Duyne, R. P., Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV−Visible Extinction Spectroscopy. Langmuir 2004, 20 (16), 6927-6931. 3. Colson, P.; Henrist, C.; Cloots, R., Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J. Nanomaterials 2013, 2013, Article 21. 4. Choi, Y.; Hong, S.; Lee, L. P., Shadow Overlap Ion-beam Lithography for Nanoarchitectures. Nano Letters 2009, 9 (11), 3726-3731. 5. Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P., Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. The Journal of Physical Chemistry B 2004, 108 (22), 6961-6968. 6. Wu, W.; Katsnelson, A.; Memis, O. G.; Mohseni, H., A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology 2007, 18 (48), 485302. 7. Chang, Y.; Chung, H.-C.; Lu, S.-C.; Guo, T.-F., A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor. Nanotechnology 2013, 24 9, 095302. 8. Chang, Y.-C.; Lu, S.-C.; Chung, H.-C.; Wang, S.-M.; Tsai, T.-D.; Guo, T.-F., High-Throughput Nanofabrication of Infra-red and Chiral Metamaterials using Nanospherical-Lens Lithography. Scientific Reports 2013, 3 (1), 3339. 9. Bohm, D.; Pines, D., A Collective Description of Electron Interactions. I. Magnetic Interactions. Physical Review 1951, 82 (5), 625-634. 10. Pines, D.; Bohm, D., A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions. Physical Review 1952, 85 (2), 338-353. 11. Bohm, D.; Pines, D., A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas. Physical Review 1953, 92 (3), 609-625. 12. 邱國斌、蔡定平, 金屬表面電漿簡介. 物理雙月刊 2006, 28 (2), 472-482. 13. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677. 14. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P., Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. The Journal of Physical Chemistry B 2000, 104 (45), 10549-10556. 15. Ashino, M.; Ohtsu, M., Fabrication and evaluation of a localized plasmon resonance probe for near-field optical microscopy/spectroscopy. Applied Physics Letters 1998, 72 (11), 1299-1301. 16. Matsubara, K.; Kawata, S.; Minami, S., Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 1988, 27 (6), 1160-1163. 17. Cheng, B. H.; Ho, Y. Z.; Lan, Y.; Tsai, D. P., Optical Hybrid-Superlens Hyperlens for Superresolution Imaging. IEEE Journal of Selected Topics in Quantum Electronics 2013, 19 (3), 4601305-4601305. 18. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166. 19. Pelton, M.; Aizpurua, J.; Bryant, G., Metal-nanoparticle plasmonics. Laser Photonics Reviews 2008, 2 (3), 136-159. 20. Fano, U., Effects of Configuration Interaction on Intensities and Phase Shifts. Physical Review 1961, 124 (6), 1866-1878. 21. Miroshnichenko, A. E.; Flach, S.; Kivshar, Y. S., Fano resonances in nanoscale structures. Reviews of Modern Physics 2010, 82 (3), 2257-2298. 22. Tribelsky, M. I.; Flach, S.; Miroshnichenko, A. E.; Gorbach, A. V.; Kivshar, Y. S., Light Scattering by a Finite Obstacle and Fano Resonances. Physical Review Letters 2008, 100 (4), 043903. 23. Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I., Plasmon Hybridization in Nanoparticle Dimers. Nano Letters 2004, 4 (5), 899-903. 24. Brandl, D. W.; Mirin, N. A.; Nordlander, P., Plasmon Modes of Nanosphere Trimers and Quadrumers. The Journal of Physical Chemistry B 2006, 110 (25), 12302-12310. 25. Mirin, N. A.; Bao, K.; Nordlander, P., Fano Resonances in Plasmonic Nanoparticle Aggregates. The Journal of Physical Chemistry A 2009, 113 (16), 4028-4034. 26. Fan, J. A.; Wu, C.; Bao, K.; Bao, J.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Nordlander, P.; Shvets, G.; Capasso, F., Self-Assembled Plasmonic Nanoparticle Clusters. Science 2010, 328 (5982), 1135. 27. Hentschel, M.; Dregely, D.; Vogelgesang, R.; Giessen, H.; Liu, N., Plasmonic Oligomers: The Role of Individual Particles in Collective Behavior. ACS nano 2011, 5, 2042-50. 28. Rahmani, M.; Lukiyanchuk, B.; Nguyen, T. T. V.; Tahmasebi, T.; Lin, Y.; Liew, T. Y. F.; Hong, M. H., Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization. Opt. Mater. Express 2011, 1 (8), 1409-1415. 29. Hentschel, M.; Saliba, M.; Vogelgesang, R.; Giessen, H.; Alivisatos, A. P.; Liu, N., Transition from Isolated to Collective Modes in Plasmonic Oligomers. Nano Letters 2010, 10 (7), 2721-2726. 30. Ye, J.; Wen, F.; Sobhani, H.; Lassiter, J. B.; Van Dorpe, P.; Nordlander, P.; Halas, N. J., Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS. Nano Letters 2012, 12 (3), 1660-1667. 31. Wen, F.; Ye, J.; Liu, N.; Van Dorpe, P.; Nordlander, P.; Halas, N. J., Plasmon Transmutation: Inducing New Modes in Nanoclusters by Adding Dielectric Nanoparticles. Nano Letters 2012, 12 (9), 5020-5026. 32. King, N. S.; Liu, L.; Yang, X.; Cerjan, B.; Everitt, H. O.; Nordlander, P.; Halas, N. J., Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. ACS Nano 2015, 9 (11), 10628-10636. 33. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bulletin 2005, 30 (5), 368-375. 34. Chen, C. K.; Chang, M. H.; Wu, H. T.; Lee, Y. C.; Yen, T. J., Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array. Biosens Bioelectron 2014, 60, 343-50. 35. Ahmadian, D.; Ghobadi, C.; Nourinia, J., Ultra-compact two-dimensional plasmonic nano-ring antenna array for sensing applications. Optical and Quantum Electronics 2013, 46 (9), 1097-1106. 36. Turkmen, M.; Aksu, S.; Çetin, A. E.; Yanik, A. A.; Altug, H., Multi-resonant metamaterials based on UT-shaped nano-aperture antennas. Opt Express 2011, 19 (8), 7921-8. 37. Suh, J. Y.; Odom, T. W., Nonlinear properties of nanoscale antennas. Nano Today 2013, 8 (5), 469-479. 38. Suh, J. Y.; Huntington, M. D.; Kim, C. H.; Zhou, W.; Wasielewski, M. R.; Odom, T. W., Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas. Nano Letters 2012, 12 (1), 269-274. 39. Tsai, W. Y.; Chung, T.; Hsiao, H.-H.; Chen, J.-W.; Lin, R.; Wu, P.; Sun, G.; Wang, C.-M.; Misawa, H.; Tsai, D. P., Second Harmonic Light Manipulation with Vertical Split Ring Resonators. Advanced Materials 2018, 31. 40. Wu, P. C.; Hsu, W.-L.; Chen, W. T.; Huang, Y.-W.; Liao, C. Y.; Liu, A. Q.; Zheludev, N. I.; Sun, G.; Tsai, D. P., Plasmon coupling in vertical split-ring resonator metamolecules. Scientific Reports 2015, 5 (1), 9726. 41. Linden, S.; Enkrich, C.; Wegener, M.; Zhou, J.; Koschny, T.; Soukoulis, C. M., Magnetic response of metamaterials at 100 terahertz. Science 2004, 306 (5700), 1351-3. 42. Enkrich, C.; Wegener, M.; Linden, S.; Burger, S.; Zschiedrich, L.; Schmidt, F.; Zhou, J. F.; Koschny, T.; Soukoulis, C. M., Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters 2005, 95 (20), 203901. 43. Yen, T. J.; Padilla, W. J.; Fang, N.; Vier, D. C.; Smith, D. R.; Pendry, J. B.; Basov, D. N.; Zhang, X., Terahertz Magnetic Response from Artificial Materials. Science 2004, 303 (5663), 1494. 44. 杜平安, 甘., 于亞婷, 有限元法-原理、建模及應用. 國防工業出版社, 1-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80265 | - |
| dc.description.abstract | 在本篇論文中,我們將以低成本的奈米製程技術來製作覆蓋大面積的複雜奈米結構。首先,我們透過奈米球鏡微影術(NLL)於光阻層上製作出週期性的奈米孔洞陣列,再以孔洞遮罩微影術的概念,將此層作為之後蒸鍍金屬的遮罩。藉由我們提出的幾項關鍵製程技術,例如水平與垂直旋轉控制的斜向蒸鍍金屬、光阻厚度的控制等等,以更精準的旋轉角度與傾角的控制製作出精細的二維和三維奈米結構。最後,我們成功做出單體間隔小至20奈米的多聚體結構、垂直型態的二聚體結構以及倒立U型環。我們還進行了各種光學特性和理論的模擬以了解製作出的奈米結構特性,並和實驗量測結果相互驗證。我們相信這些改進的奈米製程技術在未來可以作為一種更有效的方式應用在超穎材料和其他可能的應用中。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:03:30Z (GMT). No. of bitstreams: 1 U0001-0307202123593500.pdf: 22354551 bytes, checksum: 7b44aa41f8c085b3db2e207291b4569c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "目錄 口試委員會審定書 # 誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII CHAPTER 1 序論 1 1.1 研究動機與本文內容 1 1.2 奈米球排列與製程應用 2 1.2.1 奈米球自組裝排列現象 2 1.2.2 奈米球自組裝排列裝置 3 1.2.3 奈米球鏡微影術(Nanospherical-Lens Lithography, NLL) 4 1.3 奈米結構的表面電漿共振 8 1.3.1 表面電漿共振 (Surface Plasmon Resonance, SPR) 8 1.3.2 侷域性表面電漿共振 (Localized Surface Plasmon Resonance, LSPR) 9 CHAPTER 2 研究背景與實驗儀器 12 2.1 法諾共振 (Fano Resonance) 12 2.2 奈米天線與U型結構 16 2.3 製程儀器 19 2.3.1 奈米球排列裝置 19 2.3.2 汞氙燈曝光系統 20 2.3.3 手持式紫外燈 20 2.3.4 高真空薄膜鍍膜系統 21 2.3.5 電漿蝕刻系統 22 2.4 量測與分析儀器 23 2.4.1 場發射掃描式電子顯微鏡 23 2.4.2 分光光譜儀 24 CHAPTER 3 模擬方法與實驗架構 26 3.1 模擬方法-有限元素分析法(FEM) 26 3.1.1 有限元素分析法 26 3.1.2 有限元素分析法的運算過程 26 3.1.3 有限元素分析法軟體COMSOL 27 3.2 模擬模型建構 28 3.3 金屬材料-杜魯德模型(Drude Model) 29 3.4 基板製作-奈米孔洞陣列 30 3.5 奈米陣列結構的設計與製作 32 3.5.1 水平控制旋轉載台 33 3.5.2 氧化物的縮洞 34 3.5.3 垂直控制旋轉載台 35 CHAPTER 4 結構製作結果與分析 37 4.1 水平旋轉蒸鍍奈米結構 37 4.1.1 多聚體(Oligomers) 37 4.1.2 七聚體(Heptamer)與六聚體(Hexamer)的模擬結果 38 4.1.3 七聚體(Heptamer)的法諾共振 41 4.1.4 七聚體結構與其應用 44 4.2 垂直型態奈米結構 45 4.2.1 垂直對準(Vertically aligned)的金屬二聚體 45 4.2.2 垂直倒立U型環 49 4.3 其他二氧化矽延伸結構 54 CHAPTER 5 結論與未來展望 58 5.1 結論 58 5.2 未來展望 59 REFERENCE 60 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米球鏡微影術 | zh_TW |
| dc.subject | 多聚體 | zh_TW |
| dc.subject | 法諾共振現象 | zh_TW |
| dc.subject | 奈米光學天線 | zh_TW |
| dc.subject | U 型環 | zh_TW |
| dc.subject | Nanoantenna | en |
| dc.subject | Oligomers | en |
| dc.subject | Nanospherical-lens lithography | en |
| dc.subject | U-ring | en |
| dc.subject | Fano resonance | en |
| dc.title | 利用奈米球鏡微影術製作垂直型態奈米光學天線之研究 | zh_TW |
| dc.title | Fabrication of Vertically Aligned Optical Nanoantenna using Nanospherical-Lens Lithography | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張允崇(Yun-Chorng Chang) | |
| dc.contributor.oralexamcommittee | 蕭惠心(Hsin-Tsai Liu),張世慧(Chih-Yang Tseng) | |
| dc.subject.keyword | 多聚體,法諾共振現象,奈米光學天線,U 型環,奈米球鏡微影術, | zh_TW |
| dc.subject.keyword | Oligomers,Fano resonance,Nanoantenna,U-ring,Nanospherical-lens lithography, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202101257 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0307202123593500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 21.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
