請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80178完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 澤大衛(David Zelený) | |
| dc.contributor.author | Po-Yu Lin | en |
| dc.contributor.author | 林柏佑 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:30:21Z | - |
| dc.date.available | 2021-07-08 | |
| dc.date.available | 2022-11-23T09:30:21Z | - |
| dc.date.copyright | 2021-07-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-24 | |
| dc.identifier.citation | Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M., and Kadmon, R. 2012. Area–heterogeneity tradeoff and the diversity of ecological communities. Proceedings of the National Academy of Sciences, 109, 17495–17500. Bachman, S., Baker, W. J., Brummitt, N., Dransfield, J., and Moat, J. 2004. Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography, 27, 299–310. Barlow, J., Lennox, G. D., Ferreira, J., Berenguer, E., Lees, A. C., Mac Nally, R., ... and Gardner, T. A. 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535, 144–147. Chao, A., and Jost, L. 2012. Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, 2533–2547. Chao, A., Gotelli, N. J., Hsieh, T.-C., Sander, E. L., Ma, K.-H., Colwell, R. K., and Ellison, A. M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67. Chao, A., Kubota, Y., Zelený, D., Chiu, C.-H., Li, C.-F., Kusumoto, B., Yasuhara, M., Thorn, S., Wei, C. L., Costello, M. J. and Colwell, R. K., 2020. Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 35, 292–314. Chase, J. M., and Leibold, M. A. 2002. Spatial scale dictates the productivity–biodiversity relationship. Nature, 416, 427–430. Chiou, C.-R., Hsieh, C.-F., Wang, J.-C., Chen, M.-Y., Liu, H.-Y., Yeh, C.-L., Yang, S.-Z., Chen, T.-Y., Hsia, Y.-J. and Song, M. G.-Z. 2009. The first national vegetation inventory in Taiwan. Taiwan Journal of Forest Science 24, 295–302. Chiu, C.-A., Lin, P.-H., and Tsai, C.-Y. 2014. Spatio-temporal variation and monsoon effect on the temperature lapse rate of a subtropical island. Terrestrial, Atmospheric Oceanic Sciences, 25, 203–217 Colwell, R. K., and Hurtt, G. C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570–595. Colwell, R. K., and Lees, D. C. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology Evolution, 15, 70–76. Colwell, R. K., Mao, C.-X., and Chang, J. 2004a. Interpolating, extrapolating, and comparing incidence‐based species accumulation curves. Ecology, 85, 2717–2727. Colwell, R. K., Rahbek, C., and Gotelli, N. J. 2004b. The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163, E1–E23. Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S.-Y., Mao, C.-X., Chazdon, R. L., and Longino, J. T. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5, 3–21. Curtis, J.T. 1959. The Vegetation of Wisconsin: an Ordination of Plant Communities. University of Wisconsin Press, Madison, WI, US. Denslow, J. S. 1980. Gap partitioning among tropical rainforest trees. Biotropica, 12, 47–55. Fick, S. E., and Hijmans, R. J. 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. Gotelli, N. J., and Colwell, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology letters, 4, 379–391. Grytnes, J. A. 2003. Species‐richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography, 26, 291–300. Guo, Q., Kelt, D. A., Sun, Z., Liu, H., Hu, L., Ren, H., and Wen, J. 2013. Global variation in elevational diversity patterns. Scientific Reports, 3, 1–7. Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J. F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O'Brien, E. M. and Porter, E. E., 2003. Energy, water, and broad‐scale geographic patterns of species richness. Ecology, 84, 3105–3117. Hsieh, C.-F. 2002. Composition, endemism and phytogeographical affinities of the Taiwan flora. Taiwania, 47, 298–310. Hsieh, T.-C., Ma, K.-H., and Chao, A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456. Huang, T.-C. 2000. Flora of Taiwan, second edition. Taipei, Taiwan: Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan. Ibanez, T., Grytnes, J. A., and Birnbaum, P. 2016. Rarefaction and elevational richness pattern: a case study in a high tropical island (New Caledonia, SW Pacific). Journal of Vegetation Science, 27, 441–451. Kadmon, R., and Allouche, O. 2007. Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: a unification of island biogeography and niche theory. The American Naturalist, 170, 443–454. Kessler, M. 2001. Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodiversity Conservation, 10, 1897–1921. Körner, C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology Evolution, 15, 513–514. Körner, C. 2007. The use of ‘altitude’ in ecological research. Trends in ecology evolution, 22, 569–574. Lai, Y., and Feng, J. 2019. Elevational patterns of the percentages of plant genera with tropical and temperate affinities in Nepal. PeerJ, 7, e6116. Levanoni, O., Levin, N., Pe'er, G., Turbé, A., and Kark, S. 2011. Can we predict butterfly diversity along an elevation gradient from space? Ecography, 34, 372–383. Li, C.-F., Chytrý, M., Zelený, D., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L. and Wang, J.-C., 2013. Classification of Taiwan forest vegetation. Applied Vegetation Science, 16, 698–719. Lomolino, M. V. 2001. Elevation gradients of species‐density: historical and prospective views. Global Ecology and Biogeography, 10, 3–13. McCain, C. M., and Grytnes, J. A. 2010. Elevational Gradients in Species Richness. Encyclopedia of Life Sciences (ELS). Mittelbach, G. G., and McGill, B. J. 2019. Community Ecology, second edition. Oxford University Press. Ohlemüller, R., and Wilson, J. B. 2000. Vascular plant species richness along latitudinal and altitudinal gradients: a contribution from New Zealand temperate rainforests. Ecology Letters, 3, 262–266. O'Brien, E. M. 1993. Climatic gradients in woody plant species richness: towards an explanation based on an analysis of southern Africa's woody flora. Journal of Biogeography, 181–198. Pardo, I., Pata, M. P., Gómez, D., and García, M. B. 2013. A novel method to handle the effect of uneven sampling effort in biodiversity databases. PloS One, 8, e52786. Pärtel, M., Laanisto, L., and Zobel, M. 2007. Contrasting plant productivity–diversity relationships across latitude: the role of evolutionary history. Ecology, 88, 1091–1097. Pärtel, M., and Zobel, M. 2007. Dispersal limitation may result in the unimodal productivity‐diversity relationship: a new explanation for a general pattern. Journal of Ecology, 95, 90–94. Peters, M. K., Hemp, A., Appelhans, T., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F. and Haas, M., 2016. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 7, 1–11. Quintero, I., and Jetz, W. 2018. Global elevational diversity and diversification of birds. Nature, 555, 246–250. Rahbek, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography, 200–205. Rahbek, C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149, 875–902. Rahbek, C. 2005. The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology letters, 8, 224–239. Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B. O., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J. and Fjeldså, J. 2019. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365, 1108–1113. Ramı́rez-Marcial, N., González-Espinosa, M., and Williams-Linera, G. 2001. Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. Forest ecology and management, 154, 311–326. Riley, S. J., DeGloria, S. D., and Elliot, R. 1999. Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5, 23–27. Hijmans, R. J. 2019. geosphere: Spherical Trigonometry. R package version 1.5-10. https://CRAN.R-project.org/package=geosphere Rosenzweig, M. L. 1968. Net primary productivity of terrestrial communities: prediction from climatological data. The American Naturalist, 102, 67–74. Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press. Rowe, R. J. 2009. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography, 32, 411–422. Scanes, C. G. 2018. Human activity and habitat loss: destruction, fragmentation, and degradation. Animals and human society, 451–482. Stein, A., Gerstner, K., and Kreft, H. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866–880. Su, H. J. 1998. An ecological evaluation of the threatened seed plants of Taiwan. Rare, Threatened, and Endangered Floras of Asia and the Pacific Rim. 1996 (eds. C.-I. Peng and PP Lowry, II), Institute of Botany, Academia Sinica Monograph Series, 16, 47–64. Sun, L., Luo, J., Qian, L., Deng, T., and Sun, H. 2020. The relationship between elevation and seed-plant species richness in the Mt. Namjagbarwa region (Eastern Himalayas) and its underlying determinants. Global Ecology and Conservation, 23, e01053. Tamme, R., Hiiesalu, I., Laanisto, L., Szava‐Kovats, R., and Pärtel, M. 2010. Environmental heterogeneity, species diversity and co‐existence at different spatial scales. Journal of Vegetation Science, 21, 796–801. Tang, L., Li, T., Li, D., and Meng, X. 2014. Elevational patterns of plant richness in the Taibai Mountain, China. The Scientific World Journal, 2014. Turc, L. 1954. Calculation of the water balance: function of evaluation according to precipitation and temperature (in French: Calcul du bilan de l’eau: évaluation en fonction des précipitations et des temperatures). IASH Rome Symposium 111 Publication 38, 188–202. Zhang, W., Lu, Q., Liang, J., and Shen, Z. 2010. Altitudinal gradients of species richness and range size of vascular plants in Taiwan: a test of Rapoport's rule. Biodiversity Science, 18, 312–322. Vetaas, O. R., and Grytnes, J. A. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291–301. 邱立文,黃群修,吳俊奇,謝小恬. 2015. 第 4 次全國森林資源調查成果概要. 臺灣林業期刊, 41, 3–13. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80178 | - |
| dc.description.abstract | 在不同物種分類群中,數種物種豐富度與海拔梯度關係模式被提出,其中駝峰狀物種豐富度沿海拔梯度模式最為常見,此外多種解釋此駝峰狀模式的機制也被提出,如中間區域效應 (mid-domain effect)、生產力效應 (effect of productivity)、陸地面積效應 (effect of land area)、環境異質性效應 (effect of environmental heterogeneity) 及過渡帶效應 (ecotone effect)。然而,當沿環境梯度描述物種豐富度模式時,梯度間不同區域的不均勻採樣可能會誤導所描述之模式。本研究中,我們使用臺灣國家植被數據庫中的植被樣區來描述臺灣木本植物物種豐富度沿海拔梯度變化的模式,並比較以樣區數量或取樣完整性為基準的物種豐富度標準化之差異,最後我們檢定不同機制用以解釋物種豐富度沿海拔變化之關係。 首先,將臺灣自海平面至最高峰劃分為十七個海拔帶,對每個海拔帶的物種豐富度以樣區數量或取樣完整性為基準進行標準化,接著描述標準化後物種豐富度沿海拔梯度變化模式。以簡單線性回歸檢定不同機制對物種豐富度沿海拔梯度變化模式的解釋量,其中,中間區域效應以假設模型 (null model) 表示,陸地面積效應以面積的平方根表示,環境異質性效應以地形崎嶇指數表示,生產力效應以潛在蒸發散量表示,並藉由不同變數的乘積檢定不同效應間的交互作用對此模式的解釋量。而過渡帶效應,則以每個海拔帶內物種分佈的平均海拔標準差量化。 結果發現,物種豐富度沿海拔梯度變化模式呈駝峰狀,物種豐富度最大值落在中低海拔 (約1000公尺),而模式形狀並未因標準化基準不同而有所差異。陸地面積效應和環境異質性效應的交互作用有最大的解釋量,而中間區域效應本身並不顯著地解釋物種豐富度沿海拔梯度變化模式,但當與陸地面積效應或生產力效應交互作用時,中間區域效應則開始表現其顯著性。而過渡帶效應,標準差沿海拔梯度變化模式有兩個峰值,這兩個峰值都位於兩個不同森林植被的邊界上,提供了過渡帶效應存在的證據。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:30:21Z (GMT). No. of bitstreams: 1 U0001-2406202116364400.pdf: 5607353 bytes, checksum: 3d1e7d904fe2f2c9ace13073dedba59c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 I Acknowledgement II 中文摘要 III Abstract IV Contents VI List of Figures VII List of Tables VIII Introduction 1 Materials and Methods 4 Study area 4 Vegetation database and plot selection 5 Statistical analysis 6 Mid-domain effect. 7 Effect of productivity. 8 Effect of land area. 9 Effect of environmental heterogeneity. 9 Ecotone effect. 9 Results 11 Discussion 18 Interaction of effects of land area and environmental heterogeneity 19 Mid-domain effect 20 Effect of productivity 21 Methodological issues and data limitations 22 Other possible explanations 24 Conclusions 26 Authors contribution 27 References 28 Appendix 35 Appendix 1: Supplementary results 35 Appendix 2: R code 39 | |
| dc.language.iso | en | |
| dc.subject | 物種豐富度與海拔梯度關係 | zh_TW |
| dc.subject | 標準化 | zh_TW |
| dc.subject | 陸地面積 | zh_TW |
| dc.subject | 過渡帶效應 | zh_TW |
| dc.subject | 環境異質性 | zh_TW |
| dc.subject | 生產力 | zh_TW |
| dc.subject | 中間區域效應 | zh_TW |
| dc.subject | richness-elevation relationship | en |
| dc.subject | ecotone effect | en |
| dc.subject | mid-domain effect | en |
| dc.subject | productivity | en |
| dc.subject | environmental heterogeneity | en |
| dc.subject | land area | en |
| dc.subject | standardization | en |
| dc.title | 臺灣木本植物物種豐富度沿海拔梯度變化—模式與機制 | zh_TW |
| dc.title | Woody species richness along elevation in Taiwan: patterns and mechanisms | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝志豪(Hsin-Tsai Liu),邱春火(Chih-Yang Tseng),楠本 聞太郎 | |
| dc.subject.keyword | 物種豐富度與海拔梯度關係,標準化,陸地面積,環境異質性,生產力,中間區域效應,過渡帶效應, | zh_TW |
| dc.subject.keyword | richness-elevation relationship,standardization,land area,environmental heterogeneity,productivity,mid-domain effect,ecotone effect, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202101126 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-06-25 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2406202116364400.pdf | 5.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
