請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80176完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平(Chang-Ping Yu) | |
| dc.contributor.author | Hung-Yu Wu | en |
| dc.contributor.author | 吳泓宇 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:30:15Z | - |
| dc.date.available | 2021-07-08 | |
| dc.date.available | 2022-11-23T09:30:15Z | - |
| dc.date.copyright | 2021-07-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-29 | |
| dc.identifier.citation | Abdel-Raouf, N., Al-Homaidan, A. A., Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257-275. doi:https://doi.org/10.1016/j.sjbs.2012.04.005 Acién, F. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C., Sepúlveda, C., Masojídek, J. (2017). Photobioreactors for the production of microalgae. In Microalgae-based biofuels and bioproducts (pp. 1-44). Ahmad, A., Yasin, N. M., Derek, C., Lim, J. (2012). Crossflow microfiltration of microalgae biomass for biofuel production. Desalination, 302, 65-70. Almomani, F., Al Ketife, A., Judd, S., Shurair, M., Bhosale, R. R., Znad, H., Tawalbeh, M. (2019). Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Science of The Total Environment, 662, 662-671. doi:https://doi.org/10.1016/j.scitotenv.2019.01.144 Almomani, F., Judd, S., Bhosale, R. R., Shurair, M., Aljaml, K., Khraisheh, M. (2019). Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Safety and Environmental Protection, 124, 240-250. Ansari, F. A., Singh, P., Guldhe, A., Bux, F. (2017). Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Research, 21, 169-177. Babel, S., Takizawa, S. (2010). Microfiltration membrane fouling and cake behavior during algal filtration. Desalination, 261(1-2), 46-51. Banerjee, S., Tiwade, P. B., Sambhav, K., Banerjee, C., Bhaumik, S. K. (2019). Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: Uptake kinetics and adsorption studies. Biochemical Engineering Journal, 149, 107241. Bankston, E., Wang, Q., Higgins, B. T. (2020). Algae support populations of heterotrophic, nitrifying, and phosphate-accumulating bacteria in the treatment of poultry litter anaerobic digestate. Chemical Engineering Journal, 398, 125550. Beaman, D. K., Robertson, E. J., Richmond, G. L. (2012). Ordered polyelectrolyte assembly at the oil–water interface. Proceedings of the National Academy of Sciences, 109(9), 3226-3231. Beardall, J., Raven, J. A. (2016). Carbon acquisition by microalgae. In The physiology of microalgae (pp. 89-99): Springer. Benemann, J. R. (1997). CO2 mitigation with microalgae systems. Energy Conversion and Management, 38, S475-S479. doi:https://doi.org/10.1016/S0196-8904(96)00313-5 Berman, T., Holenberg, M. (2005). Don't fall foul of biofilm through high TEP levels. Filtration separation, 42(4), 30-32. Berman, T., Mizrahi, R., Dosoretz, C. G. (2011). Transparent exopolymer particles (TEP): A critical factor in aquatic biofilm initiation and fouling on filtration membranes. Desalination, 276(1-3), 184-190. Bhave, R., Kuritz, T., Powell, L., Adcock, D. (2012). Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value added co-products. Environmental science technology, 46(10), 5599-5606. Bilad, M. R., Vandamme, D., Foubert, I., Muylaert, K., Vankelecom, I. F. J. (2012). Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technology, 111, 343-352. doi:https://doi.org/10.1016/j.biortech.2012.02.009 Bonnot, C., Proust, H., Pinson, B., Colbalchini, F. P., Lesly‐Veillard, A., Breuninger, H., Champion, C., Hetherington, A. J., Kelly, S., Dolan, L. (2017). Functional PTB phosphate transporters are present in streptophyte algae and early diverging land plants. New Phytologist, 214(3), 1158-1171. Book: General Biology (Boundless). (2021). In. Brown, N., Shilton, A. (2014). Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Reviews in Environmental Science and Bio/Technology, 13(3), 321-328. Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science, 6, 8. Cai, T., Park, S. Y., Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369. Cardoso, L. G., Duarte, J. H., Andrade, B. B., Lemos, P. V. F., Costa, J. A. V., Druzian, J. I., Chinalia, F. A. (2020). Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: High biomass, carotenoid, lipid and carbohydrate production. Aquaculture, 525, 735272. Carlozzi, P. (2008). Closed photobioreactor assessments to grow, intensively, light dependent microorganisms: a twenty-year Italian outdoor investigation. The Open Biotechnology Journal, 2(1). Carmichael, W. W. (1994). The toxins of cyanobacteria. Scientific American, 270(1), 78-86. Carvalho, A. P., Meireles, L. A., Malcata, F. X. (2006). Microalgal reactors: a review of enclosed system designs and performances. Biotechnology progress, 22(6), 1490-1506. Castaing, J.-B., Massé, A., Sechet, V., Sabiri, N.-E., Pontié, M., Haure, J., Jaouen, P. (2011). Immersed hollow fibres microfiltration (MF) for removing undesirable micro-algae and protecting semi-closed aquaculture basins. Desalination, 276(1-3), 386-396. Chandra, R., Rohit, M. V., Swamy, Y. V., Venkata Mohan, S. (2014). Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology, 165, 279-287. doi:https://doi.org/10.1016/j.biortech.2014.02.102 Chang, J. S., Show, P. L., Ling, T. C., Chen, C. Y., Ho, S. H., Tan, C. H., Nagarajan, D., Phong, W. N. (2017). 11 - Photobioreactors. In C. Larroche, M. Á. Sanromán, G. Du, A. Pandey (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 313-352): Elsevier. Cheirsilp, B., Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510-516. Chen, H., Wang, Q. (2020). Microalgae-based nitrogen bioremediation. Algal Research, 46, 101775. Chen, W., Westerhoff, P., Leenheer, J. A., Booksh, K. (2003). Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science technology, 37(24), 5701-5710. Chen, X., Zhou, T., Wang, X., Xu, P., Yang, C., Sun, X., Lu, Q., Wang, S. (2019). Cultivation of Chlorella vulgaris in sludge extract from resorcinol-rich wastewater: the removal and inhibitory effect of sludge toxicity. Journal of Chemical Technology Biotechnology, 94(4), 1240-1248. doi:https://doi.org/10.1002/jctb.5876 Cheng, Y., Lu, Y., Gao, C., Wu, Q. (2009). Alga-Based Biodiesel Production and Optimization Using Sugar Cane as the Feedstock. Energy Fuels, 23(8), 4166-4173. doi:10.1021/ef9003818 Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306. Chiu, S.-Y., Kao, C.-Y., Huang, T.-T., Lin, C.-J., Ong, S.-C., Chen, C.-D., Chang, J.-S., Lin, C.-S. (2011). Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresource Technology, 102(19), 9135-9142. doi:https://doi.org/10.1016/j.biortech.2011.06.091 Chrost, R., Faust, M. (1983). Organic carbon release by phytoplankton: its composition and utilization by bacterioplankton. Journal of Plankton Research, 5(4), 477-493. Clare, K. (1993). Algin. In Industrial gums (pp. 105-143): Elsevier. Collos, Y., Harrison, P. J. (2014). Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine pollution bulletin, 80(1-2), 8-23. da Fontoura, J. T., Rolim, G. S., Farenzena, M., Gutterres, M. (2017). Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp. Process Safety and Environmental Protection, 111, 355-362. Darnall, D. W., Greene, B., Henzl, M. T., Hosea, J. M., McPherson, R. A., Sneddon, J., Alexander, M. D. (1986). Selective recovery of gold and other metal ions from an algal biomass. Environmental Science Technology, 20(2), 206-208. doi:10.1021/es00144a018 Dasgupta, C. N., Jose Gilbert, J., Lindblad, P., Heidorn, T., Borgvang, S. A., Skjanes, K., Das, D. (2010). Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. International Journal of Hydrogen Energy, 35(19), 10218-10238. doi:https://doi.org/10.1016/j.ijhydene.2010.06.029 de Alva, M. S., Pabello, V. M. L., Ledesma, M. T. O., Gómez, M. J. C. (2018). Carbon, nitrogen, and phosphorus removal, and lipid production by three saline microalgae grown in synthetic wastewater irradiated with different photon fluxes. Algal Research, 34, 97-103. De Angelis, L., de Cortalezzi, M. M. F. (2013). Ceramic membrane filtration of organic compounds: Effect of concentration, pH, and mixtures interactions on fouling. Separation and Purification Technology, 118, 762-775. de Winter, L. (2015). Circadian rhythms in microalgae production. Delgadillo-Mirquez, L., Lopes, F., Taidi, B., Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18-26. Diaz, J. M., Björkman, K. M., Haley, S. T., Ingall, E. D., Karl, D. M., Longo, A. F., Dyhrman, S. T. (2016). Polyphosphate dynamics at S tation ALOHA, N orth P acific subtropical gyre. Limnology and Oceanography, 61(1), 227-239. Discart, V., Bilad, M. R., Vandamme, D., Foubert, I., Muylaert, K., Vankelecom, I. (2013). Role of transparent exopolymeric particles in membrane fouling: Chlorella vulgaris broth filtration. Bioresource Technology, 129, 18-25. Donald, K. M., Scanlan, D. J., Carr, N. G., Mann, N. H., Joint, I. (1997). Comparative phosphorus nutrition of the marine cyanobacterium Synechococcus WH7803 and the marine diatom Thalassiosira weissflogii. Journal of Plankton Research, 19(12), 1793-1813. Douglas, G. C. (2008). Nitrogen in the marine environment. In: Elsevier Inc. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. Dulieu, C., Poncelet, D., Neufeld, R.J. (1999) in: Kuhtreiber, W.M., Lanza, R.P., Chick, W.L. (Eds.), Cell Encapsulation Technology and Therapeutics, Birkhauser, Boston, MA, 3–17. Dyhrman, S. T. (2016). Nutrients and their acquisition: phosphorus physiology in microalgae. The physiology of microalgae, 155-183. Dyhrman, S. T., Jenkins, B. D., Rynearson, T. A., Saito, M. A., Mercier, M. L., Alexander, H., Whitney, L. P., Drzewianowski, A., Bulygin, V. V., Bertrand, E. M. (2012). The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. Plos One, 7(3), e33768. Ebrahimi, M., Busse, N., Kerker, S., Schmitz, O., Hilpert, M., Czermak, P. (2016). Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration. Membranes, 6(1). doi:10.3390/membranes6010007 Eixler, S., Karsten, U., Selig, U. (2006). Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia, 45(1), 53-60. Falkowski, P. G., Raven, J. A. (2013). Aquatic photosynthesis: Princeton University Press. Fallahi, A., Hajinajaf, N., Tavakoli, O., Sarrafzadeh, M. H. (2020). Cultivation of Mixed Microalgae Using Municipal Wastewater: Biomass Productivity, Nutrient Removal, and Biochemical Content. Iranian Journal of Biotechnology, 18(4), 88-97. Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., Williams, P. A., Li, L. (2007). Multiple Steps and Critical Behaviors of the Binding of Calcium to Alginate. The Journal of Physical Chemistry B, 111(10), 2456-2462. doi:10.1021/jp0689870 Flemming, H.-C., Wingender, J. (2001). Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water Science and Technology, 43(6), 1-8. Fogg, G. E. (1983). The ecological significance of extracellular products of phytoplankton photosynthesis. Fraser, J. E., Bickerstaff, G. F. (1997). Entrapment in calcium alginate. In Immobilization of enzymes and cells (pp. 61-66): Springer. Gélinas, M., Pham, T. T. H., Boëns, B., Adjallé, K., Barnabé, S. (2015). Residual corn crop hydrolysate and silage juice as alternative carbon sources in microalgae production. Algal Research, 12, 33-42. doi:https://doi.org/10.1016/j.algal.2015.08.001 Gao, F., Li, C., Yang, Z.-H., Zeng, G.-M., Feng, L.-J., Liu, J.-z., Liu, M., Cai, H.-w. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61. Gemeiner, P., Rexova-Benkova, L., Svec, F., Norrlow, O. (1994) in: Veliky, I.A., Mclean, R.J.C. (Eds.), Immobilized Biosystems: Theory and Practical Applications, Blackie Academic Professional, Glasgow, 1–128. Gentry, T., Rensing, C., Pepper, I. (2004). New approaches for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science and Technology, 34(5), 447-494. Grossman, A., Takahashi, H. (2001). Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annual review of plant biology, 52(1), 163-210. Grossman, A. R., Aksoy, M. (2018). Algae in a phosphorus‐limited landscape. Annual Plant Reviews online, 337-374. Guo, W., Ngo, H.-H., Li, J. (2012). A mini-review on membrane fouling. Bioresource Technology, 122, 27-34. doi:https://doi.org/10.1016/j.biortech.2012.04.089 Guo, Z., Liu, Y., Guo, H., Yan, S., Mu, J. (2013). Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. Journal of Environmental Sciences, 25, S85-S88. Gupta, P. L., Lee, S.-M., Choi, H.-J. (2015). A mini review: photobioreactors for large scale algal cultivation. World Journal of Microbiology and Biotechnology, 31(9), 1409-1417. doi:10.1007/s11274-015-1892-4 Henderson, R. K., Baker, A., Parsons, S. A., Jefferson, B. (2008). Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42(13), 3435-3445. Henderson, R. K., Parsons, S. A., Jefferson, B. (2010). The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Research, 44(12), 3617-3624. Heredia-Arroyo, T., Wei, W., Ruan, R., Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and bioenergy, 35(5), 2245-2253. Ho, S.-H., Chen, C.-Y., Chang, J.-S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244-252. Ho, S.-H., Chen, C.-Y., Lee, D.-J., Chang, J.-S. (2011). Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnology advances, 29(2), 189-198. Hoffmann, J. P. (1998). Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34(5), 757-763. Hofs, B., Ogier, J., Vries, D., Beerendonk, E. F., Cornelissen, E. R. (2011). Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Separation and Purification Technology, 79(3), 365-374. Hong, S., Elimelech, M. (1997). Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science, 132(2), 159-181. Huang, G., Li, T., Chen, F., He, H., Kuang, Y. (2016). High concentration CO2 sequestration by using microalgae in staged cultivation. Environmental Progress Sustainable Energy, 35(6), 1862-1867. doi:https://doi.org/10.1002/ep.12420 Huang, W.-J., Lai, C.-H., Cheng, Y.-L. (2007). Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir. Science of The Total Environment, 377(2-3), 214-223. Huang, W., Cai, W., Huang, H., Lei, Z., Zhang, Z., Tay, J. H., Lee, D.-J. (2015). Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge. Water Research, 68, 423-431. Hwang, T., Kotte, M. R., Han, J.-I., Oh, Y.-K., Diallo, M. S. (2015). Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles. Water Research, 73, 181-192. doi:https://doi.org/10.1016/j.watres.2014.12.002 Javanmardian, M., Palsson, B. O. (1991). High‐density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnology and bioengineering, 38(10), 1182-1189. Jen, A. C., Wake, M. C., Mikos, A. G. (1996). Hydrogels for cell immobilization. Biotechnology and bioengineering, 50(4), 357-364. Kaiya, Y., Itoh, Y., Fujita, K., Takizawa, S. (1996). Study on fouling materials in the membrane treatment process for potable water. Desalination, 106(1-3), 71-77. Kao, C.-Y., Chen, T.-Y., Chang, Y.-B., Chiu, T.-W., Lin, H.-Y., Chen, C.-D., Chang, J.-S., Lin, C.-S. (2014). Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresource Technology, 166, 485-493. doi:https://doi.org/10.1016/j.biortech.2014.05.094 Kim, E.-S., Liu, Y., El-Din, M. G. (2011). The effects of pretreatment on nanofiltration and reverse osmosis membrane filtration for desalination of oil sands process-affected water. Separation and Purification Technology, 81(3), 418-428. Kim, J., Van der Bruggen, B. (2010). The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution, 158(7), 2335-2349. Kobayashi, I., Fujiwara, S., Shimogawara, K., Kaise, T., Usuda, H., Tsuzuki, M. (2003). Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas. Plant and cell physiology, 44(6), 597-606. Kok, F.N., Hasirci, V. (2000) in: Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I., Stottmeieter U. (Eds.), Bioremediation of Contaminated Soils, Marcel Dekker, New York, 465–535. Kube, M., Mohseni, A., Fan, L., Roddick, F. (2019). Impact of alginate selection for wastewater treatment by immobilised Chlorella vulgaris. Chemical Engineering Journal, 358, 1601-1609. doi:10.1016/j.cej.2018.10.065 Kumar, A., Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12. doi:10.1016/j.biteb.2020.100584 Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28(7), 371-380. doi:https://doi.org/10.1016/j.tibtech.2010.04.004 Kuo, C.-M., Jian, J.-F., Lin, T.-H., Chang, Y.-B., Wan, X.-H., Lai, J.-T., Chang, J.-S., Lin, C.-S. (2016). Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresource Technology, 221, 241-250. Ladner, D. A., Vardon, D. R., Clark, M. M. (2010). Effects of shear on microfiltration and ultrafiltration fouling by marine bloom-forming algae. Journal of Membrane Science, 356(1), 33-43. doi:https://doi.org/10.1016/j.memsci.2010.03.024 Le, N. L., Nunes, S. P. (2016). Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 7, 1-28. Lee, C. S., Lee, S.-A., Ko, S.-R., Oh, H.-M., Ahn, C.-Y. (2015). Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Research, 68, 680-691. Lee, M., Wu, Z., Li, K. (2015). 2 - Advances in ceramic membranes for water treatment. In A. Basile, A. Cassano, N. K. Rastogi (Eds.), Advances in Membrane Technologies for Water Treatment (pp. 43-82). Oxford: Woodhead Publishing. Lee, M., Wu, Z., Li, K. (2015). Advances in ceramic membranes for water treatment. In Advances in membrane technologies for water treatment (pp. 43-82): Elsevier. Lee, S.-J., Dilaver, M., Park, P.-K., Kim, J.-H. (2013). Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. Journal of Membrane Science, 432, 97-105. Lee, S.-J., Kim, J.-H. (2014). Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes. Water Research, 48, 43-51. Lee, W., Westerhoff, P., Croué, J.-P. (2007). Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane. Environmental science technology, 41(15), 5485-5490. Leloup, M., Nicolau, R., Pallier, V., Yéprémian, C., Feuillade-Cathalifaud, G. (2013). Organic matter produced by algae and cyanobacteria: Quantitative and qualitative characterization. Journal of Environmental Sciences, 25(6), 1089-1097. Li, J., Yang, F., Liu, Y., Song, H., Li, D., Cheng, F. (2012). Microbial community and biomass characteristics associated severe membrane fouling during start-up of a hybrid anoxic–oxic membrane bioreactor. Bioresource Technology, 103(1), 43-47. Li, L., Gao, N., Deng, Y., Yao, J., Zhang, K. (2012). Characterization of intracellular extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor taste compounds. Water Research, 46(4), 1233-1240. doi:https://doi.org/10.1016/j.watres.2011.12.026 Li, L., Wang, Z., Rietveld, L. C., Gao, N., Hu, J., Yin, D., Yu, S. (2014). Comparison of the effects of extracellular and intracellular organic matter extracted from Microcystis aeruginosa on ultrafiltration membrane fouling: dynamics and mechanisms. Environmental science technology, 48(24), 14549-14557. Li, T., Dong, B. Z., Liu, Z., Chu, W. H. (2011). Characteristic of algogenic organic matter and its effect on UF membrane fouling. Water Science and Technology, 64(8), 1685-1691. doi:10.2166/wst.2011.148 Li, X., Xu, H., Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and bioengineering, 98(4), 764-771. doi:https://doi.org/10.1002/bit.21489 Liang, Y., Sarkany, N., Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology letters, 31(7), 1043-1049. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., Chen, J., Gao, W. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460, 110-125. doi:10.1016/j.memsci.2014.02.034 Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275. Makut, B. B., Das, D., Goswami, G. (2019). Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: A sustainable approach. Algal Research, 37, 228-239. Mandal, S., Mallick, N. (2011). Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Applied and Environmental Microbiology, 77(1), 374-377. Mata, S. N., de Souza Santos, T., Cardoso, L. G., Andrade, B. B., Duarte, J. H., Costa, J. A. V., de Souza, C. O., Druzian, J. I. (2020). Spirulina sp. LEB 18 cultivation in a raceway-type bioreactor using wastewater from desalination process: Production of carbohydrate-rich biomass. Bioresource Technology, 311, 123495. Mata, T. M., Martins, A. A., Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. doi:https://doi.org/10.1016/j.rser.2009.07.020 Meng, S., Liu, Y. (2013). Alginate block fractions and their effects on membrane fouling. Water Research, 47(17), 6618-6627. Merchuk, J. C. (1986). Gas hold-up and liquid velocity in a two-dimensional air lift reactor. Chemical Engineering Science, 41(1), 11-16. doi:https://doi.org/10.1016/0009-2509(86)85192-2 Miyachi, S., Kanai, R., Mihara, S., Miyachi, S., Aoki, S. (1964). Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 93(3), 625-634. Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Sci Total Environ, 752, 142168. doi:10.1016/j.scitotenv.2020.142168 Morales-Sánchez, D., Martinez-Rodriguez, O. A., Kyndt, J., Martinez, A. (2015). Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology, 31(1), 1-9. Mujtaba, G., Lee, K. (2017). Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Research, 120, 174-184. doi:https://doi.org/10.1016/j.watres.2017.04.078 Myklestad, S. (1977). Production of carbohydrates by marine planktonic diatoms. II. Influence of the NP ratio in the growth medium on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. willei (Gran) Hustedt and Skeletonema costatum (Grev.) Cleve. Journal of Experimental Marine Biology and Ecology, 29(2), 161-179. Nie, X., Mubashar, M., Zhang, S., Qin, Y., Zhang, X. (2020). Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: A comprehensive review. Journal of Cleaner Production, 277, 124209. doi:https://doi.org/10.1016/j.jclepro.2020.124209 Oswald, W. J., Gotaas, H., Ludwig, H. F., Lynch, V. (1953). Algae symbiosis in oxidation ponds: III. Photosynthetic oxygenation. Sewage and Industrial Wastes, 692-705. Ou, H., Gao, N., Deng, Y., Qiao, J., Zhang, K., Li, T., Dong, L. (2011). Mechanistic studies of Microcystic aeruginosa inactivation and degradation by UV-C irradiation and chlorination with poly-synchronous analyses. Desalination, 272(1-3), 107-119. Pabby, A. K., Rizvi, S. S., Requena, A. M. S. (2015). Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications: CRC press. Papadopoulos, K. P., Economou, C. N., Dailianis, S., Charalampous, N., Stefanidou, N., Moustaka-Gouni, M., Tekerlekopoulou, A. G., Vayenas, D. V. (2020). Brewery wastewater treatment using cyanobacterial-bacterial settleable aggregates. Algal Research, 49, 101957. Park, J., Chang, H. (2000). Microencapsulation of microbial cells. Biotechnology advances, 18(4), 303-319. Passow, U. (2002). Transparent exopolymer particles (TEP) in aquatic environments. Progress in oceanography, 55(3-4), 287-333. Passow, U., Shipe, R., Murray, A., Pak, D., Brzezinski, M., Alldredge, A. (2001). The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Continental Shelf Research, 21(4), 327-346. Patel, A., Barrington, S., Lefsrud, M. (2012). Microalgae for phosphorus removal and biomass production: a six species screen for dual‐purpose organisms. Gcb Bioenergy, 4(5), 485-495. Perez-Garcia, O., Escalante, F. M., De-Bashan, L. E., Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11-36. Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Res, 45(1), 11-36. doi:10.1016/j.watres.2010.08.037 Pittman, J. K., Dean, A. P., Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17-25. Pivokonsky, M., Kloucek, O., Pivokonska, L. (2006). Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Research, 40(16), 3045-3052. Pivokonsky, M., Naceradska, J., Kopecka, I., Baresova, M., Jefferson, B., Li, X., Henderson, R. K. (2016). The impact of algogenic organic matter on water treatment plant operation and water quality: A review. Critical Reviews in Environmental Science and Technology, 46(4), 291-335. doi:10.1080/10643389.2015.1087369 Pivokonsky, M., Safarikova, J., Baresova, M., Pivokonska, L., Kopecka, I. (2014). A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga. Water Research, 51, 37-46. Płaczek, M., Patyna, A., Witczak, S. (2017). Technical evaluation of photobioreactors for microalgae cultivation. Paper presented at the E3S web of conferences. Posten, C. (2009). Design principles of photo‐bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165-177. Praveen, P., Guo, Y., Kang, H., Lefebvre, C., Loh, K.-C. (2018). Enhancing microalgae cultivation in anaerobic digestate through nitrification. Chemical Engineering Journal, 354, 905-912. Qi, H., Niu, S., Jiang, X., Xu, N. (2013). Enhanced performance of a macroporous ceramic support for nanofiltration by using α-Al2O3 with narrow size distribution. Ceramics International, 39(3), 2463-2471. Qu, F., Liang, H., He, J., Ma, J., Wang, Z., Yu, H., Li, G. (2012). Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Research, 46(9), 2881-2890. Qu, F., Liang, H., Tian, J., Yu, H., Chen, Z., Li, G. (2012). Ultrafiltration (UF) membrane fouling caused by cyanobateria: Fouling effects of cells and extracellular organics matter (EOM). Desalination, 293, 30-37. doi:https://doi.org/10.1016/j.desal.2012.02.020 Rada-Ariza, A. M., Lopez-Vazquez, C. M., van der Steen, N. P., Lens, P. N. L. (2017). Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresource Technology, 245, 81-89. doi:https://doi.org/10.1016/j.biortech.2017.08.019 Rasoul-Amini, S., Montazeri-Najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., Mobasher, M. A., Ghasemi, Y. (2014). Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatalysis and Agricultural Biotechnology, 3(2), 126-131. Raven, J. A., Knoll, A. H. (2010). Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiology Journal, 27(6-7), 572-584. Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renewable and Sustainable Energy Reviews, 27, 622-653. Rezvani, F., Sarrafzadeh, M.-H., Oh, H.-M. (2020). Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production. Algal Research, 45, 101747. Rosenberger, S., Kraume, M. (2002). Filterability of activated sludge in membrane bioreactors. Desalination, 146(1-3), 373-379. Ross, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G., Semião, A. J. (2018). Nitrogen uptake by the macr……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80176 | - |
| dc.description.abstract | 以微藻去除廢水的氮磷營養鹽是相當新穎的技術,但如何更有效率的使微藻去除氮磷仍是許多研究所努力的目標,微藻膜生物反應器是其中一種可以讓微藻水質處理更有效率的方式之一,但微藻造成的薄膜積垢問題仍有待解決,若能了解微藻的特性,將有益於微藻相關應用。本研究挑選兩種常見之微藻:四尾柵藻及小球藻,以人工合成的二級出流水進行批次實驗,以期能了解懸浮微藻/固定化微藻之比較及微藻的生長特性。結果分為三部分,不同pH值、不同藻種之影響及陶瓷膜過濾進行探討。 pH值影響方面,研究發現懸浮微藻在起始pH=7.7環境下培養,遲滯期較不明顯,而在起始pH=8.5條件下培養則較明顯。固定化技術可以提升微藻的磷酸鹽去除效率,起始pH=8.5時培養第三天,固定化四尾柵藻就有100%的PO43--P去除率,但固定化技術也會造成額外的溶解性有機碳(DOC)上升,在起始pH=8.5時固定化的小球藻培養至第15天時,甚至觀察到水中的DOC濃度=95.4 ± 21.2 mg/L。NO3--N的去除方面則在不同pH值表現略有不同,在起始pH=8.5時,固定化技術的微藻去除效果較佳,而在起始pH=7.7時,則是懸浮態的微藻較佳,總體來說,培養至第9天可以去除大部分的硝酸鹽氮,培養至第12天則硝酸鹽氮幾乎完全去除。 藻種比較的部分,四尾柵藻相比小球藻具有更快的生長速度、更低的DOC產生量,多醣及蛋白質產生量亦較少,根據螢光激發-發射矩陣(EEM)分析,四尾柵藻產生的有機物質更傾向於天然有機物,而小球藻則更傾向於微生物導向的有機物。 陶瓷膜過濾的結果顯示,海藻酸鈉並不會對陶瓷膜造成顯著的積垢問題,且固定化技術使不同微藻分泌的胞外有機物質特性差異減少,其性質更接近於海藻酸,使用齒輪泵提供掃流速度,有助於薄膜積垢的抑制。 關鍵字:四尾柵藻、小球藻、微藻固定化、胞外有機物質、陶瓷膜、薄膜積垢 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:30:15Z (GMT). No. of bitstreams: 1 U0001-2406202118222800.pdf: 8768813 bytes, checksum: 723a7bee0e1d2f0e7d62eaddc875f491 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員審定書 I 致謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 第二章 文獻回顧 4 2.1微藻 4 2.2 微藻培養 6 2.2.1封閉式光生物反應器 6 2.2.2 影響因子 10 2.3 微藻有機物質 14 2.4微藻應用 17 2.4.1氮、磷營養鹽去除 17 2.4.2 微藻膜生物反應器 24 2.4.3微藻固定化技術 26 2.5 薄膜 29 2.5.1陶瓷膜 30 2.5.1薄膜積垢 33 第三章 材料與方法 36 3.1 實驗藥品與設備 36 3.1.1 實驗用藥品 36 3.1.2實驗室儀器與設備 39 3.2實驗流程圖 41 3.3微藻培養 43 3.4 微藻批次實驗 47 3.5 陶瓷膜批過濾實驗 49 3.6 其他實驗分析方法 55 3.6.1混合液懸浮固體分析 55 3.6.2微藻定量(分光光度計法) 56 3.6.3 微藻固定化程序 57 3.6.4 溶解性有機碳分析 59 3.6.5 多醣定量分析 59 3.6.6蛋白質定量分析 60 3.6.7水中硝酸鹽、磷酸鹽定量分析 60 3.6.8螢光激發-發射矩陣(Fluorescence Excitation-Emission Matrix, EEM) 61 3.6.9掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 62 第四章 結果與討論 64 4.1微藻生長曲線 64 4.2氮磷營養鹽去除 66 4.3溶解性有機碳 74 4.4多醣及蛋白質 77 4.5螢光激發-發射矩陣(EEM) 78 4.6固定化微藻型貌分析(SEM法) 82 4.6陶瓷膜批次過濾 85 第五章 結論與建議 91 5.1結論 91 5.2建議 93 參考文獻 94 附錄 112 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 胞外有機物質 | zh_TW |
| dc.subject | 微藻固定化 | zh_TW |
| dc.subject | 小球藻 | zh_TW |
| dc.subject | 四尾柵藻 | zh_TW |
| dc.subject | 陶瓷膜 | zh_TW |
| dc.subject | 薄膜積垢 | zh_TW |
| dc.subject | Ceramic membrane | en |
| dc.subject | Chlorella vulgaris | en |
| dc.subject | Membrane fouling | en |
| dc.subject | Microalgae immobilization | en |
| dc.subject | Extracellular organic matter | en |
| dc.subject | Scenedesmus quadricauda | en |
| dc.title | 微藻胞外有機物質的特性及對陶瓷膜積垢之影響 | zh_TW |
| dc.title | Characterization of microalgae extracellular organic matter and its effect on ceramic membrane fouling | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江殷儒(Hsin-Tsai Liu),廖健森(Chih-Yang Tseng) | |
| dc.subject.keyword | 四尾柵藻,小球藻,微藻固定化,胞外有機物質,陶瓷膜,薄膜積垢, | zh_TW |
| dc.subject.keyword | Scenedesmus quadricauda,Chlorella vulgaris,Microalgae immobilization,Extracellular organic matter,Ceramic membrane,Membrane fouling, | en |
| dc.relation.page | 114 | |
| dc.identifier.doi | 10.6342/NTU202101131 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-06-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2406202118222800.pdf | 8.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
