Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80174
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅弘岳(Hong-Yueh Lo)
dc.contributor.authorLi-Kang Linen
dc.contributor.author林立剛zh_TW
dc.date.accessioned2022-11-23T09:30:09Z-
dc.date.available2021-07-08
dc.date.available2022-11-23T09:30:09Z-
dc.date.copyright2021-07-08
dc.date.issued2021
dc.date.submitted2021-06-28
dc.identifier.citation[1] Boussinesq, J. (1872). 'Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond.' Journal de mathématiques pures et appliquées: 55-108. [2] Camfield, F. E. and R. L. Street (1969). 'Shoaling of solitary waves on small slopes.' Journal of the Waterways and Harbors Division 95(1): 1-22. [3] Carrier, G. and H. Greenspan (1958). 'Water waves of finite amplitude on a sloping beach.' Journal of Fluid Mechanics 4(1): 97-109. [4] Goring, D. and F. Raichlen (1980). The generation of long waves in the laboratory. Coastal Engineering 1980: 763-783. [5] Goring, D. G. (1978). Tsunamis--the propagation of long waves onto a shelf. [6] Goseberg, N., Wurpts, A., and Schlurmann, T. (2013). Laboratory-scale generation of tsunami and long waves. Coastal Engineering, 79, 57-74. [7] Grilli, S. and I. Svendsen (1990). Computation of nonlinear wave kinematics during propagation and runup on a slope. Water wave kinematics, Springer: 387-412. [8] Hammack, J. L. and H. Segur (1974). 'The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments.' Journal of Fluid Mechanics 65(2): 289-314. [9] Hammack Jr, J. L. (1972). Tsunamis—a model of their generation and propagation. [10] Heidarzadeh, M., Muhari, A., and Wijanarto, A. B. (2019). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176(1), 25-43. [11] Imamura, F., Shuto, N., Ide, S., Yoshida, Y., and Abe, K. (1993). Estimate of the tsunami source of the 1992 Nicaraguan earthquake from tsunami data. Geophysical Research Letters, 20(14), 1515-1518. [12] Liang, D., Gotoh, H., Khayyer, A., and Chen, J. M. (2013). Boussinesq modelling of solitary wave and N-wave runup on coast. Applied ocean research, 42, 144-154. [13] Lima, V. V., Avilez-Valente, P., Baptista, M. A. V., and Miranda, J. M. (2019). Generation of N-waves in laboratory. Coastal Engineering, 148, 1-18. [14] Liu, P. L. F., Lynett, P., Fernando, H., Jaffe, B. E., Fritz, H., Higman, B., ... and Synolakis, C. (2005). Observations by the international tsunami survey team in Sri Lanka. Science, 308(5728), 1595-1595. [15] Lo, H. Y., Park, Y. S., and Liu, P. L. F. (2013). On the run-up and back-wash processes of single and double solitary waves—An experimental study. Coastal engineering, 80, 1-14. [16] Madsen, P. A., Fuhrman, D. R., and Schäffer, H. A. (2008). On the solitary wave paradigm for tsunamis. Journal of Geophysical Research: Oceans, 113(C12). [17] McGovern, D. (2016). Experimental study of the runup of tsunami waves on a smooth sloping beach. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. [18] Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run‐up. Geophysical research letters, 38(7). [19] Rossetto, T., Allsop, W., Charvet, I., and Robinson, D. I. (2011). Physical modelling of tsunami using a new pneumatic wave generator. Coastal Engineering, 58(6), 517-527. [20] Schimmels, S., Sriram, V., and Didenkulova, I. (2016). Tsunami generation in a large scale experimental facility. Coastal Engineering, 110, 32-41. [21] Scott Russell, J. (1844). Report on waves. Rept. 14th meetings of the British Assoc. for the Advancement of Science, London: John Murray. [22] Shuto, N. (1985). 'The Nihonkai-Chubu earthquake tsunami on the North Akita coast.' Coastal Engineering in Japan 28(1): 255-264. [23] Synolakis, C. E. (1987). 'The runup of solitary waves.' Journal of Fluid Mechanics 185: 523-545. [24] Tadepalli, S. and C. E. Synolakis (1994). 'The run-up of N-waves on sloping beaches.' Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 445(1923): 99-112. [25] Titov, V. V., and Synolakis, C. E. (1994). A numerical study of wave runup of the September 1, 1992 Nicaraguan tsunami. In Tsunami Inundation Modeling Workshop Report (November 16-18, 1993) (No. 1511, p. 131). US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory. [26] Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics, 12(6), 620-631.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80174-
dc.description.abstract眾多N型波研究文章中,Tadepalli et al. (1994) 提出的溯升解析解對N型波研究發展影響甚鉅,但其文章採用之N型波模型並未考慮因頻散、非線性作用造成之波浪變化,而此篇文章之研究價值在於提供N型波傳遞過程之數據結果,以擬合公式對遠場孤立波進行預測,幫助後續相關研究對於N型波傳遞現象之物理尺度變化問題可有數據結果參照。本文基於Lima et al. (2019)提出之一維非線性N型波造波理論,作為N型波造波方式,造波選用主因為Lima等人遵循Tadepalli等人於1994年對N型波之數學定義而發展出的一套N型波造波理論。 本研究以開源式軟體OpenFOAM為方法主體,輔以實驗做數值模型驗證。早期研究指出正初始水面波浪傳遞後會分離出領先波峰與之後的餘波震盪,為了研究N型波傳遞現象,本文提出波形相關係數法PCCs量化評估領先波峰與孤立波相似程度,當領先波峰與孤立波兩者PCCs達0.999,則定義領先波峰為遠場孤立波。而本文意圖找出N型波與遠場孤立波之間物理尺度關係,用以量化N型波傳遞過程的物理尺度變化,並於文末提出遠場孤立波時間回溯,嘗試建立N型波與孤立波傳遞過程之關聯。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:30:09Z (GMT). No. of bitstreams: 1
U0001-2506202114385500.pdf: 11263942 bytes, checksum: 5abaec1516dc3abb413a56bc0dfb65aa (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents國立臺灣大學碩士學位論文 i 謝 誌 ii 摘 要 iii Abstract iv 目 錄 vi 圖目錄 viii 表目錄 x 符號說明 xi 第1章 緒論 1 1.1 研究動機及目的 1 1.2 海嘯研究與N型波 2 1.3 主要內容架構 6 第2章 海嘯N型波 7 2.1 N型波定義 7 2.2 N型波造波理論 9 2.3 史托克斯數Stokes number 11 第3章 實驗設備及其驗證 13 3.1 設備架設規劃 13 3.2 造波水槽結構 15 3.2.1 水槽框架結構 15 3.2.2 造波機結構 17 3.3 造波運動控制 21 3.3.1 實驗操作流程 21 3.3.2 實驗造波討論 24 3.4 資料擷取系統 28 3.4.1 軟硬體架設整合 28 3.4.2 實驗數據擷取 32 第4章 OpenFOAM數值模型及驗證 37 4.1 OpenFOAM 控制方程式 37 4.2 自由液面捕捉 38 4.3 邊界條件與初始條件 39 4.4 網格收斂性測試 43 4.5 數值模型驗證 44 第5章 結果與討論 56 5.1 波型相關係數法 56 5.2 模擬造波參數選用與符號介紹 58 5.3 相關係數曲線趨勢討論 60 5.4 領先波峰波高、波長趨勢討論 63 5.5 N型波與遠場孤立波之關聯 66 5.6 結果敏感性測試 69 5.7 遠場孤立波時間回溯 71 第6章 結論與未來展望 75 6.1 結論 75 6.2 未來展望 76 參考文獻 77
dc.language.isozh-TW
dc.subject遠場孤立波zh_TW
dc.subjectN型波zh_TW
dc.subjectOpenFOAMzh_TW
dc.subject史托克斯數zh_TW
dc.subject波傳遞zh_TW
dc.subjectN-waveen
dc.subjectfar-field solitary waveen
dc.subjectwave propagationen
dc.subjectStokes numberen
dc.subjectOpenFOAMen
dc.titleN型波傳遞之數值模擬與實驗驗證zh_TW
dc.titleNumerical modeling and experimental validation of N-wave propagationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊偉良(Hsin-Tsai Liu),吳昀達(Chih-Yang Tseng),戴璽恆
dc.subject.keywordN型波,OpenFOAM,史托克斯數,波傳遞,遠場孤立波,zh_TW
dc.subject.keywordN-wave,OpenFOAM,Stokes number,wave propagation,far-field solitary wave,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202101138
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-06-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-2506202114385500.pdf11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved