Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80145
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊輝(Jiun-Huei Proty Wu)
dc.contributor.authorYu-Chiung Linen
dc.contributor.author林祐群zh_TW
dc.date.accessioned2022-11-23T09:28:35Z-
dc.date.available2021-07-20
dc.date.available2022-11-23T09:28:35Z-
dc.date.copyright2021-07-20
dc.date.issued2021
dc.date.submitted2021-07-13
dc.identifier.citation[1] https://www.gw-openscience.org. [2] B. P. Abbott et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119(16):161101, 2017. [3] Chris Pankow et al. Mitigation of the instrumental noise transient in gravitationalwave data surrounding GW170817. Phys. Rev. D, 98(8):084016, 2018. [4] B. P. Abbott et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, February 2016. [5] B. P. Abbott et al. Advanced LIGO. Class. Quant. Grav., 32(7):074001, March 2015. [6] F. Acernese et al. Advanced virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav., 32(2):024001, December 2015. [7] B. P. Abbott et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett., 116:241103, June 2016. [8] B. P. Abbott et al. Binary black hole mergers in the first advanced ligo observing run. Phys. Rev. X, 6:041015, October 2016. [9] B. P. Abbott et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett., 118:221101, June 2017. [10] B. P. Abbott et al. GW170608: Observation of a 19 solar-mass binary black hole coalescence. Astrophys. J., 851(2):L35, December 2017 [11] B. P. Abbott et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett., 119:141101, October 2017. [12] B. P. Abbott et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X, 9(3):031040, 2019. [13] B. P. Abbott et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4M⊙. Astrophys. J. Lett., 892(1):L3, 2020. [14] R. Abbott et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett., 125(10):101102, 2020. [15] R. Abbott et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett., 896(2):L44, 2020. [16] R. Abbott et al. GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses. Phys. Rev. D, 102(4):043015, 2020. [17] R. Abbott et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X, 11:021053, June 2021. [18] A. Goldstein et al. An ordinary short gamma-ray burst with extraordinary implications:fermi-GBM detection of GRB 170817a. Astrophys. J., 848(2):L14, October 2017. [19] V. Savchenko et al. INTEGRALDetection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J., 848(2):L15, October 2017. [20] B. P. Abbott et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817a. Astrophys. J., 848(2):L13, October 2017. [21] M. Soares-Santos et al. First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophys. J., 876(1):L7, 2019. [22] B. P. Abbott et al. Constraints on cosmic strings using data from the first Advanced LIGO observing run. Phys. Rev. D, 97(10):102002, 2018. [23] R. Abbott et al. Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Phys. Rev. Lett., 126:241102, June 2021. [24] T. Akutsu et al. KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector. Nat. Astron., 3(1):35–40, 2019. [25] T. Akutsu et al. Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer, September 2020. arXiv:2009.09305 [gr-qc]. [26] Bala Iyer, Tarun Souradeep, CS Unnikrishnan, Sanjeev Dhurandhar, Sendhil Raja, and Anand Sengupta. LIGO-India, Proposal of the Consortium for Indian Initiative in Gravitational-wave Observations (IndIGO), 2011. LIGO-M1100296-v2. [27] B. P. Abbott et al. Prospects for observing and localizing gravitational-wave transients with advanced ligo, advanced virgo and kagra. Living Reviews in Relativity, 21(1):3, 2018. [28] Benjamin J. Owen and B. S. Sathyaprakash. Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement. Phys. Rev. D, 60:022002, 1999. [29] Alex Nitz, Ian Harry, Duncan Brown, Christopher M. Biwer, Josh Willis, Tito Dal Canton, Collin Capano, Larne Pekowsky, Thomas Dent, Andrew R. Williamson, Soumi De, Gareth Davies, Miriam Cabero, Duncan Macleod, Bernd Machenschalk, Steven Reyes, Prayush Kumar, Thomas Massinger, Francesco Pannarale, dfinstad, Márton Tápai, Stephen Fairhurst, Sebastian Khan, Leo Singer, Alex Nielsen, shasvath, Sumit Kumar, idorrington92, Hunter Gabbard, and Bhooshan Uday Varsha Gadre. gwastro/pycbc: PyCBC Release v1.15.2, December 2019. [30] Samantha A Usman, Alexander H Nitz, Ian W Harry, Christopher M Biwer, Duncan A Brown, Miriam Cabero, Collin D Capano, Tito Dal Canton, Thomas Dent, Stephen Fairhurst, Marcel S Kehl, Drew Keppel, Badri Krishnan, Amber Lenon, Andrew Lundgren, Alex B Nielsen, Larne P Pekowsky, Harald P Pfeiffer, Peter R Saulson, Matthew West, and Joshua L Willis. The PyCBC search for gravitational waves from compact binary coalescence. Class. Quant. Grav., 33(21):215004, October 2016. [31] Surabhi Sachdev et al. The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO’s Second and Advanced Virgo’s First Observing Runs, 2019. arXiv:1901.08580 [gr-qc]. [32] Cody Messick, Kent Blackburn, Patrick Brady, Patrick Brockill, Kipp Cannon, Romain Cariou, Sarah Caudill, Sydney J. Chamberlin, Jolien D. E. Creighton, Ryan Everett, Chad Hanna, Drew Keppel, Ryan N. Lang, Tjonnie G. F. Li, Duncan Meacher, Alex Nielsen, Chris Pankow, Stephen Privitera, Hong Qi, Surabhi Sachdev, Laleh Sadeghian, Leo Singer, E. Gareth Thomas, Leslie Wade, Madeline Wade, Alan Weinstein, and Karsten Wiesner. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys. Rev. D, 95:042001, February 2017. [33] Kipp Cannon et al. Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence. Astrophys. J., 748:136, 2012. [34] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1991. [35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551, December 1989. [36] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997. [37] Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, pages 338–342, Singapore, 2014. International Speech Communication Association (ISCA). [38] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm. Neural Computation, 12(10):2451–2471, 2000. [39] Daniel George and E. A. Huerta. Deep Neural Networks to Enable Real-time Multimessenger Astrophysics. Phys. Rev. D, 97(4):044039, 2018. [40] Daniel George and E. A. Huerta. Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data. Phys. Lett. B, 778:64–70, 2018. [41] Timothy D. Gebhard, Niki Kilbertus, Ian Harry, and Bernhard Schölkopf. Convolutional neural networks: A magic bullet for gravitational-wave detection? Phys. Rev. D, 100:063015, September 2019. [42] Hunter Gabbard, Michael Williams, Fergus Hayes, and Chris Messenger. Matching matched filtering with deep networks for gravitational-wave astronomy. Phys. Rev. Lett., 120(14):141103, 2018. [43] XiLong Fan, Jin Li, Xin Li, YuanHong Zhong, and JunWei Cao. Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors. Science China Physics, Mechanics, and Astronomy, 62(6):969512, June 2019. [44] Plamen G. Krastev. Real-time detection of gravitational waves from binary neutron stars using artificial neural networks. Physics Letters B, 803:135330, 2020. [45] Baijiong Lin, Xiangru Li, and Woliang Yu. Binary Neutron Stars Gravitational Wave Detection Based on Wavelet Packet Analysis And Convolutional Neural Networks, October 2019. arXiv:1910.10525 [astro-ph.IM]. [46] He Wang, Shichao Wu, Zhoujian Cao, Xiaolin Liu, and Jian-Yang Zhu. Gravitational-wave signal recognition of LIGO data by deep learning. Phys. Rev. D, 101(10):104003, 2020. [47] Hunter Gabbard, Chris Messenger, Ik Siong Heng, Francesco Tonolini, and Roderick Murray-Smith. Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy, September 2019. arXiv:1909.06296 [astro-ph.IM]. [48] Stephen R. Green, Christine Simpson, and Jonathan Gair. Gravitational-wave parameter estimation with autoregressive neural network flows. Phys. Rev. D, 102(10):104057, 2020. [49] Juan Pablo Marulanda, Camilo Santa, and Antonio Enea Romano. Deep learning merger masses estimation from gravitational waves signals in the frequency domain. Phys. Lett. B, 810:135790, 2020. [50] Stephen R. Green and Jonathan Gair. Complete parameter inference for GW150914 using deep learning, August 2020. arXiv:2008.03312 [astro-ph.IM]. [51] Michael Zevin et al. Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science. Class. Quant. Grav., 34(6):064003, 2017. [52] Daniel George, Hongyu Shen, and E. A. Huerta. Classification and unsupervised clustering of ligo data with deep transfer learning. Phys. Rev. D, 97:101501, May 2018. [53] Miquel Llorens-Monteagudo, Alejandro Torres-Forné, José A. Font, and Antonio Marquina. Classification of gravitational-wave glitches via dictionary learning. Class. Quant. Grav., 36(7):075005, 2019. [54] S. Coughlin, S. Bahaadini, N. Rohani, M. Zevin, O. Patane, M. Harandi, et al. Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning. Phys. Rev. D, 99(8):082002, 2019. [55] Hongyu Shen, Daniel George, Eliu. A. Huerta, and Zhizhen Zhao. Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3237–3241, Brighton, UK., 2019. IEEE. [56] Wei Wei and E. A. Huerta. Gravitational Wave Denoising of Binary Black Hole Mergers with Deep Learning. Phys. Lett. B, 800:135081, 2020. [57] Rich Ormiston, Tri Nguyen, Michael Coughlin, Rana X. Adhikari, and Erik Katsavounidis. Noise Reduction in Gravitational-wave Data via Deep Learning. Phys. Rev. Res., 2(3):033066, 2020. [58] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 427–436, Boston, MA, USA, 2015. IEEE Computer Society. [59] David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural Computation, 4(3):448–472, May 1992. [60] Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995. [61] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning, volume 48 of ICML’16, page 1050– 1059. JMLR.org, 2016. [62] Alex Graves. Practical variational inference for neural networks. In Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS’11, pages 2348–2356, USA, 2011. Curran Associates Inc. [63] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural network. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1613–1622, Lille, France, July 2015. PMLR. [64] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches, March 2018. arXiv:1803.04386 [cs.LG]. [65] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2013. arXiv:1312.6114 [stat.ML]. [66] Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization trick. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS’15, page 2575– 2583, Cambridge, MA, USA, 2015. MIT Press [67] Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian Recurrent Neural Networks, April 2017. arXiv:1704.02798 [cs.LG]. [68] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolutional, long short-term memory, fully connected deep neural networks. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4580–4584, South Brisbane, QLD, Australia, April 2015. IEEE Computer Society. [69] B. S. Sathyaprakash and B. F. Schutz. Physics, Astrophysics and Cosmology with Gravitational Waves. Living Reviews in Relativity, 12:2, 2009. [70] J. Weber. Gravitational radiation. Phys. Rev. Lett., 18:498–501, March 1967. [71] Ingrid H. Stairs. Testing general relativity with pulsar timing. Living Reviews in Relativity, 6(1):5, September 2003. [72] M. A. McLaughlin. The North American Nanohertz Observatory for Gravitational Waves. Class. Quant. Grav., 30(22):224008, 2013. [73] G. Hobbs. The Parkes Pulsar Timing Array. Class. Quant. Grav., 28(9):094013, 2011. [74] Peter E. Dewdney et al. The Square Kilometre Array. Proceedings of the IEEE, 97:1482–1496, 2009. [75] Curt Culter and Kip S. Throne. An overview of gravitational wave sources. In World Scientific, 2002. [76] Kip S. Thorne. Gravitational waves. In 1994 DPF Summer Study on High-energy Physics: Particle and Nuclear Astrophysics and Cosmology in the Next Millenium (Snowmass 94), June 1995. [77] Kip S. Thorne. Gravitational radiation. In S.W. Hawking and W. Israel, editors, Three Hundred Years of Gravitation, pages 330–458. Cambridge University Press, Cambridge, New York, 1987. [78] A. Bohe, L. Shao, A. Taracchini, A. Buonanno, S. Babak, I. W. Harry, et al. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D, 95(4):044028, 2017. [79] Andrea Taracchini, Alessandra Buonanno, Yi Pan, Tanja Hinderer, Michael Boyle, Daniel A. Hemberger, Lawrence E. Kidder, Geoffrey Lovelace, Abdul H. Mroué, Harald P. Pfeiffer, Mark A. Scheel, Béla Szilágyi, Nicholas W. Taylor, and Anil Zenginoglu. Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys. Rev. D, 89:061502, Mar 2014. [80] Luc Blanchet. Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Reviews in Relativity, 17(1):2, December 2014. [81] CARL W. HELSTROM. Statistical Theory of Signal Detection (Second Edition), volume 5 of International Series of Monographs in Electronics and Instrumentation. Pergamon Press, Oxford, New York, second edition edition, 1968. [82] Bruce Allen, Warren G. Anderson, Patrick R. Brady, Duncan A. Brown, and Jolien D. E. Creighton. Findchirp: An algorithm for detection of gravitational waves from inspiraling compact binaries. Phys. Rev. D, 85:122006, June 2012. [83] Curt Cutler, Theocharis A. Apostolatos, Lars Bildsten, Lee Smauel Finn, Eanna E. Flanagan, Daniel Kennefick, Dragoljub M. Markovic, Amos Ori, Eric Poisson, Gerald Jay Sussman, and Kip S. Thorne. The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. Phys. Rev. Lett., 70:2984–2987, May 1993. [84] B. P. Abbott et al. Characterization of transient noise in advanced LIGO relevant to gravitational wave signal GW150914. Class. Quant. Grav., 33(13):134001, June 2016. [85] S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro, K. Ackley, S. Tiwari, C. F. Da Silva, and G. Mitselmakher. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys. Rev. D, 93:042004, February 2016. [86] T. Adams, D. Buskulic, V. Germain, G.M. Guidi, F. Marion, M. Montani, B. Mours, F. Piergiovanni, and G. Wang. Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era. Class. Quant. Grav., 33(17):175012, 2016. [87] Qi Chu. Low-latency detection and localization of gravitational waves from compact binary coalescences. PhD thesis, The University of Western Australia, 2017. [88] B. P. Abbott et al. Search for gravitational-wave signals associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo. Astrophys. J., 886:75, 2019. [89] R. Abbott et al. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3a, October 2020. arXiv:2010.14550 [astro-ph.HE]. [90] B. P. Abbott et al. Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data. Astrophys. J., 879(1):10, 2019. [91] R. Abbott et al. Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophys. J. Lett., 902(1):L21, 2020. [92] B. P. Abbott et al. Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Phys. Rev. D, 99(12):122002, 2019. [93] R. Hamburg et al. A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers From the First and Second Gravitational-wave Observing Runs. Astrophys. J., 893:100, 2020. [94] K. Abe et al. Search for neutrinos in coincidence with gravitational wave events from the LIGO-Virgo O3a Observing Run with the Super-Kamiokande detector, April 2021. arXiv:2104.09196 [astro-ph.HE]. [95] S. de Wet et al. GW190814 follow-up with the optical telescope MeerLICHT. Astron. Astrophys., 649:A72, 2021. [96] A. Keivani, D. Veske, S. Countryman, I. Bartos, K. R. Corely, Z. Marka, and S. Marka. Multi-messenger Gravitational-Wave + High-Energy Neutrino Searches with LIGO, Virgo and IceCube. In 36th International Cosmic Ray Conference (ICRC2019), volume 36 of International Cosmic Ray Conference, page 930, Madison, WI, USA, July 2019. IUPAP [97] R. Abbott et al. Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910. April 2021. arXiv:2104.14417 [astro-ph.HE]. [98] R. Abbott et al. Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR j0537-6910. Astrophys. J. Lett., 913(2):L27, May 2021. [99] B. D. Metzger and E. Berger. What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys. J., 746(1):48, January 2012. [100] Man Leong Chan, Yi-Ming Hu, Chris Messenger, Martin Hendry, and Ik Siong Heng. Maximizing the Detection Probability of Kilonovae Associated With Gravitational Wave Observations. Astrophys. J., 834(1):84, 2017. [101] L. Blackburn, M. S. Briggs, J. Camp, N. Christensen, V. Connaughton, P. Jenke, R. A. Remillard, and J. Veitch. High-energy electromagnetic offline follow-up of LIGO-Virgo gravitational-wave binary coalescence candidate events. Astrophysic. J. Supplement Series, 217(1):8, March 2015. [102] Chris Pankow, Laura Sampson, Leah Perri, Eve Chase, Scott Coughlin, Michael Zevin, and Vassiliki Kalogera. Astrophysical prior information and gravitationalwave parameter estimation. Astrophys. J., 834(2):154, January 2017. [103] Michael W. Coughlin et al. Optimizing searches for electromagnetic counterparts of gravitational wave triggers. Mon. Not. Roy. Astron. Soc., 478(1):692–702, 2018. [104] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGrawHill, 1997. [105] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org. [106] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533–536, October 1986. [107] P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard University, 1975. [108] A.G. Ivakhnenko, A.G. Ivakhnenko, V.G. Lapa, V.G. Lapa, V.G.A. LAPA, and R.N. McDonough. Cybernetics and Forecasting Techniques. Modern analytic and computational methods in science and mathematics. American Elsevier Publishing Company, 1967. [109] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, pages 65–386, 1958. [110] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257, 1991. [111] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. [112] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, page 807– 814, Madison, WI, USA, 2010. Omnipress. [113] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recognition: A convolutional neural-network approach. IEEE transactions on neural networks, 8(1):98–113, 1997. [114] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017. [115] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 75–84, 2017. [116] Hagen Soltau, Hank Liao, and Hasim Sak. Neural speech recognizer: Acoustic-toword LSTM model for large vocabulary speech recognition, October 2016. arXiv:1610.09975 [cs.CL]. [117] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation: Contextualized word vectors. In Advances in Neural Information Processing Systems, pages 6294–6305, 2017. [118] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. October 2016. arXiv:1609.08144 [cs.CL]. [119] Alvin J. K. Chua and Michele Vallisneri. Learning Bayesian posteriors with neural networks for gravitational-wave inference. Phys. Rev. Lett., 124(4):041102, 2020. [120] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning Both Weights and Connections for Efficient Neural Networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, NIPS’15, page 1135– 1143, Cambridge, MA, USA, 2015. MIT Press. [121] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. [122] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, page 1387– 1395, Red Hook, NY, USA, 2016. Curran Associates Inc. [123] George Retsinas, Athena Elafrou, Georgios Goumas, and Petros Maragos. Weight Pruning via Adaptive Sparsity Loss. June 2020. arXiv:2006.02768 [cs.LG]. [124] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. [125] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183–233, November 1999. [126] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist., 22(1):79–86, March 1951. [127] Solomon Kullback. Information theory and statistics. Courier Corporation, New York, USA, 1997. [128] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5574–5584. Curran Associates, Inc., Long Beach, CA, USA, 2017. [129] Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. Uncertainty quantification using bayesian neural networks in classification: Application to biomedical image segmentation. Computational Statistics Data Analysis, 142:106816, 2020. [130] Giacomo Deodato, Christopher Ball, and Xian Zhang. Bayesian neural networks for cellular image classification and uncertainty analysis. bioRxiv, 2019. [131] T. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schölkopf. Convwave: Searching for gravitational waves with fully convolutional neural nets. In Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, December 2017. Neural Information Processing Systems Foundation (NeurlIPS). [132] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. September 2016. arXiv:1609.03499 [cs.SD]. [133] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11):1019–1025, 1999. [134] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, page 448– 456. JMLR.org, 2015. [135] Michele Vallisneri, Jonah Kanner, Roy Williams, Alan Weinstein, and Branson Stephens. The LIGO Open Science Center. J. Phys. Conf. Ser., 610(1):012021, 2015. [136] P. Welch. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2):70–73, 1967. [137] R. B. Blackman and J. Tukey. Particular pairs of windows. In The Measurement of Power Spectra, From the Point of View of Communications Engineering, pages 98–99, New York, 1959. Dover. [138] LIGO Scientific Collaboration. LIGO Algorithm Library - LALSuite. free software (GPL), 2018. [139] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org. [140] Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi, Matt Hoffman, and Rif A. Saurous. TensorFlow Distributions. November 2017. arXiv:1711.10604 [cs.LG]. [141] Christian P. Robert. Intrinsic losses. Theory and Decision, 40(2):191–214, March 1996. [142] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015 [143] B. P. Abbott et al. Low-latency gravitational-wave alerts for multimessenger astronomy during the second advanced LIGO and virgo observing run. Astrophys. J., 875(2):161, April 2019. [144] Michael Boyle, Duncan A. Brown, Lawrence E. Kidder, Abdul H. Mroue, Harald P. Pfeiffer, Mark A. Scheel, Gregory B. Cook, and Saul A. Teukolsky. High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions. Phys. Rev. D, 76:124038, 2007. [145] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. [146] N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access, 6:14410–14430, 2018. [147] Andrew Gordon Wilson and Pavel Izmailov. Bayesian Deep Learning and a Probabilistic Perspective of Generalization. February 2020. arXiv:2002.08791 [cs.LG]. [148] Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How Good is the Bayes Posterior in Deep Neural Networks Really? February 2020. arXiv:2002.02405 [stat.ML]. [149] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy Natural Gradient as Variational Inference. December 2017. arXiv:1712.02390 [cs.LG]. [150] Juhan Bae, Guodong Zhang, and Roger Grosse. Eigenvalue Corrected Noisy Natural Gradient. November 2018. arXiv:1811.12565 [cs.LG]. [151] Rianne de Heide, Alisa Kirichenko, Peter Grunwald, and Nishant Mehta. Safebayesian generalized linear regression. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages 2623–2633. PMLR, August 2020. [152] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning. February 2020. arXiv:2002.06470 [stat.ML]. [153] Wanqian Yang, Lars Lorch, Moritz A. Graule, Srivatsan Srinivasan, Anirudh Suresh, Jiayu Yao, Melanie F. Pradier, and Finale Doshi-Velez. Output-Constrained Bayesian Neural Networks. May 2019. arXiv:1905.06287 [cs.LG]. [154] Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Rätsch, Richard Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian Neural Network Priors Revisited. February 2021. arXiv:2102.06571 [stat.ML]. [155] Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple by minimizing the description length of the weights. In Proceedings of the Sixth Annual Conference on Computational Learning Theory, COLT ’93, page 5– 13, New York, NY, USA, 1993. Association for Computing Machinery. [156] J.-L. Durrieu, J.-Ph. Thiran, and F. Kelly. Lower and upper bounds for approximation of the kullback-leibler divergence between gaussian mixture models. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4833–4836, 2012. [157] John R. Hershey and Peder A. Olsen. Approximating the kullback leibler divergence between gaussian mixture models. In 2007 IEEE Internation………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80145-
dc.description.abstract我們提出了一個新的貝氏卷積-長短期記憶神經網路(CLDNN)模型,藉由結合卷積神經網路(CNN)與長短期記憶神經網路(LSTM),可以偵測到雙星系統從繞行階段到合併所發出的重力波訊號。我們的模型成功偵測到LIGO LivingstonO2觀測資料中包含的7個黑洞雙星合併事件,同時模型輸出的標記涵蓋了完整長度的重力波訊號。利用貝氏神經網路的不確定性估計,我們新定義了一個‘注意’狀態,用以注意那些可能被傳統神經網路視為雜訊的未知訊號。被標記為‘注意’的資料片段可以因此被更仔細地分析。我們使用了40960個樣本來訓練模型,並使用數筆具有512個長度為8秒的實際觀測雜訊片段,且注入信噪比ρopt從0到18的模擬重力波訊號的資料集做效能測試。我們的模型能識別90%以上訊噪比大於7的事件(訊噪比8.5以上可以達到100%),且對於訊噪比大於8的事件我們的模型可以成功標記95%以上含有訊號的片段。而在使用未最佳化的程式碼與中階GPU的個人電腦上,我們的模型可在合併事件發生後約20秒即可標記出相對應的訊號區間。若使用更大的資料集與高速電腦,我們的模型可具有即時探測,甚至是預警合併事件的潛力。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:28:35Z (GMT). No. of bitstreams: 1
U0001-3006202120565900.pdf: 10850905 bytes, checksum: cbf6ced91a76d53d9b18b44a799ec079 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i Acknowledgements ii 摘要 iii Abstract iv Contents v List of Figures vii Chapter 1 Introduction 1 1.1 Gravitational Wave Observations . . . . . . . . . . . . . . . . . . . 3 1.2 Matched-filter Searches for Gravitational Waves from Compact Binary Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 The Need for Real-time Detection and The Challenge of Matchedfilter searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Deep Neural Network 9 2.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . 10 2.3 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 DNNs in GW Detection and Their Challenges . . . . . . . . . . . . . 13 Chapter 3 Bayesian Neural Network for Gravitational Wave Detection 15 3.1 Bayesian Neural Network . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Architecture of Model . . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 4 Data Preparation 22 4.1 Real Noise Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Simulated Templates of GW Signals . . . . . . . . . . . . . . . . . . 24 4.3 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 5 Model Training 31 5.1 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Flagging Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 6 Results 38 6.1 Quantitative Test for Performance . . . . . . . . . . . . . . . . . . . 38 6.2 Performance against Real Events . . . . . . . . . . . . . . . . . . . . 41 Chapter 7 Discussion 46 7.1 Weighing KL Divergence . . . . . . . . . . . . . . . . . . . . . . . 46 7.2 The Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.3 Size of Monte-Carlo Sampling . . . . . . . . . . . . . . . . . . . . . 50 7.4 Model Calibration and Reliability . . . . . . . . . . . . . . . . . . . 52 7.5 Extensibility for Multi-Detector Network . . . . . . . . . . . . . . . 53 7.6 Multi-Class Detection . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.7 Stride Size of Sliding Window . . . . . . . . . . . . . . . . . . . . . 55 7.8 Forecasting GW Events . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 8 Conclusion 59 References 61
dc.language.isoen
dc.subject重力波zh_TW
dc.subject深度學習zh_TW
dc.subject貝氏神經網路zh_TW
dc.subjectBayesian neural networken
dc.subjectdeep learningen
dc.subjectgravitational wavesen
dc.title使用貝氏神經網路偵測重力波zh_TW
dc.titleDetecting Gravitational Waves Using Bayesian Neural Networken
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.author-orcid0000-0003-4939-1404
dc.contributor.oralexamcommittee江國興(Hsin-Tsai Liu),薛熙于(Chih-Yang Tseng),胡德邦,黃崇源
dc.subject.keyword重力波,深度學習,貝氏神經網路,zh_TW
dc.subject.keywordgravitational waves,deep learning,Bayesian neural network,en
dc.relation.page79
dc.identifier.doi10.6342/NTU202101220
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-3006202120565900.pdf10.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved