Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文進(Wen-Chin Chen),歐陽明(Ming Ouhyoung)
dc.contributor.authorJoseph Chenen
dc.contributor.author陳禹樵zh_TW
dc.date.accessioned2022-11-23T09:28:29Z-
dc.date.available2022-07-02
dc.date.available2022-11-23T09:28:29Z-
dc.date.copyright2021-07-23
dc.date.issued2021
dc.date.submitted2021-07-05
dc.identifier.citation[1] C. J. Ogayar-Anguita, A. J. Rueda-Ruiz, R. J. Segura-S´anchez, M. D´ıazMedina, and A. L. Garc´ıa-Fern´andez, “A gpu-based framework for generating implicit datasets of voxelized polygonal models for the training of 3d convolutional neural networks,” IEEE Access, vol. 8, pp. 12 675–12 687, 2020. [2] Y. T. Lee and A. A. Requicha, “Algorithms for computing the volume and other integral properties of solids. ii. a family of algorithms based on representation conversion and cellular approximation,” Communications of the ACM, vol. 25, no. 9, pp. 642–650, 1982. [3] Z. Dong, W. Chen, H. Bao, H. Zhang, and Q. Peng, “Real-time voxelization for complex polygonal models,” in 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings. IEEE, 2004, Conference Proceedings, pp. 43–50. [4] E. Eisemann and X. D´ecoret, “Single-pass gpu solid voxelization and applications,” in GI’08: Proceedings of Graphics Interface 2008, vol. 322. Canadian Information Processing Society, 2008, Conference Proceedings, pp. 73–80. [5] ——, “Single-pass gpu solid voxelization and applications,” in GI’08: Proceedings of Graphics Interface 2008, vol. 322. Canadian Information Processing Society, 2008, Conference Proceedings, pp. 73–80. [6] J. Jia, Z. Qin, and J. Chen, “A new method on voxelizing triangular mesh model,” Information Technology Journal, vol. 6, no. 8, pp. 1286–1289, 2007. [7] N. Stolte and A. Kaufman, “Novel techniques for robust voxelization and visualization of implicit surfaces,” Graphical Models, vol. 63, no. 6, pp. 387–412, 2001. [8] M. Sramek and A. E. Kaufman, “Alias-free voxelization of geometric objects,” IEEE transactions on visualization and computer graphics, vol. 5, no. 3, pp. 251–267, 1999. [9] J. Huang, R. Yagel, V. Filippov, and Y. Kurzion, “An accurate method for voxelizing polygon meshes,” in IEEE Symposium on Volume Visualization (Cat. No.989EX300), 1998, pp. 119–126. [10] D. Haumont and N. Warz´ee, “Complete polygonal scene voxelization,” Journal of Graphics Tools, vol. 7, no. 3, pp. 27–41, 2002. [Online]. Available: https://doi.org/10.1080/10867651.2002.10487563 [11] A. J. Rueda, R. J. Segura, F. R. Feito, J. R. de Miras, and C. Og´ayar, “Voxelization of solids using simplicial coverings,” Journal of WSCG, 2004. [12] E. Eisemann and X. D´ecoret, “Fast scene voxelization and applications,” in Proceedings of the 2006 symposium on Interactive 3D graphics and games, 2006, Conference Proceedings, pp. 71–78. [13] M. Barbier, A. Bottelbergs, R. Nuydens, A. Ebneth, and W. H. De Vos, “Slicemap: an algorithm for automated brain region annotation,” Bioinformatics, vol. 34, no. 4, pp. 718–720, 2018. [14] V. Forest, L. Barthe, and M. Paulin, “Real-time hierarchical binary-scene voxelization,” journal of graphics, gpu, and game tools, vol. 14, no. 3, pp. 21–34, 2009. [15] M. Nesme, P. G. Kry, L. Jeˇr´abkov´a, and F. Faure, Preserving topology and elasticity for embedded deformable models. Association for Computing Machinery, 2009, pp. 1–9. [16] S. Fang and H. Chen, “Hardware accelerated voxelization,” Computers Graphics, vol. 24, no. 3, pp. 433–442, 2000. [17] J. Gascon, J. M. Espadero, A. G. Perez, R. Torres, and M. A. Otaduy, “Fast deformation of volume data using tetrahedral mesh rasterization,” in Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA ’13. New York, NY, USA: Association for Computing Machinery, 2013, p. 181–185. [Online]. Available: https://doi.org/10.1145/2485895.2485917 [18] G. Ucoluk and I. H. Toroslu, “Automatic reconstruction of broken 3-d surface objects,” Computers Graphics, vol. 23, no. 4, pp. 573–582, 1999. [19] T. Okada, Y. Iwasaki, T. Koyama, N. Sugano, Y.-W. Chen, K. Yonenobu, and Y. Sato, “Computer-assisted preoperative planning for reduction of proximal femoral fracture using 3-d-ct data,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 3, pp. 749–759, 2008. [20] P. F¨urnstahl, G. Sz´ekely, C. Gerber, J. Hodler, J. G. Snedeker, and M. Harders, “Computer assisted reconstruction of complex proximal humerus fractures for preoperative planning,” Medical image analysis, vol. 16, no. 3, pp. 704–720, 2012. [21] J. Pan, X. Han, W. Chen, J. Tang, and K. Jia, “Deep mesh reconstruction from single rgb images via topology modification networks,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9964– 9973. [22] F. Kong, N. Wilson, and S. C. Shadden, “A deep-learning approach for direct whole-heart mesh reconstruction,” arXiv preprint arXiv:2102.07899, 2021. [23] I. Idram, R. D. Bintara, J.-Y. Lai, T. Essomba, and P.-Y. Lee, “Development of mesh-defect removal algorithm to enhance the fitting of 3d-printed parts for comminuted bone fractures,” Journal of Medical and Biological Engineering, vol. 39, no. 6, pp. 855–873, 2019. [24] J. Garcia, Z. Yang, R. Mongrain, R. L. Leask, and K. Lachapelle, “3d printing materials and their use in medical education: a review of current technology and trends for the future,” BMJ Simulation and Technology Enhanced Learning, vol. 4, no. 1, pp. 27–40, 2018. [Online]. Available: https://stel.bmj.com/content/bmjstel/4/1/27.full.pdf [25] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo, “Tetrahedral meshing in the wild,” ACM Trans. Graph., vol. 37, no. 4, pp. 60:1–60:14, 2018. [26] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun, Variational tetrahedral meshing. Association for Computing Machinery, 2005, pp. 617–625. [27] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geometric data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3, pp. 345–405, 1991. [28] F. Aurenhammer, R. Klein, and D.-T. Lee, Voronoi diagrams and Delaunay triangulations. World Scientific Publishing Company, 2013. [29] J.-D. Boissonnat and F. Cazals, “Smooth surface reconstruction via natural neighbour interpolation of distance functions,” Computational Geometry, vol. 22, no. 1-3, pp. 185–203, 2002. [30] J.-D. Boissonnat and S. Oudot, “Provably good sampling and meshing of surfaces,” Graphical Models, vol. 67, no. 5, pp. 405–451, 2005. [31] O. Busaryev, T. K. Dey, and J. A. Levine, “Repairing and meshing imperfect shapes with delaunay refinement,” in 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, 2009, Conference Proceedings, pp. 25–33. [32] H. Si and J. R. Shewchuk, “Incrementally constructing and updating constrained delaunay tetrahedralizations with finite-precision coordinates,” Engineering with Computers, vol. 30, no. 2, pp. 253–269, 2014. [33] Y. Hu, T. Schneider, B. Wang, D. Zorin, and D. Panozzo, “Fast tetrahedral meshing in the wild,” ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp. 117: 1–117: 18, 2020. [34] S. N. Alrawy and F. H. Ali, “Voxelization parallelism using cuda architecture,” Al-Rafidain Engineering Journal (AREJ), vol. 25, no. 1, pp. 1–11, 2020. [35] P. Beisel, “How to check whether the point is in the tetrahedron or not,” June, 18, 2020 2020. [Online]. Available: https://stackoverflow.com/a/61703017 [36] H. Si, “Tetgen, a delaunay-based quality tetrahedral mesh generator,” ACM Transactions on Mathematical Software (TOMS), vol. 41, no. 2, pp. 1–36, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80143-
dc.description.abstract在從三角形模型獲取實心3D體素數據時,大多數現有方法無法處理品質不好的模型。不幸的是,這種品質不好模型又在網路上佔據了全體模型資料的很大一部分。在這篇論文中,我們提出了一種可靠性高的體素化方法,該方法是基於生成一個用戶定義的誤差範圍內的四面體模型。與其他四面體網格生成方法相比,我們的方法會生成品質更好的四面體網格作為中間結果,這使我們能夠利用基於更強假設的更快體素化算法。我們展示了與包括與最先進技術在內的各種方法比較的結果。 我們的貢獻包括一個以三角形模型為輸入並能產生體素化資料的框架,一個效能優於當前技術的未經證實算法的證明,以及各種實驗數據。 此外,還包括在 GPU 和 CPU 上建置的平行化。我們在包括Princeton ModelNet 和Thingi10k 在內的各種數據集上進一步測試了我們的方法,以顯示框架的可靠性,其中我們實現了接近100% 的成功率,而過往方法只能達到50% 左右。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:28:29Z (GMT). No. of bitstreams: 1
U0001-0107202113212700.pdf: 1783467 bytes, checksum: 93e0070af84f0368282f897315f90a65 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"Contents 1 Introduction 1 2 RelatedWork 3 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Voxelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Mesh Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Tetrahedral Mesh generation . . . . . . . . . . . . . . . . . . . . . . . 5 3 Method 6 3.1 Tetrahedral Mesh generating . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Voxelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Philipp B’s Algorithm 9 4.1 Definition and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2.1 Lemma 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2.2 Lemma 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.3 Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2.4 Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Experiments and results 15 5.1 Testing Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2 Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3 Octrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6 Conclusion, Discussion and Future Work 18 Bibliography 19"
dc.language.isoen
dc.subject體素化zh_TW
dc.subject計算幾何zh_TW
dc.subjectcomputation geometryen
dc.subjectvoxelizationen
dc.title基於改進版的四面體網格生成之高容錯體素及視覺化系統zh_TW
dc.titleRobust Voxelization and Visualization by Improved Tetrahedral Mesh Generationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-8603-1515
dc.contributor.oralexamcommittee葉正聖(Hsin-Tsai Liu),梁容輝(Chih-Yang Tseng)
dc.subject.keyword體素化,計算幾何,zh_TW
dc.subject.keywordvoxelization,computation geometry,en
dc.relation.page23
dc.identifier.doi10.6342/NTU202101223
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
U0001-0107202113212700.pdf1.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved