請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80142完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇偉儁(Wei-Jiun Su) | |
| dc.contributor.author | Yu-Jung Lee | en |
| dc.contributor.author | 李雨融 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:28:26Z | - |
| dc.date.available | 2021-08-13 | |
| dc.date.available | 2022-11-23T09:28:26Z | - |
| dc.date.copyright | 2021-08-13 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-09 | |
| dc.identifier.citation | [1] S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, vol. 26, no. 11, pp. 1131–1144, 2003. [2] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, and V. Sundararajan, “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 28–36, 2005. [3] A. Erturk and D. J. Inman, “A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters,” Journal of Vibration and Acoustics, vol. 130, no. 4, p. 041002, 2008. [4] A. Erturk and D. J. Inman, “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations,” Smart Materials and Structures, vol. 18, no. 2, p. 25009, 2009. [5] J. Twiefel and H. Westermann, “Survey on broadband techniques for vibration energy harvesting,” Journal of Intelligent Material Systems and Structures, vol. 24, no. 11, pp. 1291–1302, 2013. [6] S. M. Shahruz, “Design of mechanical band-pass filters for energy scavenging,” Journal of Sound and Vibration, vol. 292, no. 35, pp. 987–998, 2006. [7] A. Erturk, J. M. Renno, and D. J. Inman, “Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs,” Journal of Intelligent Material Systems and Structures, vol. 20, no. 5, pp. 529–544, 2008. [8] W.J. Su and J. W. Zu, “Modeling of V-Shaped Beam-Mass Piezoelectric Energy Harvester: Impact of the Angle Between the Beams,” ASME International Mechanical Engineering Congress and Exposition, pp. 573–579, 2012. [9] H. Wu, L. Tang, Y. Yang, and C. Soh, “A Compact 2 Degree-of-Freedom Energy Harvester with Cut-Out Cantilever Beam,” Japanese Journal of Applied Physics, vol. 51, p. 40211, 2012. [10] Y. Hu and Y. Xu, “A wideband vibration energy harvester based on a folded asymmetric gapped cantilever,” Applied Physics Letters, vol. 104, no. 5, p. 053902, 2014. [11] S. Zhao and A. Erturk, “On the stochastic excitation of monostable and bistable electroelastic power generators: Relative advantages and tradeoffs in a physical system,” Applied Physics Letters, vol. 102, no. 10, p. 103902, 2013. [12] S. Zhou, J. Cao, D. J. Inman, J. Lin, S. Liu, and Z. Wang, “Broadband tristable energy harvester: Modeling and experiment verification,” Applied Energy, vol. 133, pp. 33–39, 2014. [13] M. Soliman, E. Abdel-Rahman, E. El-Saadany, and R. Mansour, “A wideband vibration-based energy harvester,” Journal of Micromechanics and Microengineering, vol. 18, p. 115021, 2008. [14] D. Zhao, W. Xiaoman, C. Yuan, S. Liu, W. Yanhong, C. Liqin, L. Yang, and Q. Cheng, “Analysis of single-degree-of-freedom piezoelectric energy harvester with stopper by incremental harmonic balance method,” Materials Research Express, vol. 5, p. 055502, 2018. [15] L. Gu and C. Livermore, “Impact-driven, frequency upconverting coupled vibration energy harvesting device for low frequency operation,” Smart Materials and Structures, vol. 20, no. 4, p. 45004, 2011. [16] A. A. Basari, S. Awaji, S. Sakamoto, S. Hashimoto, B. Homma, K. Suto, H. Okada, H. Okuno, K. Kobayashi, and S. Kumagai, “Study of the effect of mechanical impact parameters on an impact-mode piezoelectric ceramic power generator,” Ceramics International, vol. 41, no. 9, pp. 12038–12044, 2015. [17] A. A. Basari, S. Hashimoto, B. Homma, H. Okada, H. Okuno, and S. Kumagai, “Design and optimization of a wideband impact mode piezoelectric power generator,” Ceramics International, vol. 42, no. 6, pp. 6962–6968, 2016. [18] E. Jacquelin, S. Adhikari, and M. I. Friswell, “A piezoelectric device for impact energy harvesting,” Smart Materials and Structures, vol. 20, no. 10, p. 105008, 2011. [19] S. Ju and C. H. Ji, “Impact-based piezoelectric vibration energy harvester,” Applied Energy, vol. 214, pp. 139–151, 2018. [20] M. A. Halim and J. Y. Park, “Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation,” Sensors and Actuators, A: Physical, vol. 208, pp. 56–65, 2014. [21] K. Fan, J. Chang, F. Chao, and W. Pedrycz, “Design and development of a multipurpose piezoelectric energy harvester,” Energy Conversion and Management, vol. 96, pp. 430–439, 2015. [22] M. C. Chure, L. Wu, K. K. Wu, C. C. Tung, J. S. Lin, and W. C. Ma, “Power generation characteristics of PZT piezoelectric ceramics using drop weight impact techniques: Effect of dimensional size,” Ceramics International, vol. 40, no. 1 PART A, pp. 341–345, 2014. [23] L. Costanzo and M. Vitelli, “Tuning Techniques for Piezoelectric and Electromagnetic Vibration Energy Harvesters,” Energies, vol. 13, no. 3, 2020. [24] C. Peters, D. Maurath, W. Schock, F. Mezger, and Y. Manoli, “A closed-loop wide-range tunable mechanical resonator for energy harvesting systems,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, p. 094004, 2009. [25] V. R. Challa, M. G. Prasad, Y. Shi, and F. T. Fisher, “A vibration energy harvesting device with bidirectional resonance frequency tunability,” Smart Materials and Structures, vol. 17, no. 1, p. 015035, 2008. [26] M. Bukhari, A. Malla, H. Kim, O. Barry, and L. Zuo, “On a self-tuning sliding-mass electromagnetic energy harvester,” AIP Advances, vol. 10, no. 9, p. 95227, 2020. [27] A. Bokaian, “Natural frequencies of beams under tensile axial loads,” Journal of Sound and Vibration, vol. 142, no. 3, pp. 481–498, 1990. [28] Y. Hu, H. Xue, and H. Hu, “A piezoelectric power harvester with adjustable frequency through axial preloads,” Smart Materials and Structures, vol. 16, no. 5, pp. 1961–1966, 2007. [29] C. Eichhorn, F. Goldschmidtboeing, and P. Woias, “Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, p. 094006, 2009. [30] A. Cammarano, S. G. Burrow, D. A. W. Barton, A. Carrella, and L. R. Clare, “Tuning a resonant energy harvester using a generalized electrical load,” Smart Materials and Structures, vol. 19, no. 5, p. 055003, 2010. [31] W. AlAshtari, M. Hunstig, T. Hemsel, and W. Sextro, “Frequency tuning of piezoelectric energy harvesters by magnetic force,” Smart Materials and Structures, vol. 21, no. 3, p. 035019, 2012. [32] E. S. Leland and P. K. Wright, “Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload,” Smart Materials and Structures, vol. 15, no. 5, pp. 1413–1420, 2006. [33] W. Yu-Jen, C. Tsung-Yi,and Y. Jui-Hsin, “Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency,” Smart Materials and Structures, vol. 26, no. 9, p. 095037, 2017. [34] L. Gu and C. Livermore, “Passive self-tuning energy harvester for extracting energy from rotational motion,” Applied Physics Letters, vol. 97, no. 8, p. 081904, 2010. [35] F. Khameneifar, M. Moallem, and S. Arzanpour, “Modeling and Analysis of a Piezoelectric Energy Scavenger for Rotary Motion Applications,” Journal of Vibration and Acoustics, vol. 133, no. 1, 2011. [36] F. Khameneifar, S. Arzanpour, and M. Moallem, “A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 5, pp. 1527–1534, 2013. [37] M. Guan and W. H. Liao, “Design and analysis of a piezoelectric energy harvester for rotational motion system,” Energy Conversion and Management, vol. 111, pp. 239–244, 2016. [38] W.J. Su, J.H. Lin, and W.C. Li, “Analysis of a Cantilevered Piezoelectric Energy Harvester in Different Orientations for Rotational Motion,” Sensors, vol. 20, no. 4, p. 1206, 2020. [39] S. Fang, S. Wang, S. Zhou, Z. Yang, and W. H. Liao, “Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting,” Journal of Sound and Vibration, vol. 488, p. 115643, 2020. [40] H. X. Zou, W. ming Zhang, W. B. Li, K. X. Wei, Q. H. Gao, Z. K. Peng, and G. Meng, “Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion,” Energy Conversion and Management, vol. 148, pp. 1391–1398, 2017. [41] L. Gu and C. Livermore, “Compact passively self-tuning energy harvesting for rotating applications,” Smart Materials and Structures, vol. 21, no. 1, p. 015002, 2012. [42] X. Rui, Z. Zeng, Y. Li, Y. Zhang, Z. Yang, X. Huang, and Z. Sha, “Modeling and analysis of a rotational piezoelectric energy harvester with limiters,” Journal of Mechanical Science and Technology, vol. 33, no. 11, pp. 5169–5176, 2019. [43] Y. Yang, Q. Shen, J. Jin, Y. Wang, W. Qian, and D. Yuan, “Rotational piezoelectric wind energy harvesting using impact-induced resonance,” Applied Physics Letters, vol. 105, no. 5, p. 053901, 2014. [44] S. Liu, Q. Cheng, D. Zhao, and L. Feng, “Theoretical modeling and analysis of two-degree-of-freedom piezoelectric energy harvester with stopper,” Sensors and Actuators, A: Physical, vol. 245, pp. 97–105, 2016. [45] W.J. Su, “Impact-driven broadband piezoelectric energy harvesting using a two-degrees-of-freedom structure,” Microsystem Technologies, vol. 26, no. 6, pp. 1915–1924, 2020. [46] F. Shaker, “Effect of axial load on mode shapes and frequencies of beams,” National Aeronautics and Space Administration, 1975. [47] A. Erturk and D. J. Inman, “Issues in mathematical modeling of piezoelectric energy harvesters,” Smart Materials and Structures, vol. 17, no. 6, p. 065016, 2008. [48] 黃奕傑, “雙自由度折返樑於旋轉式壓電能量採集之分析,” 臺灣大學機械工程學研究所碩士學位論文, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80142 | - |
| dc.description.abstract | 傳統懸臂梁結構之壓電式能量採集器受限於發電頻寬過窄。為了改善此問題,本論文提出了一個以折返梁為結構的衝擊式壓電能量採集器,探討其在旋轉環境下的性能。折返梁結構具有兩個相近的共振頻率,而藉由旋轉時所造成的離心力可進一步拉近兩個共振頻。同時,衝擊式壓電能量採集器可以簡化梁結構的設計、平衡兩模態的輸出電壓,進一步增加採集頻寬。本研究之動態模型推導以Lagrange equation為基礎,引入衝擊擋板之脈衝力項;電學模型則將受到撞擊的壓電材料等效為單自由度的力電耦合方程式,以此完成系統模型。實驗驗證上,首先以基底激振實驗驗證線性折返梁結構之動態,再對折返梁進行旋轉激振實驗。為了驗證模型的正確性,本研究以結構尺寸、擋板初始間距為參數進行實驗,比較各參數變化的影響,並驗證模型與實驗結果的一致程度。實驗結果顯示,本論文所設計之衝擊式能量採集器確實改善了能量採集器的發電頻寬,也逆轉了兩模態輸出電壓的大小關係。並且綜觀實驗結果,可以發現對結構參數的調整,主要會移動輸出的峰值位置;而若將擋板初始間距調小到一定程度,在耗損些許電壓峰值的同時,能有效拓增輸出電壓的頻寬。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:28:26Z (GMT). No. of bitstreams: 1 U0001-0107202114143700.pdf: 18726787 bytes, checksum: b1a9fc599d85097d152f3e9cb51df240 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 x 符號列表 xi Chapter 1 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 多模態結構 2 1.2.2 非線性外力 3 1.2.3 調頻技術 5 1.2.4 旋轉激振被動調頻 6 1.2.5 複合方法 7 1.3 研究動機與方法 9 1.4 論文架構 10 Chapter 2 旋轉環境折返梁動態模型 11 2.1 單一懸臂梁在旋轉環境中之動態分析 12 2.2 折返梁在旋轉環境中之模態分析 15 2.3 折返梁在旋轉環境中之動態分析 19 2.3.1 能量分析 19 2.3.2 動態方程式 23 Chapter 3 擋板脈衝與電學模型 29 3.1 擋板脈衝模型 30 3.2 電學模型 33 Chapter 4 實驗設計 35 4.1 原型設計 35 4.1.1 折返梁之設計 35 4.1.2 檔板設計 37 4.2 實驗儀器 40 4.3 實驗流程 44 4.3.1 基底激振實驗 44 4.3.2 旋轉激振實驗 45 Chapter 5 驗證與討論 47 5.1 折返梁動態模型驗證 49 5.1.1 基底激振共振頻率驗證 49 5.1.2 旋轉激振模態形狀驗證 53 5.2 結合擋板之系統模型驗證 57 5.2.1 模型參數擬合 57 5.2.2 結構參數調整驗證 59 5.2.3 擋板初始間距調整驗證 66 Chapter 6 結論與未來展望 70 6.1 結論 70 6.2 未來展望 71 參考文獻 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 壓電能量採集器 | zh_TW |
| dc.subject | 旋轉運動 | zh_TW |
| dc.subject | 多模態 | zh_TW |
| dc.subject | 衝擊式 | zh_TW |
| dc.subject | broadband | en |
| dc.subject | impact-driven | en |
| dc.subject | multimodal | en |
| dc.subject | rotational motion | en |
| dc.subject | piezoelectric energy harvester | en |
| dc.title | 旋轉環境下雙自由度衝擊式壓電能量採集器分析 | zh_TW |
| dc.title | Impact Driven Piezoelectric Energy Harvester Using a Two-degree-of-freedom Beam under Rotational Motion | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃育熙(Hsin-Tsai Liu),王建凱(Chih-Yang Tseng) | |
| dc.subject.keyword | 壓電能量採集器,旋轉運動,多模態,衝擊式,寬頻, | zh_TW |
| dc.subject.keyword | piezoelectric energy harvester,rotational motion,multimodal,impact-driven,broadband, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU202101224 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0107202114143700.pdf | 18.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
