Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80126
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏安祺(An-Chi Wei)
dc.contributor.authorShao-Ting Chiuen
dc.contributor.author邱紹庭zh_TW
dc.date.accessioned2022-11-23T09:27:33Z-
dc.date.available2021-08-20
dc.date.available2022-11-23T09:27:33Z-
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-08-04
dc.identifier.citation[1] Laura D. Osellame, Thomas S. Blacker, and Michael R. Duchen. Cellular and molecular mechanisms of mitochondrial function. Best Practice and Research: Clinical Endocrinology and Metabolism, 26(6):711–723, 2012. ISSN 15321908. doi: 10.1016/j.beem.2012.05.003. URL http://dx.doi.org/10.1016/j.beem.2012.05.003. [2] Jonathan R. Friedman and Jodi Nunnari. Mitochondrial form and function. Nature, 505(7483):335–343, 2014. ISSN 0028­0836. doi: 10.1038/nature12985. URL http: //www.nature.com/nature/journal/v505/n7483/full/nature12985.html. [3] Adrienne Mottis, Sébastien Herzig, and Johan Auwerx. Mitocellular communication: Shaping health and disease, 11 2019. ISSN 10959203. URL http://science. sciencemag.org/. [4] Maša Ždralević, Nicoletta Guaragnella, Lucia Antonacci, Ersilia Marra, and Sergio Giannattasio. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stres Response and Cytoprotection. The Scientific World Journal, 2012:1–10, 2012. ISSN 1537­744X. doi: 10.1100/2012/912147. [5] Zhengchang Liu and Ronald a Butow. Mitochondrial retrograde signaling. Annual review of genetics, 40:159–185, 2006. ISSN 0066­4197. doi: 10.1146/annurev. genet.40.110405.090613. URL http://www.ncbi.nlm.nih.gov/pubmed/16771627. [6] Miguel A. Aon, Niraj Bhatt, and Sonia Cortassa. Mitochondrial and cellular mechanisms for managing lipid excess. Frontiers in Physiology, 5 JUL(July):1–13, 2014. ISSN 1664042X. doi: 10.3389/fphys.2014.00282. [7] Nicola King. Amino acids and the mitochondria. In Mitochondria, pages 151–166. Springer, 2007. [8] Dmitry Knorre, Svyatoslav Sokolov, Anna Zyrina, and Fedor Severin. How do yeast sense mitochondrial dysfunction? Microbial Cell, 3(11):401–408, 2016. ISSN 23112638. doi: 10.15698/mic2016.11.537. URL http://microbialcell.com/ researcharticles/how­do­yeast­sense­mitochondrial­dysfunction/. [9] Toni Gabaldón and Martijn A. Huynen. Shaping the mitochondrial proteome. Biochimica et Biophysica Acta ­ Bioenergetics, 1659(2­3):212–220, 2004. ISSN 00052728. doi: 10.1016/j.bbabio.2004.07.011. [10] Carl Malina, Christer Larsson, and Jens Nielsen. Yeast mitochondria: An overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Research, 18(5):1–17, 2018. ISSN 15671364. doi: 10.1093/femsyr/foy040. [11] Fernanda Marques Da Cunha, Nicole Quesada Torelli, and Alicia J. Kowaltowski. Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes. Oxidative Medicine and Cellular Longevity, 2015, 2015. ISSN 19420994. doi: 10.1155/2015/ 482582. [12] Umut Cagin and José Antonio Enriquez. The complex crosstalk between mitochondria and the nucleus: What goes in between? International Journal of Biochemistry and Cell Biology, 63(February):10–15, 2015. ISSN 18785875. doi: 10.1016/j.biocel.2015.01.026. URL http://dx.doi.org/10.1016/j.biocel.2015.01.026. [13] Ronald A. Butow and Narayan G. Avadhani. Mitochondrial signaling: The retrograde response. Molecular Cell, 14(1):1–15, 2004. ISSN 10972765. doi: 10.1016/S1097­2765(04)00179­0. [14] T Sekito, J Thornton, and R A Butow. Mitochondria­to­nuclear signaling is regulated by the subcellular localization of the transcription factors rtg1p and rtg3p. Molecular biology of the cell, 11(6):2103–15, 6 2000. ISSN 1059­1524. doi: 10.1091/mbc.11. 6.2103. [15] Xinsheng Liao and Ronald A. Butow. RTG1 and RTG2: Two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell, 72(1): 61–71, 1993. ISSN 00928674. doi: 10.1016/0092­8674(93)90050­Z. [16] Anna Chelstowska, Zhengchang Liu, Yankai Jia, David Amberg, and Ronald A. Butow. Signalling between mitochondria and the nucleus regulates the expression of a new D­lactate dehydrogenase activity in yeast. Yeast, 15(13):1377–1391, 1999. ISSN 0749503X. doi: 10.1002/(SICI)1097­0061(19990930)15:13<1377:: AID­YEA473>3.0.CO;2­0. [17] S. Michal Jazwinski and Andres Kriete. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Frontiers in Physiology, 3 MAY(May):1–12, 2012. ISSN 1664042X. doi: 10.3389/fphys.2012.00139. [18] Charles B. Epstein, James A. Waddle, W. Hale IV, Varshal Davé, Janet Thornton, Timothy L. Macatee, Harold R. Garner, Ronald A. Butow, Walker Hale Iv, Varshal Davé, Janet Thornton, Timothy L. Macatee, Harold R. Garner, and Ronald A. Butow. Genome­wide responses to mitochondrial dysfunction. Molecular Biology of the Cell, 12(2):297–308, 2001. ISSN 10591524. doi: 10.1091/mbc.12.2.297. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC30944/pdf/mk000297.pdf. [19] Z Liu and R a Butow. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Molecular and cellular biology, 19(10):6720–8, 1999. ISSN 0270­7306. doi: 6720–6728. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 84662 tool=pmcentrez rendertype=abstract. [20] Zanariah Hashim, Yukio Mukai, Takeshi Bamba, and Eiichiro Fukusaki. Metabolic profiling of retrograde pathway transcription factors rtg1 and rtg3 knockout yeast. Metabolites, 4(3):580–98, 2014. ISSN 2218­1989. doi: 10.3390/metabo4030580. URL http://www.mdpi.com/2218­1989/4/3/580/htm. [21] Beverly A. Rothermel, Janet L. Thornton, and Ronald A. Butow. Rtg3p, a ba­sic helix­loop­helix/leucine zipper protein that functions in mitochondrial­induced changes in gene expression, contains independent activation domains. Journal of Biological Chemistry, 272(32):19801–19807, 8 1997. ISSN 00219258. doi: 10.1074/jbc.272.32.19801. [22] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 9 2005. ISBN 9780471241959. doi: 10.1002/047174882X. URL https://onlinelibrary. wiley.com/doi/book/10.1002/047174882X. [23] Josh H McDermott. The cocktail party problem. Current Biology, 19(22):R1024–R1027, 2009. [24] D Jouan­Rimbaud Bouveresse and DN Rutledge. Independent components analysis: theory and applications. In Data Handling in Science and Technology, volume 30, pages 225–277. Elsevier, 2016. [25] TA Trendeleva and RA Zvyagilskaya. Retrograde signaling as a mechanism of yeast adaptation to unfavorable factors. Biochemistry (Moscow), 83(2):98–106, 2018. doi: 10.1134/S0006297918020025. [26] Zeeshan Fatima, Bablu Kumar, Suriya Rehman, and Saif Hameed. Retrograde signaling: A novel antifungal drug target. In New and Future Developments in Microbial Biotechnology and Bioengineering, pages 219–226. Elsevier, 2020. doi: 10.1016/B978­0­12­820528­0.00015­6. URL https://linkinghub.elsevier.com/ retrieve/pii/B9780128205280000156. [27] Zhengchang Liu, Takayuki Sekito, Charles B. Epstein, and Ronald A. Butow. RTG­dependent mitochondria to nucleus signaling is negatively regulated by the seven WD­repeat protein Lst8p. EMBO Journal, 20(24):7209–7219, 2002. ISSN 02614189. doi: 10.1093/emboj/20.24.7209. [28] W. S. Moye­Rowley. Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. In Gene, volume 354, pages 15–21. Gene, 7 2005. doi: 10.1016/j.gene.2005.03.019. URL https://pubmed.ncbi.nlm.nih.gov/15896930/. [29] S. Hans, Z. Fatima, and S. Hameed. Retrograde signaling disruption influences ABC superfamily transporter, ergosterol and chitin levels along with biofilm formation in Candida albicans. Journal de Mycologie Medicale, 29(3):210–218, 9 2019. ISSN 17730449. doi: 10.1016/j.mycmed.2019.07.003. [30] Hongbo Yan, Yunying Zhao, and Linghuo Jiang. The putative transcription factor CaRtg3 is involved in tolerance to cations and antifungal drugs as well as seruminduced filamentation in Candida albicans. FEMS yeast research, 14(4):614–623, 2014. doi: 10.1371/journal.pone.0203079. [31] S. Michal Jazwinski. The retrograde response: When mitochondrial quality control is not enough. Biochimica et Biophysica Acta ­ Molecular Cell Research, 1833(2): 400–409, 2013. ISSN 01674889. doi: 10.1016/j.bbamcr.2012.02.010. URL http: //dx.doi.org/10.1016/j.bbamcr.2012.02.010. [32] Brian P. Ingalls. Mathematical Modelling in Systems Biology : An Introduction, volume 53. 2013. ISBN 978­0­262­01888­3. doi: 10.1007/s00292­008­1023­1. [33] J J W Chen, K Peck, T M Hong, S C Yang, Y P Sher, J Y Shih, R Wu, J L Cheng, S R Roffler, C W Wu, and P C Yang. Global analysis of gene expression in invasion by a lung cancer model. Cancer Research, 61:5223–5230, 2001. ISSN 0008­5472. [34] MercèGomar­Alba, MaAngelesMorcillo­Parra, andMarcelLiDelOlmo. Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions. FEMS Yeast Research, 15(5):fov039, aug 2015. doi: 10.1093/femsyr/fov039. URL http://dx.doi.org/10.1093/femsyr/fov039. [35] Nan Hao, Bogdan A. Budnik, Jeremy Gunawardena, and Erin K. O’Shea. Tunable signal processing through modular control of transcription factor translocation. Science, 339(6118):460–464, 2013. ISSN 10959203. doi: 10.1126/science.1227299. [36] Christopher Rackauckas and Qing Nie. Differentialequations.jl–a performant and feature­rich ecosystem for solving differential equations in julia. Journal of open research software, 5, May 2017. doi: 10.5334/jors.151. [37] Corina Borghouts, Alberto Benguria, Jaroslaw Wawryn, and S. Michal Jazwinski. Rtg2 Protein Links Metabolism and Genome Stability in Yeast Longevity. Genetics, 166(2):765–777, 2004. ISSN 00166731. doi: 10.1534/genetics.166.2.765. [38] Ivanka Dilova, Sofia Aronova, Jenny C Y Chen, and Ted Powers. Tor signaling and nutrient­based signals converge on Mks1p phosphorylation to regulate expression of Rtg1p Rtg3p­dependent target genes. Journal of Biological Chemistry, 279(45): 46527–46535, 2004. ISSN 00219258. doi: 10.1074/jbc.M409012200. [39] José Ribamar Ferreira Júnior, Mário Spírek, Zhengchang Liu, and Ronald A Butow. Interaction between rtg2p and mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae. Gene, 354:2–8, jul 2005. doi: 10.1016/j.gene.2005.03.048. URL http://dx.doi.org/10.1016/j.gene.2005.03.048. [40] Rafaela Maria Rios­anjos, Vittoria De Lima Camandona, Lucas Bleicher, and Jose Ribamar Ferreira­junior. Structural and functional mapping of Rtg2p determinants involved in retrograde signaling and aging of Saccharomyces cerevisiae. pages 1–27, 2017. ISSN 1932­6203. doi: 10.1371/journal.pone.0177090. [41] José Ribamar Ferreira, Mário Spírek, Zhengchang Liu, and Ronald A. Butow. Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae. Gene, 354(1­2 SPEC. ISS.):2–8, 2005. ISSN 03781119. doi: 10.1016/j.gene.2005.03.048. [42] Stefan Legewie, Nils Blüthgen, and Hanspeter Herzel. Quantitative analysis of ultrasensitive responses. FEBS Journal, 272(16):4071–4079, 8 2005. ISSN 1742464X. doi: 10.1111/j.1742­4658.2005.04818.x. URL http://doi.wiley.com/10. 1111/j.1742­4658.2005.04818.x. [43] James E Ferrell and Sang Hoon Ha. Ultrasensitivity part I: Michaelian responses and zero­order ultrasensitivity, 2014. ISSN 13624326. URL http://dx.doi.org/10.1016/ j.tibs.2014.08.003. [44] Takayuki Sekito, Zhengchang Liu, Janet Thornton, and Ronald A. Butow. RTGdependent mitochondria­to­nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3]. Molecular biology of the cell, 13(3):795–804, 3 2002. ISSN 1059­1524. doi: 10.1091/mbc.01­09­0473. [45] Zhi Xin Wang. An exact mathematical expression for describing competitive binding oftwodifferentligandstoaproteinmolecule. FEBSLetters, 360(2):111–114, 21995. ISSN 00145793. doi: 10.1016/0014­5793(95)00062­E. URL http://doi.wiley.com/ 10.1016/0014­5793%2895%2900062­E. [46] Uri Alon. An introduction to systems biology: design principles of biological circuits. pages 37–54. CRC press, 2019. ISBN 978­1439837177. doi: 10.1201/ 9780429283321. [47] Pablo A Iglesias and Brian P Ingalls. Control theory and systems biology. chapter 10. MIT Press, 2009. ISBN 0262013347. [48] Daniel T Gillespie. Chemical Langevin equation. Journal of Chemical Physics, 113 (1):297–306, 2000. ISSN 00219606. doi: 10.1063/1.481811. URL https://doi.org/10.1063/1.481811. [49] Mukund Thattai and Alexander van Oudenaarden. Attenuation of noise in ultrasensitive signaling cascades. Biophysical journal, 82(6):2943–2950, 2002. doi: 10.1016/S0006­3495(02)75635­X. [50] Nicolas E Buchler and Matthieu Louis. Molecular titration and ultrasensitivity in regulatory networks. Journal of molecular biology, 384(5):1106–1119, 2008. doi: 10.1016/j.jmb.2008.09.079. [51] Seth Haney, Lee Bardwell, and Qing Nie. Ultrasensitive responses and specificity in cell signaling. BMC systems biology, 4(1):119, 2010. doi: 10.1186/ 1752­0509­4­119. [52] Lars Folke Olsen, Ann Zahle Andersen, Anita Lunding, Jens Christian Brasen, and Allan K Poulsen. Regulation of glycolytic oscillations by mitochondrial and plasma membrane h+­atpases. Biophysical Journal, 96(9):3850–3861, 2009. doi: 10.1016/ j.bpj.2009.02.026. [53] Aidar D Satroutdinov, Hiroshi Kuriyama, and Harumi Kobayashi. Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS microbiology letters, 98(1­3):261–267, 1992. doi: 10.1111/j.1574­6968.1992.tb05525.x. [54] Peter Richard. The rhythm of yeast. FEMS microbiology reviews, 27(4):547–557, 2003. doi: 10.1016/S0168­6445(03)00065­2. [55] David Lloyd, L Eshantha, J Salgado, Michael P Turner, and Douglas B Murray. Respiratory oscillations in yeast: clock­driven mitochondrial cycles of energization. FEBS letters, 519(1­3):41–44, 2002. [56] David Lloyd, L Eshantha J Salgado, Michael P Turner, Marc TE Suller, and Douglas Murray. Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiology, 148(11):3715–3724, 2002. [57] David Lloyd, Katey M Lemar, L Eshantha J Salgado, Timothy M Gould, and Douglas B Murray. Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosisandtime; ahypothesis. FEMSyeastresearch, 3(4):333–339, 2003. doi: 10.1016/S1567­1356(03)00071­0. [58] Douglas B Murray, Sibel Roller, Hiroshi Kuriyama, and David Lloyd. Clock control of ultradian respiratory oscillation found during yeast continuous culture. Journal of Bacteriology, 183(24):7253–7259, 2001. doi: 10.1128/JB.183.24.7253–7259.2001. [59] S. Adel Sedra and C. Kenneth Smith. Microelectronic circuits. chapter 9. 2009. ISBN 978­0195323030. [60] R a Butow. Cellular responses to mitochondrial dysfunction: it’s not always downhill. Cell death and differentiation, 9(10):1043–5, 2002. ISSN 1350­9047. doi: 10.1038/sj.cdd.4401083. URL http://www.ncbi.nlm.nih.gov/pubmed/12232791. [61] Sean P. Whelan and Brian S. Zuckerbraun. Mitochondrial signaling: Forwards, backwards, and in between. Oxidative Medicine and Cellular Longevity, 2013:1– 10, 2013. ISSN 1942­0900. doi: 10.1155/2013/351613. [62] Emma Heart, Gordon C Yaney, Richard F Corkey, Vera Schultz, Esthere Luc, Lihan Liu, Jude T Deeney, Orian Shirihai, Keith Tornheim, Peter JS Smith, et al. Ca2+, nad (p) h and membrane potential changes in pancreatic β­cells by methyl succinate: comparison with glucose. Biochemical Journal, 403(1):197–205, 2007. doi: 10.1042/BJ20061209. [63] Walter W. Chen, Elizaveta Freinkman, Tim Wang, K??van?? Birsoy, and David M. Sabatini. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell, 2016. ISSN 10974172. doi: 10.1016/j.cell.2016.07.040. [64] Michael V. Miceli, James C. Jiang, Anurag Tiwari, Jose F. Rodriguez­Quiñones, and S. Michal Jazwinski. Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan. Frontiers in Genetics, 2 (JAN):1–11, 2012. ISSN 16648021. doi: 10.3389/fgene.2011.00102. [65] Thomas Nyström. Aging: Filtering out bad mitochondria. Current Biology, 23(23): 1037–1039, 2013. ISSN 09609822. doi: 10.1016/j.cub.2013.10.049. [66] Brooke E. Christian and Gerald S. Shadel. Aging: It’s SIRTainly possible to restore mitochondrial dysfunction. Current Biology, 24(5):R206–R208, 2014. ISSN 09609822. doi: 10.1016/j.cub.2014.01.027. URL http://dx.doi.org/10.1016/j.cub.2014.01.027. [67] Parisa Badiee and Zahra Hashemizadeh. Opportunistic invasive fungal infections: diagnosis clinical management. The Indian journal of medical research, 139(2): 195, 2014. [68] Kamila Jastrzebowska and Iwona Gabriel. Inhibitors of amino acids biosynthesis as antifungal agents. Amino acids, 47(2):227–249, 2015. doi: 10.1007/ s00726­014­1873­1. [69] Mary T Pasko, Stephen C Piscitelli, and Andrea D Van Slooten. Fluconazole: a new triazole antifungal agent. Dicp, 24(9):860–867, 1990. [70] Shweta Singh, Zeeshan Fatima, Kamal Ahmad, and Saif Hameed. Fungicidal action of geraniol against candida albicans is potentiated by abrogated cacdr1p drug efflux and fluconazole synergism. PloS one, 13(8):e0203079, 2018. doi: 10.1371/journal. pone.0203079. [71] Sina Ghaemmaghami, Won­Ki Huh, Kiowa Bower, Russell W Howson, Archana Belle, Noah Dephoure, Erin K O’Shea, and Jonathan S Weissman. Global analysis of protein expression in yeast. Nature, 425(6959):737–741, 2003. [72] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009. ISBN 1441412697. [73] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science engineering, 9(3):90–95, 2007. [74] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/ s41592­019­0686­2. [75] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard­Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Ar­ray programming with NumPy. Nature, 585:357–362, 2020. doi: 10.1038/s41586­020­2649­2. [76] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic computing in python. PeerJ Computer Science, 3: e103, 2017. [77] Takafumi Arakaki, Jake Bolewski, Robin Deits, Keno Fischer, Steven G. Johnson, Matthias Bussonnier, Isaiah Norton, Páll Haraldsson, Matthew Rocklin, Tsur, Viral B. Shah, Daniel Soto, eslgastal, Elias Kuthe, jakirkham, Marius Millea, grahamgill, fnmdx111, Alex Arslan, Darren Christopher Lukas, David Nadlinger, Lilian Besson, Sheehan Olver, Taine Zhao, and scls19fr. Juliapy/pyjulia: Pyjulia v0.5.6, November 2020. URL https://doi.org/10.5281/zenodo.4294940. [78] Wes McKinney. Data structures for statistical computing in python. In Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 51 – 56, 2010. [79] Mihails Delmans and Martin Hemberg. Discrete distributional differential expression (D3E) ­ a tool for gene expression analysis of single­cell RNA­seq data. BMC Bioinformatics, 17(1):110, 12 2016. ISSN 1471­2105. doi: 10.1186/ s12859­016­0944­6. URL http://www.biomedcentral.com/1471­2105/17/110. [80] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical computing. SIAM review, 59(1):65–98, 2017. URL https: //doi.org/10.1137/141000671. [81] Mathieu Besançon, David Anthoff, Alex Arslan, Simon Byrne, Dahua Lin, Theodore Papamarkou, and John Pearson. Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem. arXiv e­prints, page arXiv:1907.08611, 7 2019. [82] John Myles White, Bogumił Kamiński, powerdistribution, Milan Bouchet­Valat, Sean Garborg, Jacob Quinn, Simon Kornblith, cjprybol, Alexey Stukalov, Douglas Bates, Tom Short, Chris DuBois, Harlan Harris, Kevin Squire, Alex Arslan, pdeffebach, David Anthoff, Dave Kleinschmidt, Andreas Noack, Viral B. Shah, Alex Mellnik, Takafumi Arakaki, Tanmay Mohapatra, Peter, Stefan Karpinski, Dahua Lin, timema, ExpandingMan, Florian Oswald, and Lyndon White. Juliadata/dataframes.jl: v0.22.1, November 2020. URL https://doi.org/10.5281/zenodo. 4282946. [83] James J Cai. scGEAToolbox: a matlab toolbox for single­cell RNA sequencing data analysis. Bioinformatics, nov 2019. doi: 10.1093/bioinformatics/btz830. URL http://dx.doi.org/10.1093/bioinformatics/btz830. [84] Christopher A Jackson, Dayanne M Castro, Giuseppe­Antonio Saldi, Richard Bonneau, and David Gresham. Gene regulatory network reconstruction using single­cell rna sequencing of barcoded genotypes in diverse environments. Elife, 9:e51254, 2020. [85] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145, 2012. [86] Jeffrey M Perkel. Julia: come for the syntax, stay for the speed. Nature, 572(7768): 141–143, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80126-
dc.description.abstract粒線體是一種存在於真核細胞中的半自主性胞器,擔任細胞的能量工廠和代謝樞紐,其功能仰賴於細胞核基因體的供給與維護。因此粒線體對細胞核的傳訊過程在修補粒線體上扮演重要的角色。文獻上的研究著重於傳訊過程參與的蛋白質種類,與在不同狀態下對於基因體的定性調控。然而對於此粒線體網路的通訊 性質仍所知甚少。本篇論文採取控制系統的角度,以酵母菌為模式生物,整合粒線體往細胞核傳訊的分子機制,其中包含蛋白質結合與轉錄因子進入細胞核的過程。透過酵素動力學理論,以常微分方程系統來探討粒線體訊號傳遞的過程。本論文分成三個部分,第一部分為粒線體傳訊的布林模型; 第二部分為常微分模型; 第三部分為隨機系統模型。模擬出蛋白分子濃度在粒線體損害的動態過程包含波型、頻率響應及在雜訊影響下的可靠性。進一步的模擬與演算顯示,粒線體傳訊網路為近似於一個雙穩態系統,並附加三個區域性的穩態點。此外,訊號蛋白競爭型結合的過程,是提升敏感度的機制。透過隨機模擬亦發現訊號噪訊比會隨著粒線體損傷訊號增強而減少。本論文提出了粒線體傳訊的數學模型,以定量的角度思考資訊傳遞的過程。這不僅能夠更了解粒線體往細胞核傳訊的機制,也可能應用於致病性酵母的藥物研發與投藥策略。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:27:33Z (GMT). No. of bitstreams: 1
U0001-0407202119023200.pdf: 3571882 bytes, checksum: a652ebb8e1e50847b64874554c1afd5a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"Contents Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xv Denotation xvii Chapter 1 Introduction 1 1.1 Mitochondria quality control­ An overview 1 1.2 Mitochondrial retrograde signaling in yeast 2 1.3 Mitochondrial signaling as a communication system 3 1.4 An ordinary differential equation­based model for mitochondrial ret­rograde signaling 4 1.5 Application of this Study 5 Chapter 2 Methods and Materials 7 2.1 The structure of the differential equation­based model of mitochondrial retrograde signalling in yeast 7 2.2 A Boolean model of mitochondrial network 8 2.3 The expression levels of RTG genes 10 2.4 From Boolean model to ordinary differential equation­based model 11 2.5 Parameter searching with the qualitative data of protein translocation 14 2.6 An ordinary differential equation­based model of mitochondrial ret­rograde signaling in yeast 17 2.7 Ultrasensitivity analysis with relative amplification approach 19 Chapter 3 Results 23 3.1 The steady states of 18 mitochondrial­related conditions are verified by the qualitative studies. 23 3.2 The ultrasensitivity of Bmh/Mksp degradation causes the switch­like response of Rtg1/3p to mitochondrial damage 25 3.3 The competitive binding between Bmhp and Rtg2p with Mksp contributes to the ultrasensitivity of Bmh/Mksp degradation 27 3.4 Quantitative analysis of the activation layer 30 3.4.1 The analytical solution of the activation layer 30 3.4.2 The competitive binding of Bmhp and Rtg2p with Mksp is the source of the ultrasensitivity 31 3.5 Frequency modulation of mitochondrial retrograde signaling 34 3.6 Robustness analysis 38 Chapter 4 Discussion 41 Chapter 5 Concluding Remarks 45 5.0.1 Significance of this study 45 5.0.2 Limitation 46 5.0.3 Future perspective 47 References 49 Appendix A — Key Resources 63 Appendix B — Boolean model of mitochondrial retrograde signaling 65 B.0.4 Stress response and expression levels 65 B.0.5 Model with dynamical inputs 67 B.0.6 Rtg1/3p Translocation under Mulitple Conditions 72 B.0.7 Ordinary differential equation­based model of mitochondrial retro­grade signaling 74 B.0.8 Fitted parameters 76 Appendix C — Package development 81 C.0.9 FindSteadyStates.jl ­ A Julia package for searching steady states of ODE systems 83   List of Figures Figure 1.1 The workflow of the experimental design 6 Figure 2.1 Boolean equivalent circuit of Rtg1/3p translocation. 10 Figure 2.2 The circuit of mitochondrial­to­nucleus communication 19 Figure 3.1 Boolean decision in RTG signaling pathway 24 Figure 3.2 Step responses of Bmh/Mksp, Rtg1pn and Rtg3pn. 26 Figure 3.3 Ultrasensitivity of Bmh/Mksp heterodimer results from molecular titration 29 Figure 3.4 The frequency response of mitochondrial damage signal and RTG protein concentrations 36 Figure 3.5 The frequency analysis of Bmh/Mksp, Rtg1pn and Rtg3pn in re­spect of mitochondrial damage 37 Figure 3.6 Potential map of the Rtg1/3p translocation in response to mitochondrial damage signal 39 Figure 4.1 Mitochondrial retrograde circuit 44 Figure B.1 Expression levels of RTG proteins 66 Figure B.2 Pseudo time plots of yeast gene expression 66 Figure B.3 The retrograde response to mitochondrial damage with sigmoid. . 67 Figure B.3 The retrograde response to mitochondrial damage with square and sinusoidal waveforms. 68 Figure B.4 The input­output relation and Hill coefficient 69 Figure B.5 The square wave response of the proposed mitochondrial retrograde signalling model 69 Figure B.6 The steady­state of Mksp and its heterodimers 70 Figure C.7 Sample code for exploring steady states of an ODE model with FindSteadyStates.jl 84  List of Tables Table2.1 The expression level of RTG proteins from the quantitative Western blot 11 Table A.1 Key Resources 64 Table B.2 RTG­associated proteins 71 Table B.4 The Boolean model of mitochondrial retrograde signaling 73 Table B.5 Properties of Rtg1/3p translocation to nucleus 73 Table B.6 Parameter set of the proposed model 79   "
dc.language.isoen
dc.subject常微分方程zh_TW
dc.subject數學模型zh_TW
dc.subject酵素動力學zh_TW
dc.subject粒線體逆向訊號zh_TW
dc.subject控制系統zh_TW
dc.subjectOrdinary differential equationsen
dc.subjectControl systemsen
dc.subjectMathematical modelingen
dc.subjectEnzyme kineticsen
dc.subjectMitochondrial retrograde signaling (RTG)en
dc.title以微分方程系統解析粒線體對細胞核傳訊的系統特性zh_TW
dc.titleUnderstanding the System Dynamics of Mitochondrial Retrograde Signaling from a Differential Equation­based Frameworken
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂俊毅(Hsin-Tsai Liu),江介宏(Chih-Yang Tseng),黃宣誠,阮雪芬
dc.subject.keyword粒線體逆向訊號,酵素動力學,數學模型,控制系統,常微分方程,zh_TW
dc.subject.keywordMitochondrial retrograde signaling (RTG),Enzyme kinetics,Mathematical modeling,Control systems,Ordinary differential equations,en
dc.relation.page84
dc.identifier.doi10.6342/NTU202101265
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-0407202119023200.pdf3.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved