Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8006
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張倉榮
dc.contributor.authorChun-Chun Changen
dc.contributor.author張鈞淳zh_TW
dc.date.accessioned2021-05-19T18:02:25Z-
dc.date.available2029-12-31
dc.date.available2021-05-19T18:02:25Z-
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-17
dc.identifier.citation1. Bates, P. D. and De Roo, A. P. J., 2000, A simple raster-based model for flood inundation simulation, Journal of Hydrology 236(1-2), 54-77.
2. Bates, P. D., Horritt, M. S. and Fewtrell, T. J., 2010, A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, Journal of Hydrology, 387(1-2), 33–45.
3. Chang, T. J., Wang, C. H. and Chen, A. S., 2015, A Novel Approach to Model Dynamic Flow Interactions between Storm Sewer System and Overland Surface for Different Land Covers in Urban Areas, Journal of Hydrology, 524, 662-679.
4. Chang, T. J., Wang, C. H., Chen, A. S. and Djordjevic´, S., 2018, The effect of inclusion of inlets in dual drainage modelling, Journal of Hydrology, 559, 541-555.
5. Chen, A. S., Hsu, M. H., Chen, T. S. and Chang, T. J., 2005, An integrated inundation model for highly developed urban areas, Water science and Technology, 51(2), 221-9.
6. Dottori, F. and Todini, E., 2010, A 2D flood inundation model based on cellular automata approach, XVIII International Conference on Water Resources, 11789.
7. Dottori, F. and Todini, E., 2011, Developments of a flood inundation model based on the cellular automata approach:testing different methods to improve model performance, Physics and Chemistry of the Earth, Parts A/B/C, 36(7-8), 266-280.
8. Gallegos, H. A., Schubert, J. E. and Sanders, B. F., 2009, Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California, Advances, Water Resources, 32, 1323-1335.
9. Ghimire, B., Chen, A. S., Guidolin, M., Keedwell, E. C., Djordjevic´, S. and Savić, D. A., 2013, Formulation of a fast 2D urban pluvial flood model using a cellular automata approach, Journal of Hydroinformatics, 15(3), 676-686.
10. Gironás, J., Roesner, L. A. and Davis, J., 2015, Storm Water Management Model Application Manual, Department of Civil and Environmental Engineering Colorado State University.
11. Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjevic´, S. and Savić, D. A., 2016, A weighted cellular automata 2D inundation model for rapid flood analysis, Environmental Modelling and Software, 84, 378-394.
12. Guidolin, M., Chen, A. S. and Pasquale, N., 2015, CADDIES:caflood application user guide.
13. Hsu, M. H., Chen, S. H. and Chang, T. J., 2000, Inundation Simulation for Urban Drainage Basin with Storm Sewer System, Journal of Hydrology, 234(1-2), 21-37.
14. Hsu, M. H., Chen, S. H. and Chang, T. J., 2002, Dynamic Inundation Simulation of Storm Water Interaction between Sewer System and Overland Flows, Journal of the Chinese Institute of Engineers, 25(2), 171-177.
15. Huber, W. C. and Dickinson, R. E., 1988, Storm Water Management Model, User’s Manual Ver, IV, U.S. EPA.
16. Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D. and Werner, M. G. F., 2005, An adaptive time step solution for raster-based storage cell modelling of floodplain inundation, Advances, Water Resources, 28, 975-991.
17. Liu, L., Liu, Y., Wang, S., Yu, D., Liu, K., Huang, H. and Hu, G., 2015, Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata, Natural Hazards and Earth System Sciences, 15, 381-391.
18. O’Brien, J. S., Julien, P. Y. and Fullerton, W. T., 1993, Two-Dimensional Water Flood and Mudflow Simulation, Journal of Hydraulic Engineering, 119(2), 244-259.
19. O’Brien, J. S., 2007, FlO-2D User Manual Version 2009.
20. Ozdemir, H., Bates, P. D., Sampson, C. C. and Almeida, G. A. M., 2013, Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data, Hydrology and Earth System Sciences, 17, 4015–4030.
21. Schubert, J. E., Sanders, B. F., Smith, M. J. and Wright, N. G., 2008, Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding, Advances, Water Resources, 31, 1603-1621.
22. 呂育勳,1988年,洪氾區淹水模式之初步研究,國立成功大學水利及海洋工程研究所碩士論文。
23. 黃成甲,1997年,流域洪水與淹水演算模式之研究,國立臺灣大學農業工程研究所碩士論文。
24. 許銘熙,1998年,抽水站與閘門操作對都會區淹水影響之研究(一),行政院國科會研究計畫成果報告。
25. 陳宣宏,2002年,漫地流與雨水下水道水流之交互動態模擬,國立臺灣大學生物環境系統工程學系博士論文。
26. 經濟部水利署水利規劃試驗所,2004年,台中市及周邊排水淹水潛勢與預警系統建立之研究。
27. 陳建元、游繁結、羅俊雄、陳天健、李文正,2005年,細胞自動機的介紹及其在土石流災害模擬的初步應用,中華水土保持學報,36(3), 293-300。
28. 陳加榮,2011年,都市化與氣候變異對都會區淹水之衝擊評估-以臺中都會區為例,國立臺灣大學生物環境系統工程學系碩士論文。
29. 內政部營建署,2011年,下水道誌-政府自辦雨水篇。
30. 謝豐澤,2012年,都市化對都會地區淹水程度及洪災損失之衝擊評估─以臺中都會區為例,國立臺灣大學生物環境系統工程學系碩士論文。
31. 謝宗霖,2013年,都會區淹水模式之比較與應用,國立臺灣大學生物環境系統工程學系碩士論文。
32. 王嘉和,2015年,新一代都會區地表與雨水下水道水流互動之淹水模擬,國立臺灣大學生物環境系統工程學系博士論文。
33. 林吉堃,2018年,都會區快速淹水模擬模式之研發與應用,國立臺灣大學生物環境系統工程學系碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8006-
dc.description.abstract現今都會區淹水模式發展成熟,大多為以求解淺水波方程式之二維漫地流模式耦合一維雨水下水道模式之都會區傳統淹水模式,其可合理模擬都會區之淹水狀況。然而因其計算時間較長,故尚無法大量運用於即時積淹水預報上。以基於細胞自動機概念發展的二維快速漫地流模式(WCA2D模式)所建構的都會區快速淹水模式,可得到與都會區傳統淹水模式非常相近的模擬結果,且可大幅減少演算時間,使得其具有相當的潛力來應用於即時淹水模擬演算上,然其WCA2D模式僅能考慮全區相同的地表曼寧糙度值。
本研究修改WCA2D模式使其細胞出流計算能考慮地表曼寧糙度值,發展出二維曼寧權重細胞自動機淹水模式(Manning Weighted Cellular Automata 2D, MNWCA2D)。本研究考慮地表曼寧糙度值設置方法、細胞出流計算方法以及細胞交界的地表曼寧糙度值給定方法,交互組合為三種模式情境。設置七種理想地形測試其水體傳遞,並將三種模式情境於理想地形之模擬結果與以求解二維淺水波方程式之台大二維淹水模式以及FLO-2D Pro模式進行比較分析。研究結果顯示地表曼寧糙度值以非均一值設置、細胞出流計算方法採用MNWCA2D模式且細胞交界地表曼寧糙度值給定方法以平均法模擬時,其結果與台大二維淹水模式以及FLO-2D Pro模式之模擬結果最為相近。
zh_TW
dc.description.abstractNowadays, urban flood inundation models have gradually matured. Most of them couple the one-dimensional (1D) sewer flow model and the two-dimensional (2D) overland flow model to construct the traditional urban flood inundation model and simulate dynamic flow interactions between storm sewers and overland surface. They can reasonably simulate urban flooding. However, these types of urban flood inundation models are still difficult to be used on real-time forecasting due to long simulation time they require. Utilizing the concept of cellular automata, a two-dimensional rapid overland flow model is developed(WCA2D) and construct the rapid urban flood inundation model. The simulated results of rapid model are quite comparable to those of traditional model. However, the simulation times of the rapid model are significantly reduced of those of the traditional model. So it is evident that the rapid model has potential to be used on real-time forecasting. However, the Manning’s surface roughness in WCA2D model currently can only be the same for whole simulated area.
To solve this limitation, we modify WCA2D model to propose Manning Weighted Cellular Automata 2D Model(MNWCA2D). To evaluate the influence of spatial Manning’s surface roughness, we consider Manning’s surface roughness setting methods, cell outflowing calculation methods, and cell interface’s Manning’s surface roughness giving methods, leading to three model scenarios. In this study, seven idea cases were set to test the water transfer situation of four model scenarios. Three model scenarios simulation results were compared with NTU2D model and FLO-2D Pro model which solve two-dimensional shallow water equations. The result shows that when Manning’s surface roughness is set based on spatial Manning’s surface roughness , cell outflowing is calculated by MNWCA2D model and Manning’s surface roughness on cell interface is assigned as the arithmetic mean of two neighbor cells Manning’s surface roughness, the model scenario simulation results are closest to NTU2D model and FLO-2D Pro model .
en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:02:25Z (GMT). No. of bitstreams: 1
ntu-108-R06622014-1.pdf: 7379589 bytes, checksum: 70cfae70db1560d7ffb02a6cdb24c8fb (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究目的 8
1.4 研究流程 10
第二章 研究方法 12
2.1二維快速漫地流模式 12
2.2細胞交界之地表曼寧糙度值給定方法 21
第三章 理想地形基本設置 24
3.1 理想地形概述 24
3.2 理想地形之地表曼寧糙度值設置 28
第四章 模式情境分析 35
4.1 模式情境設定 35
4.2 理想地形模擬分析 38
第五章 結論與建議 59
5.1 結論 59
5.2 建議 60
參考文獻 62
附錄A 理想地形一觀測點水深歷線 67
附錄B 理想地形二觀測點水深歷線 68
附錄C 理想地形三觀測點水深歷線及水位剖面 69
附錄D 理想地形四觀測點水深歷線及水位剖面 70
附錄E 理想地形五觀測點水深歷線 71
附錄F 理想地形六觀測點水深歷線 72
附錄G 理想地形七觀測點水深歷線 73
dc.language.isozh-TW
dc.title地表曼寧糙度值對都會區快速淹水模擬模式之影響zh_TW
dc.titleThe Effect of Manning’s Surface Roughness on Rapid Flood Inundation Simulation Model in Urban Areasen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高宏名,王嘉和,張高華,陳宣宏
dc.subject.keyword細胞自動機,二維快速漫地流模式,地表曼寧糙度值,zh_TW
dc.subject.keywordCellular automata,2D Rapid overland flow model,Manning’s surface roughness,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201903917
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2029-12-31-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  此日期後於網路公開 2029-12-31
7.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved