Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80048
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾庸哲(Yung-Che Tseng)
dc.contributor.authorWei-En Hsuen
dc.contributor.author許維恩zh_TW
dc.date.accessioned2022-11-23T09:23:04Z-
dc.date.available2021-08-10
dc.date.available2022-11-23T09:23:04Z-
dc.date.copyright2021-08-10
dc.date.issued2021
dc.date.submitted2021-07-20
dc.identifier.citationAnsai, S., Hosokawa, H., Maegawa, S., Naruse, K., Washio, Y., Sato, K., and Kinoshita, M. (2017). Deficiency of Serotonin in Raphe Neurons and Altered Behavioral Responses in Tryptophan Hydroxylase 2-Knockout Medaka (Oryzias latipes). Zebrafish 14, 495-507. Aoi, W., and Marunaka, Y. (2014). Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport. Biomed Res Int 2014, 598986. Bacque-Cazenave, J., Bharatiya, R., Barriere, G., Delbecque, J.P., Bouguiyoud, N., Di Giovanni, G., Cattaert, D., and De Deurwaerdere, P. (2020). Serotonin in Animal Cognition and Behavior. Int J Mol Sci 21. Bagchi, S., Baomar, H.A., Al-Walai, S., Al-Sadi, S., and Fredriksson, R. (2014). Histological analysis of SLC38A6 (SNAT6) expression in mouse brain shows selective expression in excitatory neurons with high expression in the synapses. PLoS One 9, e95438. Barnes, S., Grove, J.C.R., McHugh, C.F., Hirano, A.A., and Brecha, N.C. (2020). Horizontal Cell Feedback to Cone Photoreceptors in Mammalian Retina: Novel Insights From the GABA-pH Hybrid Model. Front Cell Neurosci 14, 595064. Bednarsek, N., Feely, R.A., Beck, M.W., Alin, S.R., Siedlecki, S.A., Calosi, P., Norton, E.L., Saenger, C., Strus, J., Greeley, D., et al. (2020). Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients. Sci Total Environ, 136610. Benneh, C.K., Biney, R.P., Mante, P.K., Tandoh, A., Adongo, D.W., and Woode, E. (2017). Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish-Involvement of GABAergic and 5-HT systems. J Ethnopharmacol 207, 129-145. Blaser, R.E., Chadwick, L., and McGinnis, G.C. (2010). Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 208, 56-62. Blaser, R.E., and Rosemberg, D.B. (2012). Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS One 7, e36931. Bonduriansky, R., Crean, A.J., and Day, T. (2012). The implications of nongenetic inheritance for evolution in changing environments. Evol Appl 5, 192-201. Cachat, J., Stewart, A., Grossman, L., Gaikwad, S., Kadri, F., Chung, K.M., Wu, N., Wong, K., Roy, S., Suciu, C., et al. (2010). Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5, 1786-1799. Chan, K.Y., Grunbaum, D., and O'Donnell, M.J. (2011). Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. J Exp Biol 214, 3857-3867. Chivers, D.P., McCormick, M.I., Nilsson, G.E., Munday, P.L., Watson, S.A., Meekan, M.G., Mitchell, M.D., Corkill, K.C., and Ferrari, M.C. (2014). Impaired learning of predators and lower prey survival under elevated CO2 : a consequence of neurotransmitter interference. Glob Chang Biol 20, 515-522. Chung, W.S., Marshall, N.J., Watson, S.A., Munday, P.L., and Nilsson, G.E. (2014). Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J Exp Biol 217, 323-326. Clark, T.D., Raby, G.D., Roche, D.G., Binning, S.A., Speers-Roesch, B., Jutfelt, F., and Sundin, J. (2020). Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370-375. Dixson, D.L., Munday, P.L., and Jones, G.P. (2010). Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13, 68-75. Esbaugh, A.J., Heuer, R., and Grosell, M. (2012). Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta. J Comp Physiol B 182, 921-934. Esquivel, G., Schruers, K., and Griez, E. (2008). Chapter 5.3 Experimental models: Panic and fear. In Handbook of Anxiety and Fear, pp. 413-435. Ferrari, M.C.O., McCormick, M.I., Munday, P.L., Meekan, M.G., Dixson, D.L., Lönnstedt, O., and Chivers, D.P. (2012). Effects of ocean acidification on visual risk assessment in coral reef fishes. Functional Ecology 26, 553-558. Frank, C.R., Xiang, X., Stagg, B.C., and Ehrlich, J.R. (2019). Longitudinal Associations of Self-reported Vision Impairment With Symptoms of Anxiety and Depression Among Older Adults in the United States. JAMA Ophthalmol 137, 793-800. Gross, C., and Hen, R. (2004). The developmental origins of anxiety. Nat Rev Neurosci 5, 545-552. Hamilton, S.L., Logan, C.A., Fennie, H.W., Sogard, S.M., Barry, J.P., Makukhov, A.D., Tobosa, L.R., Boyer, K., Lovera, C.F., and Bernardi, G. (2017). Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics. PLoS One 12, e0169670. Hamilton, T.J., Holcombe, A., and Tresguerres, M. (2014). CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc Biol Sci 281, 20132509. Heuer, R.M., and Grosell, M. (2014). Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 307, R1061-1084. Ishimatsu, A., Hayashi, M., and Kikkawa, T. (2008). Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series 373, 295-302. Jarrold, M.D., Welch, M.J., McMahon, S.J., McArley, T., Allan, B.J.M., Watson, S.A., Parsons, D.M., Pether, S.M.J., Pope, S., Nicol, S., et al. (2020). Elevated CO2 affects anxiety but not a range of other behaviours in juvenile yellowtail kingfish. Mar Environ Res 157, 104863. Kacprzak, V., Patel, N.A., Riley, E., Yu, L., Yeh, J.J., and Zhdanova, I.V. (2017). Dopaminergic control of anxiety in young and aged zebrafish. Pharmacol Biochem Behav 157, 1-8. Kahlig, K.M., and Galli, A. (2003). Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur J Pharmacol 479, 153-158. Kempen, G.I., Ballemans, J., Ranchor, A.V., van Rens, G.H., and Zijlstra, G.A. (2012). The impact of low vision on activities of daily living, symptoms of depression, feelings of anxiety and social support in community-living older adults seeking vision rehabilitation services. Qual Life Res 21, 1405-1411. Kim, B.M., Kim, J., Choi, I.Y., Raisuddin, S., Au, D.W., Leung, K.M., Wu, R.S., Rhee, J.S., and Lee, J.S. (2016). Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research. Mar Environ Res 113, 141-152. Kroeker, K.J., Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M., and Gattuso, J.P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19, 1884-1896. Maximino, C., da Silva, A.W., Gouveia, A., Jr., and Herculano, A.M. (2011). Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Prog Neuropsychopharmacol Biol Psychiatry 35, 624-631. Maximino, C., de Brito, T.M., Colmanetti, R., Pontes, A.A., de Castro, H.M., de Lacerda, R.I., Morato, S., and Gouveia, A., Jr. (2010). Parametric analyses of anxiety in zebrafish scototaxis. Behav Brain Res 210, 1-7. Meijide, F.J., Da Cuna, R.H., Prieto, J.P., Dorelle, L.S., Babay, P.A., and Lo Nostro, F.L. (2018). Effects of waterborne exposure to the antidepressant fluoxetine on swimming, shoaling and anxiety behaviours of the mosquitofish Gambusia holbrooki. Ecotoxicol Environ Saf 163, 646-655. Munday, P.L. (2014). Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep 6, 99. Nilsson, G.E., Dixson, D.L., Domenici, P., McCormick, M.I., Sørensen, C., Watson, S.-A., and Munday, P.L. (2012). Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change 2, 201-204. Rao, M.B., Didiano, D., and Patton, J.G. (2017). Neurotransmitter-Regulated Regeneration in the Zebrafish Retina. Stem Cell Reports 8, 831-842. Salinas, S., and Munch, S.B. (2012). Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecol Lett 15, 159-163. Sarter, M., Bruno, J.P., and Parikh, V. (2007). Abnormal neurotransmitter release underlying behavioral and cognitive disorders: toward concepts of dynamic and function-specific dysregulation. Neuropsychopharmacology 32, 1452-1461. Taugher, R.J., Lu, Y., Wang, Y., Kreple, C.J., Ghobbeh, A., Fan, R., Sowers, L.P., and Wemmie, J.A. (2014). The bed nucleus of the stria terminalis is critical for anxiety-related behavior evoked by CO2 and acidosis. J Neurosci 34, 10247-10255. Tseng, Y.-C., Hu, M.Y., Stumpp, M., Lin, L.-Y., Melzner, F., and Hwang, P.-P. (2013). CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comp Biochem Physiol A Mol Integr Physiol 165, 119-130. Tseng, Y.C., Yan, J.J., Furukawa, F., and Hwang, P.P. (2020). Did acidic stress resistance in vertebrates evolve as Na+/H+ exchanger‐mediated ammonia excretion in fish? BioEssays 42, e1900161. Uusi-Oukari, M., and Korpi, E.R. (2010). Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 62, 97-135. Xue, W., Wang, P., Li, B., Li, Y., Xu, X., Yang, F., Yao, X., Chen, Y.Z., Xu, F., and Zhu, F. (2016). Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Phys Chem Chem Phys 18, 3260-3271. Michael, M., Eberhart, Z. (1999). Standard for clinical electroretinography. Documenta Ophthalmologica 97, 143–156. Stafford, L.L., David, J.N. (2002). Inhalation of 35% CO2 results in activation of the HPA axis in healthy volunteers. Psychoneuroendocrinology 27, 715–729. Joshua, A.G., Rene H.. (2004) The Serotonergic System and Anxiety. NeuroMolecular Medicinem 05, 27–40 Pwelman, I. (2001). The electroretinogram: ERG.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80048-
dc.description.abstract自工業革命之後,全球環境因人為因素造成大氣中的二氧化碳濃度逐年上升,而氣體分壓上升使得部分二氧化碳會溶入海水中,使海水的酸鹼值逐漸遞減。許多研究指出:當魚類處於高碳酸化的海洋環境中,會造成其生存率、鈣化率、甚至個體的酸鹼平衡機制受到影響,並進而導致其行為模式異常。在過去研究中已證實:腦部神經系統運作會間接影響魚類的行為;此外,部分研究也提出感官器官的受損也會導致魚類行為異常。因此,本研究運用海水青鱂魚(Oryzias melastigma),探討當其跨世代長期馴養於高碳酸環境中,魚類行為模式的改變,是肇因於視覺系統的損害,亦或是腦內神經傳遞物質系統的異常所導致。 研究終將海水青鱂魚分別跨世代馴養在一般正常(控制組,pH~8.1)與高碳酸(酸化組,pH~7.6)的海水中。酸化組別在經過兩個世代的長期馴養後,母魚在novel tank test中有類焦慮行為的產生。此外,公魚與母魚眼睛中感受中波長光的視蛋白基因(opn1mw1),會在跨世代馴養後提升。然而,在視網膜電流圖實驗中發現:高碳酸跨世代並不會改變其後視網膜細胞的總體電訊號反應。在海水青鱂魚全腦的轉錄體分析發現:魚腦中與血清素生合成以及回收機制相關的基因表現,會隨著高碳酸跨世代處理而被誘導。因此,透過我們系統性的實驗結果推測:當海水青鱂魚跨世代地長期馴養於高碳酸環境中,其焦慮行為的發生,可能並非視覺系統的損害所造成,而可能是肇因於腦內血清素系統運作異常。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:23:04Z (GMT). No. of bitstreams: 1
U0001-1507202114594700.pdf: 9725337 bytes, checksum: f1a5dbd51173894c9037824f0ba204cd (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsTable of Contents 摘要 1 Abstract 2 Introduction 5 Ocean acidification 5 The impacts of CO2-induced acidification on marine organisms 5 Effects of ocean acidification on behavioral patterns in marine fish 6 Hypercapnia induced anxiety responses 7 Anxiety responses 7 Effects of impairing visual system 8 Transgenerational acclimation to ocean acidification 9 Aim of this study 10 Materials and methods 12 Experimental animals 12 CO2-induced acidified seawater 12 Novel tank test 12 Drug treatment 13 Preparation of total RNA 13 Reverse-transcription polymerase chain reaction (RT-PCR) analysis 14 Real-time quantitative PCR (qPCR) analysis 14 Next generation sequencing analysis 15 Electroretinogram (ERG) recording system 15 ERG recording protocol 15 Statistical analysis 16 Result 17 Effects of CO2-induced acidification on behavioral pattern in Indian medaka 17 Pharmacological examination of anxiety-like behavioral pattern in Indian medaka 17 Transcript expression levels of opsin homologs in the eyes of marine medaka 18 Estimations of the dark-adaption time for Indian medaka 18 The variety of b-wave latency and amplitude in Indian medaka 19 Estimations of retinal cell responses to fast events in Indian medaka 20 Transcriptomic profiling of neurotransmitters expressions in brains of Indian medaka 20 Gamma-Aminobutyric acid (GABA) 20 Dopamine (DA) 21 Serotonin (5-HT) 22 Discussion 23 The induced anxiety-like behavioral pattern in the hypercapnia environment 23 The hypercapnia environment altered the mRNA expression level of the opsin genes but did not impair the retinal function 24 Irregulate function of glutamate/glutamine cycle in fish brain 26 Altered expression level of dopamine transporter (DAT) in hypercapnia environment 27 Irregulate of production and re-uptake system in the serotonergic system 28 The role of serotonergic neurons in CNS under hypercapnia situation 29 Conclusion 31 References 32 Tables and figures 38
dc.language.isoen
dc.subject血清素zh_TW
dc.subject海洋酸化zh_TW
dc.subject跨世代影響zh_TW
dc.subject海水青鱂魚zh_TW
dc.subject類焦慮行為zh_TW
dc.subject視網膜電流圖zh_TW
dc.subjectanxiety-like behavioral patternen
dc.subjectIndian medakaen
dc.subjectserotoninen
dc.subjectelectroretinogramen
dc.subjecttransgenerational effectsen
dc.subjectocean acidificationen
dc.title海水青鱂魚在酸化環境下行為模式的改變與視覺能力和神經傳遞物質表現zh_TW
dc.titleEffects of ocean acidification on visual performance and neurotransmitter characteristics underlying the behavioral patterns of Oryzias melastigmaen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor蕭仁傑(Jen-Chieh Shiao)
dc.contributor.oralexamcommittee黃鵬鵬(Hsin-Tsai Liu),邵奕達(Chih-Yang Tseng),吳貫忠
dc.subject.keyword海洋酸化,跨世代影響,海水青鱂魚,類焦慮行為,視網膜電流圖,血清素,zh_TW
dc.subject.keywordocean acidification,transgenerational effects,Indian medaka,anxiety-like behavioral pattern,electroretinogram,serotonin,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202101488
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
U0001-1507202114594700.pdf9.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved