請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8003
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾嘉綾(Chia-Lin Chung) | |
dc.contributor.author | Lin-Jie Shu | en |
dc.contributor.author | 舒麟傑 | zh_TW |
dc.date.accessioned | 2021-05-19T18:02:17Z | - |
dc.date.available | 2024-10-22 | |
dc.date.available | 2021-05-19T18:02:17Z | - |
dc.date.copyright | 2014-10-23 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-10-22 | |
dc.identifier.citation | Ahn, I.P., Lee, S.W., and Suh, S.C. 2007. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol. Plant-Microbe Interact. 20:759-768.
Amil-Ruiz, F., Blanco-Portales, R., Munoz-Blanco, J., and Caballero, J.L. 2011. The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol. 52:1873-1903. Baulcombe, D.C. 1999. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant Biol. 2:109-113. Becker, A., and Lange, M. 2010. VIGS-genomics goes functional. Trends Plant Sci. 15:1-4. Boatwright, J.L., and Pajerowska-Mukhtar, K. 2013. Salicylic acid: an old hormone up to new tricks. Mol. Plant Pathol. 14:623-634. Brigneti, G., Martin-Hernandez, A.M., Jin, H.L., Chen, J., Baulcombe, D.C., Baker, B., and Jones, J.D.G. 2004. Virus-induced gene silencing in Solanum species. Plant J. 39:264-272. Burch-Smith, T.M., Anderson, J.C., Martin, G.B., and Dinesh-Kumar, S.P. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 39:734-746. Burch-Smith, T.M., Schiff, M., Liu, Y.L., and Dinesh-Kumar, S.P. 2006. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142:21-27. Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., and Chen, W. 2013. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol. Bioch. 73:106-113. Cao, H., Li, X., and Dong, X. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. U. S. A. 95:6531-6536. Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583-1592. Caplan, J., and Dinesh-Kumar, S.P. 2006. Using viral vectors to silence endogenous genes. Curr. Protoc. Microbiol. 16I.6.1-16I.6.13. Chai, Y.M., Jia, H.F., Li, C.L., Dong, Q.H., and Shen, Y.Y. 2011. FaPYR1 is involved in strawberry fruit ripening. J. Exp. Bot. 62:5079-5089. Chang, S., Puryear, J., and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113-116. Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R., Tang, X., and Zhou, J.M. 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 146:368-376. Chen, J.C., Jiang, C.Z., Gookin, T.E., Hunter, D.A., Clark, D.G., and Reid, M.S. 2004. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol. Biol. 55:521-530. Chern, M., Fitzgerald, H.A., Canlas, P.E., Navarre, D.A., and Ronald, P.C. 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant-Microbe Interact. 18:511-520. Chung, E., Seong, E., Kim, Y.C., Chung, E.J., Oh, S.K., Lee, S., Park, J.M., Joung, Y.H., and Choi, D. 2004. A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol. Cells 17:377-380. Clough, S.J., and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743. Conrath, U., Beckers, G.J.M., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M.-A., Pieterse, C.M.J., Poinssot, B., Pozo, M.J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., Mauch-Mani, B., and Prime, A.P.G. 2006. Priming: Getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071. Curry, K.J., Abril, M., Avant, J.B., and Smith, B.J. 2002. Strawberry Anthracnose: Histopathology of Colletotrichum acutatum and C. fragariae. Phytopathology 92:1055-1063. Darwish, O., Slovin, J.P., Kang, C., Hollender, C.A., Geretz, A., Houston, S., Liu, Z., and Alkharouf, N.W. 2013. SGR: an online genomic resource for the woodland strawberry. BMC Plant biol. 13:223. Debnath, S.C., and Teixeira da Silva, J. 2007. Strawberry culture in vitro: applications in genetic transformation and biotechnology. Fruit Veg. Cereal. Sci. Biotechnol. 1:1-12. Dempsey, D., and Klessig, D.F. 2012. SOS–too many signals for systemic acquired resistance? Trends Plant Sci. 17:538-545. Dijkstra, J., and De Jager, C.P. 1998. Practical plant virology: protocols and exercises. Springer-Verlag. Dong, X.N. 2004. NPR1, all things considered. Curr. Opin. Plant Biol. 7:547-552. Durrant, W.E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209. Ellis, C., Karafyllidis, L., and Turner, J.G. 2002. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol. Plant-Microbe Interact. 15:1025-1030. Endah, R., Beyene, G., Kiggundu, A., van den Berg, N., Schluter, U., Kunert, K., and Chikwamba, R. 2008. Elicitor and Fusarium-induced expression of NPR1-like genes in banana. Plant Physiol. Bioch. 46:1007-1014. Fu, D.Q., Zhu, B.Z., Zhu, H.L., Jiang, W.B., and Luo, Y.B. 2005. Virus-induced gene silencing in tomato fruit. Plant J. 43:299-308. Fu, Z.Q., and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. Fu, Z.Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S.H., Tada, Y., Zheng, N., and Dong, X. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228. Gal-On, A., Meiri, E., Elman, C., Gray, D.J., and Gaba, V. 1997. Simple hand-held devices for the efficient infection of plants with viral-encoding constructs by particle bombardment. J. Virol. Methods 64:103-110. Grellet-Bournonville, C.F., Martinez-Zamora, M.G., Castagnaro, A.P., and Carlos Diaz-Ricci, J. 2012. Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry. Plant Physiol. Bioch. 54:10-16. Guidarelli, M., Carbone, F., Mourgues, F., Perrotta, G., Rosati, C., Bertolini, P., and Baraldi, E. 2011. Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathol. 60:685-697. Hajdukiewicz, P., Svab, Z., and Maliga, P. 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25:989-994. Holzberg, S., Brosio, P., Gross, C., and Pogue, G.P. 2002. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 30:315-327. Hummer, K.E., Bassil, N., and Njuguna, W. 2011. Fragaria. Springer, Berlin, Heidelberg. Igarashi, A., Yamagata, K., Sugai, T., Takahashi, Y., Sugawara, E., Tamura, A., Yaegashi, H., Yamagishi, N., Takahashi, T., Isogai, M., Takahashi, H., and Yoshikawa, N. 2009. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407-416. Jia, H.F., Chai, Y.M., Li, C.L., Lu, D., Luo, J.J., Qin, L., and Shen, Y.Y. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157:188-199. Jia, H.F., Lu, D., Sun, J.H., Li, C.L., Xing, Y., Qin, L., and Shen, Y.Y. 2013. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J. Exp. Bot. 64:1677-1687. Kinkema, M., Fan, W.H., and Dong, X.N. 2000. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339-2350. Koornneef, A., and Pieterse, C.M.J. 2008. Cross talk in defense signaling. Plant Physiol. 146:839-844. Kumagai, M.H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L.K. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. U. S. A. 92:1679-1683. Lamprecht, S., and Jelkmann, W. 1997. Infectious cDNA clone used to identify Strawberry mild yellow edge-associated potexvirus as causal agent of the disease. J. Gen. Virol. 78:2347-2353. Laurie-Berry, N., Joardar, V., Street, I.H., and Kunkel, B.N. 2006. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol. Plant-Microbe Interact. 19:789-800. Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71-82. Le Henanff, G., Heitz, T., Mestre, P., Mutterer, J., Walter, B., and Chong, J. 2009. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC Plant Biol. 9:54. Le Henanff, G., Farine, S., Kieffer-Mazet, F., Miclot, A.-S., Heitz, T., Mestre, P., Bertsch, C., and Chong, J. 2011. Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234:405-417. Lee, L.Y., Fang, M.J., Kuang, L.Y., and Gelvin, S.B. 2008. Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4:24. Li, J.-F., Li, L., and Sheen, J. 2010. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. Plant Methods 6:1. Li, W., Yuan, R.C., Burns, J.K., Timmer, L.W., and Chung, K.R. 2003. Genes for hormone biosynthesis and regulation are highly expressed in citrus flowers infected with the fungus Colletotrichum acutatum, causal agent of postbloom fruit drop. J. Am. Soc. Hortic. Sci. 128:578-583. Liao, J.Y., Lin, N.C., Yeh, H.H., and Chung, C.L. 2013. Uncovering salicylic acid-mediated defense network in two cultivated strawberries (Fragaria х ananassa). Phytopathology 103:82-82. Liu, G., Kennedy, R., Greenshields, D.L., Peng, G., Forseille, L., Selvaraj, G., and Wei, Y. 2007. Detached and attached Arabidopsis leaf assays reveal distinctive Defense responses against hemibiotrophic Colletotrichum spp. Mol. Plant-Microbe Interact. 10:1308-1319. Schiff, M., and Dinesh-Kumar, S.P. 2002. Virus-induced gene silencing in tomato. Plant J. 31:777-786. Lu, H.C., Hsieh, M.H., Chen, C.E., Chen, H.H., Wang, H.I., and Yeh, H.H. 2012. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid. Mol. Plant-Microbe Interact. 25:738-746. Macfarlane, S.A. 2010. Tobraviruses-plant pathogens and tools for biotechnology. Mol. Plant Pathol. 11:577-583. Martinez Zamora, M.G., Castagnaro, A.P., and Diaz Ricci, J.C. 2004. Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol. Genet. Genomics 272:480-487. Martinez Zamora, M.G., Grellet Bournonville, C., Castagnaro, A.P., and Diaz Ricci, J.C. 2012. Identification and characterisation of a novel class I endo-beta-1,3-glucanase regulated by salicylic acid, ethylene and fungal pathogens in strawberry. Func. Plant Biol. 39:412-420. Mou, Z., Fan, W., and Dong, X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944. Mukhtar, M.S., Nishimura, M.T., and Dangl, J. 2009. NPR1 in plant defense: It's not over 'til it's turned over. Cell 137:804-806. Nagamatsu, A., Masuta, C., Senda, M., Matsuura, H., Kasai, A., Hong, J.S., Kitamura, K., Abe, J., and Kanazawa, A. 2007. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant biotechnol. J. 5:778-790. Pajerowska-Mukhtar, K.M., Emerine, D.K., and Mukhtar, M.S. 2013. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 18:402-411. Penninckx, I., Eggermont, K., Terras, F., Thomma, B., De Samblanx, G.W., Buchala, A., Metraux, J.-P., Manners, J.M., and Broekaert, W.F. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309-2323. Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.-P., and Broekaert, W.F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103-2113. Perfect, S.E., Hughes, H.B., O'Connell, R.J., and Green, J.R. 1999. Colletotrichum - A model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27:186-198. Pieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C., and Bakker, P.A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347-375. Pieterse, C.M., Van Wees, S.C., Van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., and Van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C.M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316. Purkayastha, A., and Dasgupta, I. 2009. Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol. Bioch. 47:967-976. Ratcliff, F., Martin-Hernandez, A.M., and Baulcombe, D.C. 2001. Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25:237-245. Roetschi, A., Si-Ammour, A., Belbahri, L., Mauch, F., and Mauch-Mani, B. 2001. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 28:293-305. Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937-946. Sandhu, D., Tasma, I.M., Frasch, R., and Bhattacharyya, M.K. 2009. Systemic acquired resistance in soybean is regulated by two proteins, orthologous to Arabidopsis NPR1. BMC Plant Biol. 9:105. Senthil-Kumar, M., and Mysore, K.S. 2011. New dimensions for VIGS in plant functional genomics. Trends Plant Sci. 16:656-665. Senthil-Kumar, M., Hema, R., Anand, A., Kang, L., Udayakumar, M., and Mysore, K.S. 2007. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol. 176:782-791. Shi, Z., Zhang, Y., Maximova, S.N., and Guiltinan, M.J. 2013a. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC Plant Biol. 13:204. Shi, Z., Maximova, S.N., Liu, Y., Verica, J., and Guiltinan, M.J. 2010. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol. 10:248. Shi, Z., Maximova, S., Liu, Y., Verica, J., and Guiltinan, M.J. 2013b. The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis. Mol. Plant 6:802-816. Shulaev, V., Sargent, D.J., Crowhurst, R.N., Mockler, T.C., Folkerts, O., Delcher, A.L., Jaiswal, P., Mockaitis, K., Liston, A., Mane, S.P., Burns, P., Davis, T.M., Slovin, J.P., Bassil, N., Hellens, R.P., Evans, C., Harkins, T., Kodira, C., Desany, B., Crasta, O.R., Jensen, R.V., Allan, A.C., Michael, T.P., Setubal, J.C., Celton, J.-M., Rees, D.J.G., Williams, K.P., Holt, S.H., Rojas, J.J.R., Chatterjee, M., Liu, B., Silva, H., Meisel, L., Adato, A., Filichkin, S.A., Troggio, M., Viola, R., Ashman, T.-L., Wang, H., Dharmawardhana, P., Elser, J., Raja, R., Priest, H.D., Bryant, D.W., Jr., Fox, S.E., Givan, S.A., Wilhelm, L.J., Naithani, S., Christoffels, A., Salama, D.Y., Carter, J., Girona, E.L., Zdepski, A., Wang, W., Kerstetter, R.A., Schwab, W., Korban, S.S., Davik, J., Monfort, A., Denoyes-Rothan, B., Arus, P., Mittler, R., Flinn, B., Aharoni, A., Bennetzen, J.L., Salzberg, S.L., Dickerman, A.W., Velasco, R., Borodovsky, M., Veilleux, R.E., and Folta, K.M. 2011. The genome of woodland strawberry (Fragaria vesca). Nat Genet.43:109-116. Silva, K.J.P., Brunings, A.M., Peres, N.A., Folta, K.M., and Mou, Z. 2013. Enhance resistance against Colletotrichum gloeosporioides in strawberry by overexpressing the Arabidopsis NPR1 gene. Phytopathology 103:134-134. Spoel, S.H., Johnson, J.S., and Dong, X. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. U. S. A. 104:18842-18847. Spoel, S.H., Mou, Z., Tada, Y., Spivey, N.W., Genschik, P., and Dong, X. 2009. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860-872. Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., and Dong, X. 2008. Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952-956. Thomma, B., Eggermont, K., Penninckx, I., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., and Broekaert, W.F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. U. S. A. 95:15107-15111. Thomma, B.P., Eggermont, K., Tierens, K.F.-J., and Broekaert, W.F. 1999. Requirement of functional Ethylene-Insensitive-2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121:1093-1101. Tian, J., Pei, H., Zhang, S., Chen, J., Chen, W., Yang, R., Meng, Y., You, J., Gao, J., and Ma, N. 2014. TRV-GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. J. Exp. Bot. 65:311-322. van Wees, S.C., de Swart, E.A., van Pelt, J.A., van Loon, L.C., and Pieterse, C.M. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 97:8711-8716. Yoo, S.D., Cho, Y.H., and Sheen, J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2:1565-1572. Zhang, Y., Cheng, Y.T., Qu, N., Zhao, Q., Bi, D., and Li, X. 2006. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J. 48:647-656. Zhang, Y., Wang, X., Cheng, C., Gao, Q., Liu, J., and Guo, X. 2008. Molecular cloning and characterization of GhNPR1, a gene implicated in pathogen responses from cotton (Gossypium hirsutum L.). Bioscience Rep. 28:7-14. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8003 | - |
dc.description.abstract | 草莓是全世界重要的水果之一,然而每年因病蟲的危害所造成的損失是草莓生產上最重要的限制因子,其中草莓炭疽病對於草莓幼苗的危害相對嚴重。本實驗室先前研究發現,將兩種栽培種草莓處理水楊酸後,其抗炭疽病能力會增加;針對水楊酸處理過的草莓葉片進行次世代定序,並分析轉錄體後發現,許多基因的表現受到水楊酸誘導而呈顯著變化,其中部分基因可能與草莓抗炭疽病有關,本研究選擇了草莓的 NPR1 (non-expressor of pathogenesis related genes-1) - like基因群作為進行功能性基因體的候選基因。目前已知NPR1蛋白為在阿拉伯芥水楊酸抗病網絡上極關鍵的調控因子,為了要驗證NPR1-like基因否也是草莓抗炭疽病的關鍵,挑選了三個具潛力的NPR1-like基因Fagene20070、Fagene28768與Fagene28770做進一步探討。在栽培種草莓桃園三號中,Fagene20070表現量皆會受到水楊酸的處理而提升,Fagene28768與Fagene28770則不顯著;然而將桃園三號接種炭疽病菌後Fagene28768與Fagene2877 被大量誘導,但Fagene20070表現量無明顯改變。將Fvgene20070轉殖到阿拉伯芥野生型與npr1突變株中,藉此驗證該基因是否與阿拉伯芥的NPR1功能相同。結果發現,處理水楊酸後,過量表現 Fagene20070 並不會誘導 NPR1 下游之 PR1 的表現,反而使其表現量下降。在野生阿拉伯芥中過量表現 Fagene20070 會降低其對Pseudomonas syringae pv. tomato strain DC3000的抗性; 然而此現象在 npr1突變株中並不會,揭示Fvgene20070在阿拉伯芥上是一NPR1之負調控者的角色。為了建立一個可以對草莓基因功能性分析高通量之篩選平台,初步使用了真空抽氣接種、機械接種與基因槍等方法並搭配不同之接種原、緩衝液配方與環境條件,都未能使TRV成功感染草莓。因此未來需要尋求其他接種原、草莓寄主與不同的方法來成功建立在草莓上的病毒誘導基因靜默系統。 | zh_TW |
dc.description.abstract | Strawberries (Fragaria spp.) are one of the most popular fruits in the world due to their delicious flavor and nutritional value but the presence of strawberry pest threats their production. Anthracnose of strawberry, caused by Colletotrichum gloeosporioides, is a devastating disease which poses serious threat to strawberry production. This hemibiotrophic fungal pathogen is known to induce salicylic acid (SA)-mediated defense signaling pathway in strawberry. A previous study in our lab showed that SA treatment increased the resistance of strawberry cultivar Taoyuan no.3 against anthracnose. An RNA-seq transcriptomic analysis of leaves from SA-treated strawberry leaves further revealed a large number of genes potentially involved in SA defense network in strawberry. Among numerous candidate genes, three putative NPR1 (non-expressor of pathogenesis related genes-1)-like genes, Fagene20070, Fagene28768 and Fagene28770, were chosen for further study. In strawberry cultivar Taoyuan no.3, the expression level of Fagene20070 in SA-treated plants was higher than that in the control plants but not Fagene28768 and Fagene28770. In contrast, inoculation of C. gloeosporioides significantly induced the expression of Fagene28768 and Fagene28770, but not that of Fagene20070 in Taoyuan 3. Furthermore, we introduced 35Spro:Fvgene20070 into the wild-type and npr1 mutant of Arabidopsis to investigate whether they can complement the function of the Arabidopsis npr1 gene. The expression level of AtPR1, SA-pathway marker gene, in wild-type background transgenic lines were less than wild-type after Arabidopsis treated with SA and AtPR1 in npr1 transgenic lines were also suppressed. The transgenic lines were inoculated with Pseudomonas syringae pv. tomato (Pst) strain DC3000 to investigate the resistant ability of transgenic lines. Fvgene20070 decreased the resistant ability against Pst DC3000 in wild-type Arabidopsis; however, it did not affect npr1 mutant. Accordingly, gene20070 was determined to suppress the NPR1-medited SA signaling pathway against DC3000. In addition, TRV-based virus-induced gene silencing (VIGS) was performed to develop a technique for functional genetics. Nevertheless, TRV can’t successfully propagate in strawberry no matter we operated three different inoculation methods paired with various kinds of inoculums, inoculation buffers and environmental conditions. After all, other virus vectors, different strawberry hosts or inoculation methods should be adjusted to establish the VISG system on strawberry in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T18:02:17Z (GMT). No. of bitstreams: 1 ntu-103-R01633012-1.pdf: 2236356 bytes, checksum: ebf64b4c31969f32a06f9c4a6f6df42e (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 中文摘要 ........................................................................................................................... I
Abstract ........................................................................................................................... III General Introduction and Objectives ................................................................................ 1 Strawberry ................................................................................................................ 1 Strawberry Anthracnose ........................................................................................... 2 Objectives ................................................................................................................. 3 Chapter 1 Strawberry NPR1-like genes heterologous expression in Arabidopsis thaliana .......................................................................................................................................... 5 Introduction ...................................................................................................................... 5 Salicylic Acid (SA)-mediated Defense ..................................................................... 5 Crosstalk between SA and JA/ET signaling pathways ............................................. 6 NON-EXPRESSOR OF PATHOGENESIS-RELATED proteins ............................ 8 Materials and Methods ................................................................................................... 13 Plant Materials and Growth Conditions ................................................................. 13 Fungal Pathogen and Culture Conditions ............................................................... 14 Bacterial Strains and Culture Conditions ............................................................... 14 The anthracnose inoculation assay ......................................................................... 14 The Pseudomonas Inoculation assay ...................................................................... 15 RNA Isolation from Strawberry, Tobacco and Arabidopsis Leaves ....................... 15 Semi-quantitative RT -PCR and Quantitative Real-time RT -PCR ........................... 17 Isolation of Plasmid ................................................................................................ 19 Elution of DNA from Agarose Gel ......................................................................... 19 Preparation of Competent Cell and Bacterial Transformation ............................... 20 Construction of the binaray vector carrying Fvgene20070 for Arabidopsis Transformation ....................................................................................................... 21 3’ RACE (Rapid Amplification of cDNA Ends) of Fvgene28770 ......................... 22 Construction of Fvgene20070 tagged with GFP .................................................... 23 Protoplast isolation, polyethylene glycol transfection and observation ................. 24 Results ............................................................................................................................ 25 The structure feature of three strawberry NPR-like protein sequences .................. 25 Phylogenetic analysis of strawberry NPR-like genes ............................................. 26 Induction of cultivated strawberry NPR-like genes by SA .................................... 27 Inoculation of Colletotrichum induces the expression of NPR-like genes in leaves of cultivated strawberry .......................................................................................... 27 Ectopic expression of Fvgene20070 in Arabidopsis thaliana wild-type and npr1 mutant suppressed the SA-mediated PR1 gene expression .................................... 28 Arabidopsis wild-type plants overexpressing Fvgene20070 is more susceptible to P. syringae pv. tomato DC3000 .................................................................................. 30 Subcellular localization of Fvgene20070 ............................................................... 31 Discussions ..................................................................................................................... 32 Tables and Figures .......................................................................................................... 38 Chapter 2 Development of the virus-induced gene silencing technique in strawberry leaves .............................................................................................................................. 56 Introductions ................................................................................................................... 56 Virus-induced Gene Silencing (VIGS) in Plants .................................................... 56 TRV -based Virus-induced Gene Silencing ............................................................. 58 Materials and Methods ................................................................................................... 60 Plant Materials and Growth Conditions ................................................................. 60 RNA Isolation and RT -PCR .................................................................................... 60 Construction of Tobacco rattle virus (TRV) carrying egfp ..................................... 61 TRV Inoculation on Strawberry and Tobacco ........................................................ 62 Results ............................................................................................................................ 65 Infectivity of TRV and TRV -GFP in Nicotiana bethamiana .................................. 65 TRV inoculation on strawberry by vacuum infiltration .......................................... 65 TRV inoculation on strawberry by mechanical inoculation ................................... 66 TRV inoculation on strawberry by Handygun ........................................................ 66 Discussions ..................................................................................................................... 68 Tables and Figures .......................................................................................................... 71 References ...................................................................................................................... 79 | |
dc.language.iso | en | |
dc.title | 驗證草莓NPR1-like基因於抗炭疽病所扮演之角色與建立草莓之病毒誘導基因靜默技術 | zh_TW |
dc.title | Validation of the role of NPR1-like genes in defense against anthracnose in strawberry and development of the virus-induced gene silencing technique | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林乃君(Nai-Chun Lin) | |
dc.contributor.oralexamcommittee | 劉瑞芬(Ruey-Fen Liou),葉信宏(Hsin-Hung Yeh) | |
dc.subject.keyword | 草莓,阿拉伯芥,水楊酸抗病路徑,草莓炭疽病,NPR1-like 基因,病毒誘導基因靜默,Tobacco rattle virus, | zh_TW |
dc.subject.keyword | Strawberry,Arabidopsis,Salicylic acid-mediated defense signaling pathway,Strawberry anthracnose,NPR1-like genes,Virus-induced gene silencing,Tobacco rattle virus, | en |
dc.relation.page | 90 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-10-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
dc.date.embargo-lift | 2024-10-22 | - |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 2.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。