請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80034完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳正平(Jen-Ping Chen) | |
| dc.contributor.author | Chia-Hsin Lee | en |
| dc.contributor.author | 李家欣 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:22:17Z | - |
| dc.date.available | 2021-09-02 | |
| dc.date.available | 2022-11-23T09:22:17Z | - |
| dc.date.copyright | 2021-09-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-17 | |
| dc.identifier.citation | Addepalli, B., and E. R. Pardyjak, 2013: Investigation of the flow structure in step-up street canyons—mean flow and turbulence statistics. Boundary-layer meteorology, 148, 133-155. Ahmad, K., M. Khare, and K. Chaudhry, 2005: Wind tunnel simulation studies on dispersion at urban street canyons and intersections—a review. Journal of Wind Engineering and Industrial Aerodynamics, 93, 697-717. Almbauer, R., D. Öttl, M. Bacher, and P. Sturm, 2000: Simulation of the air quality during a field study for the city of Graz. Atmospheric Environment, 34, 4581-4594. Anfossi, D., S. Alessandrini, S. T. Castelli, E. Ferrero, D. Oettl, and G. Degrazia, 2006: Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system. Atmospheric Environment, 40, 7234-7245. Anfossi, D., G. Tinarelli, S. Trini Castelli, E. Ferrero, D. Oettl, G. Degrazia, and L. Mortarini, 2010: Well mixed condition verification in windy and low wind speed conditions. International Journal of Environment and Pollution, 40, 49-61. Assael, M., M. Delaki, and K. Kakosimos, 2008: Applying the OSPM model to the calculation of PM10 concentration levels in the historical centre of the city of Thessaloniki. Atmospheric Environment, 42, 65-77. Assimakopoulos, V. D., H. ApSimon, and N. Moussiopoulos, 2003: A numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations. Atmospheric Environment, 37, 4037-4049. Bailey, D. T., 2000: Meteorological monitoring guidance for regulatory modeling applications. DIANE Publishing. Beelen, R., and Coauthors, 2008: Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiology, 702-710. Beelen, R., and Coauthors, 2014: Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. The lancet, 383, 785-795. Benson, P. E., 1992: A review of the development and application of the CALINE3 and 4 models. Atmospheric Environment. Part B. Urban Atmosphere, 26, 379-390. Berchet, A., K. Zink, D. Oettl, J. Brunner, L. Emmenegger, and D. Brunner, 2017a: Evaluation of high-resolution GRAMM–GRAL (v15. 12/v14. 8) NO x simulations over the city of Zürich, Switzerland. Geoscientific Model Development, 10, 3441-3459. Berchet, A., K. Zink, C. Muller, D. Oettl, J. Brunner, L. Emmenegger, and D. Brunner, 2017b: A cost-effective method for simulating city-wide air flow and pollutant dispersion at building resolving scale. Atmospheric environment, 158, 181-196. Berkowicz, R., 2000: OSPM-A parameterised street pollution model. Environmental monitoring and assessment, 65, 323-331. Carruthers, D., and Coauthors, 1994: UK-ADMS: A new approach to modelling dispersion in the earth's atmospheric boundary layer. Journal of wind engineering and industrial aerodynamics, 52, 139-153. Chan, C., X. Xu, Y. S. Li, K. Wong, G. Ding, L. Chan, and X. Cheng, 2005: Characteristics of vertical profiles and sources of PM2. 5, PM10 and carbonaceous species in Beijing. Atmospheric Environment, 39, 5113-5124. Chen, S., and Coauthors, 2019: A big data analysis of PM2. 5 and PM10 from low cost air quality sensors near traffic areas. Aerosol and Air Quality Research, 19, 1721-1733. Cuhadaroglu, B., and E. Demirci, 1997: Influence of some meteorological factors on air pollution in Trabzon city. Energy and buildings, 25, 179-184. Dabberdt, W. F., F. Ludwig, and W. B. Johnson Jr, 1973: Validation and applications of an urban diffusion model for vehicular pollutants. Atmospheric Environment (1967), 7, 603-618. Du, X., Q. Kong, W. Ge, S. Zhang, and L. Fu, 2010: Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China. Journal of Environmental Sciences, 22, 1757-1764. Elliot, P., J. C. Wakefield, N. G. Best, and D. J. Briggs, 2000: Spatial epidemiology: methods and applications. Oxford University Press. Fann, N., A. D. Lamson, S. C. Anenberg, K. Wesson, D. Risley, and B. J. Hubbell, 2012: Estimating the national public health burden associated with exposure to ambient PM2. 5 and ozone. Risk Analysis: An International Journal, 32, 81-95. Fu, X., and Coauthors, 2017: Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model. Atmospheric Environment, 165, 111-121. Garratt, J. R., 1994: The atmospheric boundary layer. Earth-Science Reviews, 37, 89-134. Glickman, T. S., and W. Zenk, 2000: Glossary of meteorology. AMS (American Meteorological Society). Gu, Z.-L., Y.-W. Zhang, Y. Cheng, and S.-C. Lee, 2011: Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Building and Environment, 46, 2657-2665. Hao, C., X. Xie, Y. Huang, and Z. Huang, 2019: Study on influence of viaduct and noise barriers on the particulate matter dispersion in street canyons by CFD modeling. Atmospheric Pollution Research, 10, 1723-1735. Härkönen, J., 2002: Regulatory dispersion modelling of traffic-originated pollution. He, J., and Coauthors, 2016: Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing–Part 2: Impact of vehicle emission on urban air quality. Atmospheric Chemistry and Physics, 16, 3171-3184. Hertel, O., and Coauthors, 2001: Human exposure to outdoor air pollution (IUPAC technical report). Pure and Applied Chemistry, 73, 933-958. Hunter, L., G. Johnson, and I. Watson, 1992: An investigation of three-dimensional characteristics of flow regimes within the urban canyon. Atmospheric Environment. Part B. Urban Atmosphere, 26, 425-432. Jensen, S., and Coauthors, 2016: Air Quality at Your Street-Public Digital Map of Air Quality in Denmark. Sixth Scientific Meeting EuNetAir. AMA Association for Sensors and Measurement, Academy of Sciences, 14-17. Jing, B., and Coauthors, 2016: Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing–Part 1: Development and evaluation of vehicle emission inventory. Atmospheric Chemistry and Physics, 16, 3161-3170. Kurz, C., R. Orthofer, P. Sturm, A. Kaiser, U. Uhrner, R. Reifeltshammer, and M. Rexeis, 2014: Projection of the air quality in Vienna between 2005 and 2020 for NO2 and PM10. Urban Climate, 10, 703-719. LANDESREGIERUNG, A. D. S., 2018: Documentation of the Lagrangian Particle Model GRAL (Graz Lagrangian Model) Vs. 19.1. Leelőssy, Á., F. Molnár, F. Izsák, Á. Havasi, I. Lagzi, and R. Mészáros, 2014: Dispersion modeling of air pollutants in the atmosphere: a review. Central European Journal of Geosciences, 6, 257-278. Li, J., and Coauthors, 2020a: Integrating low-cost air quality sensor networks with fixed and satellite monitoring systems to study ground-level PM2. 5. Atmospheric Environment, 223, 117293. Li, T., and Coauthors, 2018a: All-cause mortality risk associated with long-term exposure to ambient PM2· 5 in China: a cohort study. The Lancet Public Health, 3, e470-e477. Li, X., D. Lopes, K. Mok, A. Miranda, K. Yuen, and K. Hoi, 2019: Development of a road traffic emission inventory with high spatial–temporal resolution in the world’s most densely populated region—Macau. Environmental monitoring and assessment, 191, 1-22. Li, X.-B., D.-S. Wang, Q.-C. Lu, Z.-R. Peng, and Z.-Y. Wang, 2018b: Investigating vertical distribution patterns of lower tropospheric PM2. 5 using unmanned aerial vehicle measurements. Atmospheric Environment, 173, 62-71. Li, Z., H. Zhang, C.-Y. Wen, A.-S. Yang, and Y.-H. Juan, 2020b: Effects of height-asymmetric street canyon configurations on outdoor air temperature and air quality. Building and Environment, 183, 107195. Li, Z., T. Shi, Y. Wu, H. Zhang, Y.-H. Juan, T. Ming, and N. Zhou, 2020c: Effect of traffic tidal flow on pollutant dispersion in various street canyons and corresponding mitigation strategies. Energy and Built Environment, 1, 242-253. Ling, H., S.-C. C. Lung, and U. Uhrner, 2020: Micro-scale particle simulation and traffic-related particle exposure assessment in an Asian residential community. Environmental Pollution, 266, 115046. Llaguno-Munitxa, M., E. Bou-Zeid, and M. Hultmark, 2017: The influence of building geometry on street canyon air flow: validation of large eddy simulations against wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 165, 115-130. Lu, H.-Y., Y.-L. Wu, J. K. Mutuku, and K.-H. Chang, 2019a: Various sources of PM2. 5 and their impact on the air quality in Tainan City, Taiwan. Aerosol and Air Quality Research, 19, 601-619. Lu, S.-J., D. Wang, Z. Wang, B. Li, Z.-R. Peng, X.-B. Li, and Y. Gao, 2019b: Investigating the role of meteorological factors in the vertical variation in PM2. 5 by unmanned aerial vehicle measurement. Aerosol and Air Quality Research, 19, 1493-1507. Lu, Y., and Coauthors, 2019c: Assessing the association between fine particulate matter (PM2. 5) constituents and cardiovascular diseases in a mega-city of Pakistan. Environmental Pollution, 252, 1412-1422. Lung, S.-C. C., W.-C. V. Wang, T.-Y. J. Wen, C.-H. Liu, and S.-C. Hu, 2020: A versatile low-cost sensing device for assessing PM2. 5 spatiotemporal variation and quantifying source contribution. Science of the Total Environment, 716, 137145. Meng, M.-R., S.-J. Cao, P. Kumar, X. Tang, and Z. Feng, 2021: Spatial distribution characteristics of PM2. 5 concentration around residential buildings in urban traffic-intensive areas: From the perspectives of health and safety. Safety Science, 141, 105318. Miao, Y., S. Liu, Y. Zheng, S. Wang, and Y. Li, 2014: Numerical study of traffic pollutant dispersion within different street canyon configurations. Advances in meteorology, 2014. Miyazaki, T., and S. Yamaoka, 1991: Meteorological factors causing high dust concentration. Energy and Buildings, 16, 691-698. Nakamura, Y., and T. R. Oke, 1988: Wind, temperature and stability conditions in an east-west oriented urban canyon. Atmospheric Environment (1967), 22, 2691-2700. Nelson, M., E. Pardyjak, M. Brown, and J. Klewicki, 2007: Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part II: Spectra, cospectra, and quadrant analyses. Journal of Applied Meteorology and Climatology, 46, 2055-2073. Niachou, K., I. Livada, and M. Santamouris, 2008: Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions. Part II: Airflow analysis. Building and environment, 43, 1393-1403. Oettl, D., 2008a: Documentation of the Lagrangian dispersion model GRAL (Graz Lagrangian Model) Version 6.8. Amt der Steiermaerkischen Landesregierung, FA17C Technische Umweltkontrolle. Oettl, D., 2008b: Modelling of primary PM10 concentrations for the city of Graz, Austria. Hrvatski meteorološki časopis, 43, 375-379. ——, 2015a: Evaluation of the revised Lagrangian particle model GRAL against wind-tunnel and field observations in the presence of obstacles. Boundary-Layer Meteorology, 155, 271-287. Oettl, D., 2015b: Quality assurance of the prognostic, microscale wind-field model GRAL 14.8 using wind-tunnel data provided by the German VDI guideline 3783-9. Journal of Wind Engineering and Industrial Aerodynamics, 142, 104-110. Oettl, D., and U. Uhrner, 2011: Development and evaluation of GRAL-C dispersion model, a hybrid Eulerian–Lagrangian approach capturing NO–NO2–O3 chemistry. Atmospheric Environment, 45, 839-847. Oettl, D., P. Sturm, R. Almbauer, S. i. Okamoto, and K. Horiuchi, 2003: Dispersion from road tunnel portals: comparison of two different modelling approaches. Atmospheric Environment, 37, 5165-5175. Ott, W. R., 1982: Concepts of human exposure to air pollution. Environment International, 7, 179-196. Öttl, D., S. Hausberger, M. Rexeis, and P.-J. Sturm, 2006: Simulation of traffic induced NOx-concentrations near the A 12 highway in Austria. Atmospheric Environment, 40, 6043-6052. Ouidir, M., and Coauthors, 2015: Estimation of exposure to atmospheric pollutants during pregnancy integrating space–time activity and indoor air levels: does it make a difference? Environment international, 84, 161-173. Padilla, C. M., W. Kihal-Talantikit, V. M. Vieira, and S. Deguen, 2016: City-specific spatiotemporal infant and neonatal mortality clusters: Links with socioeconomic and air pollution spatial patterns in France. International journal of environmental research and public health, 13, 624. Pavageau, M., and M. Schatzmann, 1999: Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmospheric Environment, 33, 3961-3971. Pirjola, L., and Coauthors, 2012: Spatial and temporal characterization of traffic emissions in urban microenvironments with a mobile laboratory. Atmospheric Environment, 63, 156-167. Pope Iii, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston, 2002: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287, 1132-1141. Romanov, A. A., B. A. Gusev, E. V. Leonenko, A. N. Tamarovskaya, A. S. Vasiliev, N. E. Zaytcev, and I. K. Philippov, 2020: Graz Lagrangian Model (GRAL) for Pollutants Tracking and Estimating Sources Partial Contributions to Atmospheric Pollution in Highly Urbanized Areas. Atmosphere, 11, 1375. Rood, A. S., 2014: Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmospheric Environment, 89, 707-720. Schatzmann, M., and B. Leitl, 2011: Issues with validation of urban flow and dispersion CFD models. Journal of Wind Engineering and Industrial Aerodynamics, 99, 169-186. Schindler, M., G. Caruso, and P. Picard, 2017: Equilibrium and first-best city with endogenous exposure to local air pollution from traffic. Regional Science and Urban Economics, 62, 12-23. Scungio, M., L. Stabile, V. Rizza, A. Pacitto, A. Russi, and G. Buonanno, 2018: Lung cancer risk assessment due to traffic-generated particles exposure in urban street canyons: A numerical modelling approach. Science of The Total Environment, 631, 1109-1116. Setton, E., J. D. Marshall, M. Brauer, K. R. Lundquist, P. Hystad, P. Keller, and D. Cloutier-Fisher, 2011: The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. Journal of exposure science environmental epidemiology, 21, 42-48. Sinharay, R., and Coauthors, 2018: Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. The Lancet, 391, 339-349. Soulhac, L., C. V. Nguyen, P. Volta, and P. Salizzoni, 2017: The model SIRANE for atmospheric urban pollutant dispersion. PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration. Atmospheric environment, 167, 377-388. Tsai, I.-C., C.-Y. Lee, S.-C. C. Lung, and C.-W. Su, 2021: Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality. Science of The Total Environment, 782, 146571. Vallero, D., 2014: Fundamentals of air pollution. Academic press. Vardoulakis, S., B. E. Fisher, K. Pericleous, and N. Gonzalez-Flesca, 2003: Modelling air quality in street canyons: a review. Atmospheric environment, 37, 155-182. Vautard, R., and Coauthors, 2009: Skill and uncertainty of a regional air quality model ensemble. Atmospheric Environment, 43, 4822-4832. Wang, W.-C. V., T.-H. Lin, C.-H. Liu, C.-W. Su, and S.-C. C. Lung, 2020: Fusion of Environmental Sensing on PM2. 5 and Deep Learning on Vehicle Detecting for Acquiring Roadside PM2. 5 Concentration Increments. Sensors, 20, 4679. Wu, C.-F., H.-I. Lin, C.-C. Ho, T.-H. Yang, C.-C. Chen, and C.-C. Chan, 2014: Modeling horizontal and vertical variation in intraurban exposure to PM2. 5 concentrations and compositions. Environmental research, 133, 96-102. Xiaomin, X., H. Zhen, and W. Jiasong, 2006: The impact of urban street layout on local atmospheric environment. Building and Environment, 41, 1352-1363. Xie, X., Z. Huang, J. Wang, and Z. Xie, 2005: The impact of solar radiation and street layout on pollutant dispersion in street canyon. Building and Environment, 40, 201-212. Yang, F., K. Zhong, Y. Chen, and Y. Kang, 2017: Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons. Environmental Science and Pollution Research, 24, 23620-23635. Zhu, Y., W. C. Hinds, S. Kim, S. Shen, and C. Sioutas, 2002: Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmospheric environment, 36, 4323-4335. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80034 | - |
| dc.description.abstract | 都市交通排放產生的細懸浮微粒 (PM2.5),因建築物型態受限於在街谷中,進而提高 PM2.5 之空間變異度。先前許多研究分析了都市中交通污染排放之擴散情況,但多受限於無法解析公尺尺度的建築物效應。本研究以新北市為研究地區,利用 Graz Lagrangian Model (GRAL) 街谷擴散模式,以 5 公尺的水平與垂直解析度對 PM2.5 進行模擬與驗證,以了解都市街谷內交通排放 PM2.5 所造成的三維濃度的不均勻度。 驗證 GRAL 之應用,利用街谷模式輸出之 PM2.5 增量濃度加上實測所得周界環境濃度與實驗觀測數據進行比較,對街谷模式進行三維的定量性能評估。模擬結果與觀測數據相比,得到相關係數為0.70±0.11,配對值分數偏差為-0.12±0.14,配對值絕對分數誤差為 0.25±0.07,多合乎驗證標準。不均勻度實驗模擬結果顯示,交通排放 PM2.5 在街谷內呈現顯著水平及垂直不均勻度。當風場為垂直建物排列之風向時,風速為 0.5 m/s 和風速為 2.0 m/s 之 PM2.5 濃度不均勻度差異大於三倍,高度 26 m 和 2 m 之 PM2.5 垂直不均勻度比值約為 1/4,且街谷內 PM2.5 濃度相較於風向平行建物排列之情況高出一倍。非對稱型街谷型態中,街谷中迎風側和背風側的濃度差異高達三倍。隨著建物高度比()的增加,不均勻度降低。在下降式街谷中,較高的濃度發生在迎風側,迎風側與背風側濃度比值介於 1.20 至 3.16。在上升式街谷中,根據街谷內氣流之改變,街道上的最高濃度會隨著風速的變化而從背風側轉變為迎風側,迎風側與背風側濃度比值介於 0.58 至 3.01。此外,馬路至巷弄之 PM2.5 差異,在巷口顯示出最高值,但馬路中和巷弄內之濃度隨高度遞減程度相似。 綜上結果表明,都市街谷污染物擴散程度取決於環境風速大小和建築物配置,使街谷內 PM2.5 存在高度空間(包含水平、垂直、迎風側背風側和馬路巷弄間)不均勻度分佈的特性。研究結果表示 GRAL 適用於都市街谷之應用,未來可廣泛應用於都市地區,針對局地污染物做短期和長期之模擬,為空氣污染控制或是空氣污染暴險之研究提供助力。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:22:17Z (GMT). No. of bitstreams: 1 U0001-1607202119432500.pdf: 68175150 bytes, checksum: 130c6fa2bd7b3e6acee8f643c750f82c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract v 表目錄 ix 圖目錄 xi 第一章 前言 1 第二章 研究方法與模擬實驗設計 7 2.1 模式驗證 7 2.1.1 研究地點與觀測點描述 7 2.1.2 街谷模式 8 2.1.3 模式驗證設定 10 2.1.4 模式結果性能評估標準 13 2.2 街谷污染物不均勻度之評估 14 2.2.1 環境風場 15 2.2.2 都市街谷配置 16 第三章 模式驗證與實驗結果 17 3.1 街谷模式驗證 17 3.1.1 觀測資料結果 17 3.1.2 街谷模式驗證 18 3.2 影響 PM2.5 不均勻度之重要因子 20 3.2.1 環境風場 20 3.2.2 都市街谷配置 22 .3.2.2.1 非對稱型街谷配置之影響 22 .3.2.2.2 馬路至巷弄配置之影響 26 第四章 討論 28 4.1 GRAL 驗證及應用限制 28 4.2 PM2.5 不均勻度擴散分析 32 4.3 研究之涵義以及未來應用 36 第五章 結論 38 參考資料 40 表 52 圖 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 交通污染 | zh_TW |
| dc.subject | 細懸浮微粒 | zh_TW |
| dc.subject | 空間不均勻度 | zh_TW |
| dc.subject | 街谷 | zh_TW |
| dc.subject | 街谷模式 | zh_TW |
| dc.subject | street-canyon model | en |
| dc.subject | traffic emission | en |
| dc.subject | PM2.5 | en |
| dc.subject | spatial inhomogeneity | en |
| dc.subject | street canyon | en |
| dc.title | 都市街谷細懸浮微粒之不均勻度—交通排放影響 | zh_TW |
| dc.title | Inhomogeneity of Urban PM2.5 in Street Canyons — Influence of Traffic Emissions | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 龍世俊(Shih-Chun Lung) | |
| dc.contributor.oralexamcommittee | 洪惠敏(Hsin-Tsai Liu),蕭大智(Chih-Yang Tseng),周崇光 | |
| dc.subject.keyword | 細懸浮微粒,空間不均勻度,街谷,街谷模式,交通污染, | zh_TW |
| dc.subject.keyword | PM2.5,spatial inhomogeneity,street canyon,street-canyon model,traffic emission, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202101524 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1607202119432500.pdf | 66.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
