請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79972完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳耀銘(Yaow-Ming Chen) | |
| dc.contributor.author | Ching-Chieh Yang | en |
| dc.contributor.author | 楊景傑 | zh_TW |
| dc.contributor.author | f03921025 | |
| dc.date.accessioned | 2022-11-23T09:19:07Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:19:07Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-23 | |
| dc.identifier.citation | [1] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, 'Single phase power factor correction: a survey,' in IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 749-755, May 2003. [2] L. Huber, Y. Jang, and M. M. Jovanovic, 'Performance Evaluation of Bridgeless PFC Boost Rectifiers,' in IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008. [3] L. Gu, X. Ruan, M. Xu, and K. Yao, 'Means of Eliminating Electrolytic Capacitor in AC/DC Power Supplies for LED Lightings,' in IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1399-1408, May 2009. [4] H. Wang, H. Wang, G. Zhu, and F. Blaabjerg, 'An Overview of Capacitive DC-Links-Topology Derivation and Scalability Analysis,' in IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1805-1829, Feb. 2020. [5] H. Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, 'A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems,' in IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2711-2726, June 2013. [6] H. Zhang, X. Li, B. Ge, and R. S. Balog, 'Capacitance, dc Voltage Utilizaton, and Current Stress: Comparison of Double-Line Frequency Ripple Power Decoupling for Single-Phase Systems,' in IEEE Industrial Electronics Magazine, vol. 11, no. 3, pp. 37-49, Sept. 2017. [7] H. Wang and F. Blaabjerg, 'Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview,' in IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3569-3578, Sept.-Oct. 2014. [8] S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, and P. Tavner, 'An Industry-Based Survey of Reliability in Power Electronic Converters,' in IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1441-1451, May-June 2011. [9] H. Wang, M. Liserre, and F. Blaabjerg, 'Toward Reliable Power Electronics: Challenges, Design Tools, and Opportunities,' in IEEE Industrial Electronics Magazine, vol. 7, no. 2, pp. 17-26, June 2013. [10] M. Vasiladiotis and A. Rufer, 'Dynamic Analysis and State Feedback Voltage Control of Single-Phase Active Rectifiers With DC-Link Resonant Filters,' in IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5620-5633, Oct. 2014. [11] Y. Tang and F. Blaabjerg, 'A Component-Minimized Single-Phase Active Power Decoupling Circuit With Reduced Current Stress to Semiconductor Switches,' in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 2905-2910, June 2015. [12] M. A. Vitorino, L. F. S. Alves, R. Wang, and M. B. de Rossiter Corrêa, 'Low-Frequency Power Decoupling in Single-Phase Applications: A Comprehensive Overview,' in IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2892-2912, April 2017. [13] S. Li, W. Qi, S. Tan, and S. Y. Hui, 'Enhanced Automatic-Power-Decoupling Control Method for Single-Phase AC-to-DC Converters,' in IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1816-1828, Feb. 2018. [14] S. Li, G. Zhu, S. Tan, and S. Y. Hui, 'Direct AC/DC Rectifier With Mitigated Low-Frequency Ripple Through Inductor-Current Waveform Control,' in IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4336-4348, Aug. 2015. [15] Y. Sun, Y. Liu, M. Su, W. Xiong, and J. Yang, 'Review of Active Power Decoupling Topologies in Single-Phase Systems,' in IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4778-4794, July 2016. [16] H. Sun, H. Wang, and W. Qi, 'Automatic Power Decoupling Controller of Dependent Power Decoupling Circuit for Enhanced Transient Performance,' in IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 1820-1831, March 2019. [17] H. Li, K. Zhang, H. Zhao, S. Fan and J. Xiong, 'Active Power Decoupling for High-Power Single-Phase PWM Rectifiers,' in IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1308-1319, March 2013. [18] Y. Tang and F. Blaabjerg, 'A Component-Minimized Single-Phase Active Power Decoupling Circuit With Reduced Current Stress to Semiconductor Switches,' in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 2905-2910, June 2015. [19] K. Yao, X. Ruan, X. Mao, and Z. Ye, 'Reducing Storage Capacitor of a DCM Boost PFC Converter,' in IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 151-160, Jan. 2012. [20] Y. Sun, Y. Liu, M. Su, X. Li, and J. Yang, 'Active Power Decoupling Method for Single-Phase Current-Source Rectifier With No Additional Active Switches,' in IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5644-5654, Aug. 2016. [21] V. Michal, 'Switched-Mode Active Decoupling Capacitor Allowing Volume Reduction of the High-Voltage DC Filters,' in IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6104-6111, Sept. 2016. [22] Y. Zhang, Y. Huang, P. Fang, X. Gao, Y. Yang, and J. Liu, 'Capacitors Voltage Ripple Complementary Control on Three-level Boost Fed Single-Phase VSI with Enhanced Power Decoupling Capability,' in IEEE Transactions on Power Electronics. [23] S. Qin, Y. Lei, C. Barth, W. Liu, and R. C. N. Pilawa-Podgurski, 'A High Power Density Series-Stacked Energy Buffer for Power Pulsation Decoupling in Single-Phase Converters,' in IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4905-4924, June 2017. [24] H. Li, S. Li and W. Xiao, 'Single-Phase LED Driver With Reduced Power Processing and Power Decoupling,' in IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4540-4548, April 2021. [25] G. Kafanas, M. R. Jeffrey, and X. Yuan, 'Variable structure control for active power decoupling topologies,' 8th IET International Conference on Power Electronics, Machines and Drives, 2016, pp. 1-6. [26] R. Wang et al., 'A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage,' in IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1430-1443, May 2011. [27] D. Neumayr, D. Bortis, and J. W. Kolar, 'Ultra-compact Power Pulsation Buffer for single-phase DC/AC converter systems,' IEEE 8th International Power Electronics and Motion Control Conference, 2016, pp. 2732-2741. [28] H. Wang, H. S. Chung, and W. Liu, 'Use of a Series Voltage Compensator for Reduction of the DC-Link Capacitance in a Capacitor-Supported System,' in IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1163-1175, March 2014. [29] S. Bayhan, 'Grid Voltage Sensorless Model Predictive Control for a Single-Phase T-Type Rectifier With an Active Power Decoupling Circuit,' in IEEE Access, vol. 9, pp. 19161-19174, 2021. [30] K. Chao, P. Cheng, and T. Shimizu, 'New control methods for single phase PWM regenerative rectifier with power decoupling function,' International Conference on Power Electronics and Drive Systems, 2009, pp. 1091-1096. [31] S. Sadrian and J. Wang, 'Buck-Plus-Unfolder as the Superior Active Power Decoupling Solution for 400 Vdc/kW-Level Applications,' in IEEE Open Journal of Power Electronics, vol. 1, pp. 260-272, 2020. [32] H. Yuan, S. Li, S. -C. Tan, and S. Y. Hui, 'Sensor Count Reduction for Single-Phase Converters with an Active Power Buffer Using Algebraic Observers,' in IEEE Transactions on Industrial Electronics. [33] M. Chen, Z. Ye, Y. Chen, and D. Xu, 'Zero-Voltage-Switching Single-Phase Full-Bridge Inverter With Active Power Decoupling,' in IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 571-582, Jan. 2021. [34] N. Deshmukh, S. Prabhakar, and S. Anand, 'Power Loss Reduction in Buck Converter Based Active Power Decoupling Circuit,' in IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4316-4325, April 2021. [35] M. Jang, M. Ciobotaru, and V. G. Agelidis, 'A Single-Stage Fuel Cell Energy System Based on a Buck--Boost Inverter with a Backup Energy Storage Unit,' in IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2825-2834, June 2012. [36] X. Zhang, X. Ruan, H. Kim, and C. K. Tse, 'Adaptive Active Capacitor Converter for Improving Stability of Cascaded DC Power Supply System,' in IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1807-1816, April 2013. [37] S. Lee, Y. Chen, Y. Chen and K. H. Liu, 'Development of the active capacitor for PFC converters,' IEEE Energy Conversion Congress and Exposition, 2014, pp. 1522-1527. [38] H. Watanabe, J. Itoh and Q. Roudier, 'Single-phase power decoupling technique utilizing Hybrid method with passive and active power decoupling,' IEEE International Power Electronics and Application Conference and Exposition, 2018, pp. 1-6. [39] C. Yang, Y. Chen, and Y. Chen, 'Active capacitor with ripple-based duty cycle modulation for AC-DC applications,' IEEE Applied Power Electronics Conference and Exposition, 2016, pp. 558-563. [40] Y. Yang, X. Ruan, L. Zhang, J. He, and Z. Ye, 'Feed-Forward Scheme for an Electrolytic Capacitor-Less AC/DC LED Driver to Reduce Output Current Ripple,' in IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5508-5517, Oct. 2014 [41] W. Cai, B. Liu, S. Duan, and L. Jiang, 'An Active Low-Frequency Ripple Control Method Based on the Virtual Capacitor Concept for BIPV Systems,' in IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1733-1745, April 2014. [42] Z. Guo, X. Ren, Y. Wu, Z. Zhang, and Q. Chen, 'A novel simplified variable on-time method for CRM boost PFC converter,' IEEE Applied Power Electronics Conference and Exposition, 2017, pp. 1778-1784. [43] B. Zhao, Ruiqing Ma, A. Abramovitz, and K. Smedley, 'Bridgeless buck-boost PFC rectifier with a bidirectional switch,' IEEE 8th International Power Electronics and Motion Control Conference, 2016, pp. 2747-2751. [44] P. R. Mohanty, A. K. Panda, and D. Das, 'An active PFC boost converter topology for power factor correction,' Annual IEEE India Conference, 2015, pp. 1-5. [45] R. Philip and C. Sreeja, 'Single phase PFC using Buck-Boost converter,' 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), 2014, pp. 1-5. [46] Xiangjun Zhang, Binze Wang, Hao Ding, and Dianguo Xu, 'Study of CCM Boost PFC based on Simulink,' Proceedings of The 7th International Power Electronics and Motion Control Conference, 2012, pp. 1756-1760. [47] D. D. Lu, H. H. Iu, and V. Pjevalica, 'A Single-Stage AC/DC Converter with High Power Factor, Regulated Bus Voltage and Output Voltage,' IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, 2007, pp. 1455-1460. [48] J. Lee, J. Kwon, E. Kim, W. Choi, and B. Kwon, 'Single-Stage Single-Switch PFC Flyback Converter Using a Synchronous Rectifier,' in IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1352-1365, March 2008. [49] Wang Wei, Liu Hongpeng, Jiang Shigong and Xu Dianguo, 'A novel bridgeless buck-boost PFC converter,' 2008 IEEE Power Electronics Specialists Conference, 2008, pp. 1304-1308. [50] Y. Li, F. C. Lee, Q. Li, X. Huang, and Z. Liu, 'A novel AC-to-DC adaptor with ultra-high power density and efficiency,' IEEE Applied Power Electronics Conference and Exposition, 2016, pp. 1853-1860. [51] Q. Hu and R. Zane, 'Minimizing Required Energy Storage in Off-Line LED Drivers Based on Series-Input Converter Modules,' in IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 2887-2895, Oct. 2011. [52] Jingquan Chen, D. Maksimovic, and R. W. Erickson, 'Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,' in IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 320-329, March 2006. [53] B. Singh, B. P. Singh, and S. Dwivedi, 'Performance Comparison of High Frequency Isolated AC-DC Converters for Power Quality Improvement at Input AC Mains,' 2006 International Conference on Power Electronic, Drives and Energy Systems, 2006, pp. 1-6. [54] N. P. Papanikolaou, E. C. Tatakis, and A. C. Kyritsis, 'Design of a PFC AC/DC flyback converter for low voltage applications,' 2005 European Conference on Power Electronics and Applications, 2005, pp. 10 pp.-P.10 [55] F. Wang, L. Li, Y. Zhong, and X. Shu, 'Flyback-Based Three-Port Topologies for Electrolytic Capacitor-Less LED Drivers,' in IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5818-5827, July 2017. [56] P. J. Villegas, J. Sebastian, M. Hernando, F. Nuno, and J. A. Martinez, 'Average current mode control of series-switching post-regulators used in power factor correctors,' in IEEE Transactions on Power Electronics, vol. 15, no. 5, pp. 813-819, Sept. 2000. [57] W. Choi and J. Yoo, 'A Bridgeless Single-Stage Half-Bridge AC/DC Converter,' in IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3884-3895, Dec. 2011. [58] Tsai-Fu Wu, Jin-Chyuan Hung, Sheng-Yu Tseng, and Yaow-Ming Chen, 'A single-stage fast regulator with PFC based on an asymmetrical half-bridge topology,' in IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 139-150, Feb. 2005. [59] S. Ki and D. D. Lu, 'Implementation of an Efficient Transformerless Single-Stage Single-Switch AC/DC Converter,' in IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4095-4105, Dec. 2010. [60] Y. Chen, Z. Zhong, and Y. Kang, 'Design and Implementation of a Transformerless Single-Stage Single-Switch Double-Buck Converter With Low DC-link Voltage, High Step-Down, and Constant Input Power Factor Features,' in IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6660-6671, Dec. 2014. [61] S. Ki and D. D. Lu, 'A High Step-Down Transformerless Single-Stage Single-Switch AC/DC Converter,' in IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 36-45, Jan. 2013. [62] J. M. Alonso, M. A. Dalla Costa, and C. Ordiz, 'Integrated Buck-Flyback Converter as a High-Power-Factor Off-Line Power Supply,' in IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1090-1100, March 2008. [63] Y. Tang, F. Blaabjerg, P. C. Loh, C. Jin and P. Wang, 'Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit,' in IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1855-1865, April 2015. [64] Xiaoliang Ma, Bingyuan Wang, Futian Zhao, Guojie Qu, Daqing Gao, and Zhongzu Zhou, 'A high power low ripple high dynamic performance DC power supply based on thyristor converter and active filter,' IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, 2002, pp. 1238-1242 vol.2. [65] S. Harb and R. S. Balog, 'Single-phase PWM rectifier with power decoupling ripple-port for double-line-frequency ripple cancellation,' Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, 2013, pp. 1025-1029. [66] H. Wang, H. Wang, and F. Blaabjerg, 'A Cost-Constrained Active Capacitor for a Single-Phase Inverter,' in IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 6746-6760, July 2020. [67] N. C. Brooks, S. Qin, and R. C. N. Pilawa-Podgurski, 'Design of an active power pulsation buffer using an equivalent series-resonant impedance model,' IEEE 18th Workshop on Control and Modeling for Power Electronics, Stanford, CA, 2017, pp. 1-7. [68] H. Wang, H. Wang, and M. Lu, 'Impedance characteristics modeling of a two-terminal active capacitor,' 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, 2017, pp. 1-7. [69] Z. Liao, D. J. Lohan, N. C. Brooks, J. T. Allison, and R. C. N. Pilawa-Podgurski, 'Multi-Objective Optimization of Series-Stacked Energy Decoupling Buffers in Single-Phase Converters,' IEEE 19th Workshop on Control and Modeling for Power Electronics, Padua, 2018, pp. 1-8. [70] H. Wang, Y. Liu, and H. Wang, 'On the Practical Design of a Two-Terminal Active Capacitor,' in IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 10006-10020, Oct. 2019. [71] Z. Liao, D. J. Lohan, N. C. Brooks, J. T. Allison, and R. C. N. Pilawa-Podgurski, 'A Systematic Design Methodology for Series-Stacked Energy Decoupling Buffers Based on Loss-Volume Pareto Optimization,' in IEEE Journal of Emerging and Selected Topics in Power Electronics. [72] N. C. Brooks, Z. Liao, and R. C. N. Pilawa-Podgurski, 'A Digital Implementation of PLL-Based Control for the Series-Stacked Buffer in Front-End PFC Rectifiers,' IEEE 19th Workshop on Control and Modeling for Power Electronics, Padua, 2018, pp. 1-7. [73] IRFI4019H-117P datasheet, Infineon Technologies,2006 [74] EPCOS 5μF Polypropylene Capacitor datasheet, TDK Electronics, 2014 [75] T Cores PC40T512331 datasheet, TDK Electronics, 2019 [76] OPA1611 datasheet, Texas Instrument Incorporated, 2014 [77] LTC6992 datasheet, Linear Technology/Analog Devices, 2019. [78] Si8239x datasheet, Silicon Labs, 2018. [79] UCC28180EVM-573 User's Guide, Texas Instrument Incorporated, 2013. [80] UCC28180 datasheet, Texas Instrument Incorporated, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79972 | - |
| dc.description.abstract | 本論文提出一種控制方式應用於主動式電容器。傳統的能源轉換器中,電容器通常使用電解質電容,受限於其壽命不長,容易造成整體電路的不穩定,而替代方案為積層電容卻有著體積大容值低等缺點,因此主動式電主動式電容器(Active capacitor)被提出來,是為了完全取代電解質電容所提出的含有主動式開關的電路架構,它能完全並聯於直流匯流排並且完全獨立運作,也不會影響到原本的電路操作,然而在已知的文獻中,主動式電容需要複雜的控制迴路,且包含電流迴路控制,而整體的控制複雜會使整體的電路體積增加,整體電路的能源密度不佳。 本論文所提出的控制方式為漣波抵銷控制(Ripple Cancellation Control),能用於多種不同的主動式電容器的電路架構,並且整體控制架構簡單,沒有電流控制迴路,不需要電流偵測電路,整體電路能量密度能大幅提升。本論文同時提出的新的分析方式與模組化分析,包括了電壓電流的應力分析、能量儲存能力評估、阻抗分析,透過以上分析內容能得出各個電路架構的優缺點,並且能得出等效的電容值。最後以模擬與實作驗證本論文提出的應用於主動式電容器的漣波抵消控制的功能,同時也驗證分析內容的正確性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:19:07Z (GMT). No. of bitstreams: 1 U0001-2207202121340800.pdf: 3195354 bytes, checksum: db9232141332f9fd42e20a380b5ed816 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Objective 4 1.3 Outline 5 Chapter 2 Review of AC-DC Converters 6 2.1 Power Factor Correction Converter 7 2.2 Review of Capacitance Reduction 10 2.2.1 Additional Energy Conversion 11 2.2.2 Active Power Decoupling Methods 12 2.2.3 Active Capacitors 14 Chapter 3 Active Capacitor with the Proposed Ripple Cancellation Control 18 3.1 Active Capacitor 19 3.2 Ripple Cancellation Control (RCC) 26 Chapter 4 Active Capacitor Analysis 30 4.1 Power Switch Stress 32 4.1.1 Buck Type 32 4.1.2 Boost Type 33 4.1.3 Buck-Boost type 35 4.2 The Energy Storage Capability 36 4.3 Impedance Analysis 41 Chapter 5 Simulation Results 58 5.1 Active Capacitor with RCC 59 5.1.1 The Boost Type Active Capacitor 59 5.1.2 The Buck-Boost Type Active Capacitor 60 5.1.3 The Buck Type Active Capacitor 61 5.2 Impedance Analysis 63 5.2.1 The Boost Type Active Capacitor 63 5.2.2 The Buck-Boost Type Active Capacitor 64 5.2.3 The Buck Type Active Capacitor 65 Chapter 6 Experimental Results 66 6.1 Hardware Implementation 66 6.1.1 Active Capacitor with RCC 66 6.1.1.1 Power Stage 67 A. Power MOSFET 67 B. Auxiliary Capacitor 68 C. Inductor 69 6.1.1.2 Control Stage 69 A. Band-pass Filter 69 B. Pulse Width Modulation 70 C. Driver Circuit 71 6.1.2 Application Circuits 73 6.1.2.1 The Spilt-Capacitors 73 6.1.2.2 PFC converter 74 6.2 Experiment Results 76 6.2.1 Split-Capacitors Test 77 6.2.2 Power Factor Correction Converter 78 Chapter 7 Conclusion and Future Research 81 7.1 Summary and Major Contributions 81 7.2 Suggestions for Future Research 83 REFERENCES 84 VITA 94 | |
| dc.language.iso | en | |
| dc.subject | 儲能能力 | zh_TW |
| dc.subject | 主動式電容器 | zh_TW |
| dc.subject | 電路壽命 | zh_TW |
| dc.subject | 漣波抵銷控制 | zh_TW |
| dc.subject | lifetime | en |
| dc.subject | energy storage capability | en |
| dc.subject | ripple cancellation control | en |
| dc.subject | Active capacitors | en |
| dc.title | 主動式電容器之漣波抵銷控制 | zh_TW |
| dc.title | Ripple Cancellation Control for Active Capacitors | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳德玉(Hsin-Tsai Liu),邱煌仁(Chih-Yang Tseng),陳偉倫,陳景然 | |
| dc.subject.keyword | 主動式電容器,電路壽命,漣波抵銷控制,儲能能力, | zh_TW |
| dc.subject.keyword | Active capacitors,lifetime,ripple cancellation control,energy storage capability, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202101674 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2207202121340800.pdf | 3.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
