Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7994
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧哲明,潘秀玲
dc.contributor.authorChun-Wei Chenen
dc.contributor.author陳俊瑋zh_TW
dc.date.accessioned2021-05-19T18:01:53Z-
dc.date.available2025-06-30
dc.date.available2021-05-19T18:01:53Z-
dc.date.copyright2015-09-24
dc.date.issued2015
dc.date.submitted2015-07-01
dc.identifier.citationAcquaviva J, Smith DL, Sang J, Friedland JC, He S, Sequeira M, et al. (2012). Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Molecular cancer therapeutics 11(12): 2633-2643.
Agatsuma T, Ogawa H, Akasaka K, Asai A, Yamashita Y, Mizukami T, et al. (2002). Halohydrin and oxime derivatives of radicicol: synthesis and antitumor activities. Bioorganic medicinal chemistry 10(11): 3445-3454.
Ahearn IM, Haigis K, Bar-Sagi D, Philips MR (2012). Regulating the regulator: post-translational modification of RAS. Nature reviews. Molecular cell biology 13(1): 39-51.
Akerfelt M, Morimoto RI, Sistonen L (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nature reviews. Molecular cell biology 11(8): 545-555.
Alamgeer M, Ganju V, Watkins DN (2013). Novel therapeutic targets in non-small cell lung cancer. Current Opinion in Pharmacology 13(3): 394-401.
Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, et al. (2006). Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440(7087): 1013-1017.
Basto R, Gergely F, Draviam VM, Ohkura H, Liley K, Raff JW (2007). Hsp90 is required to localise cyclin B and Msps/ch-TOG to the mitotic spindle in Drosophila and humans. Journal of cell science 120(Pt 7): 1278-1287.
Bjorck E, Ek S, Landgren O, Jerkeman M, Ehinger M, Bjorkholm M, et al. (2005). High expression of cyclin B1 predicts a favorable outcome in patients with follicular lymphoma. Blood 105(7): 2908-2915.
Burdach S (2014). Molecular precision chemotherapy: overcoming resistance to targeted therapies? Clinical cancer research : an official journal of the American Association for Cancer Research 20(5): 1064-1066.
Burlison JA, Avila C, Vielhauer G, Lubbers DJ, Holzbeierlein J, Blagg BS (2008). Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines. The Journal of organic chemistry 73(6): 2130-2137.
Burrows F, Zhang H, Kamal A (2004). Hsp90 activation and cell cycle regulation. Cell cycle (Georgetown, Tex.) 3(12): 1530-1536.
Campiglio M, Locatelli A, Olgiati C, Normanno N, Somenzi G, Vigano L, et al. (2004). Inhibition of proliferation and induction of apoptosis in breast cancer cells by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 ('Iressa') is independent of EGFR expression level. Journal of cellular physiology 198(2): 259-268.
Castedo M, Perfettini JL, Roumier T, Kroemer G (2002). Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell death and differentiation 9(12): 1287-1293.
Castellano I, Sapino A, Arisio R, Viale G, Bussolati G, Bandelloni R, et al. (2008). Fluorescent in situ hybridization as a screening test for HER2 amplification in G2 and G3 breast cancers of lobular and ductal histotype and metastases. Oncology reports 19(5): 1271-1275.
Chan BA, Coward JIG (2013). Chemotherapy advances in small-cell lung cancer. Journal of Thoracic Disease: S565-S578.
Chan BA, Hughes BGM (2014). Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Translational Lung Cancer Research 4(1): 36-54.
Chen DJ, Nirodi CS (2007). The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clinical cancer research : an official journal of the American Association for Cancer Research 13(22 Pt 1): 6555-6560.
Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, et al. (2005). The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorganic medicinal chemistry letters 15(14): 3338-3343.
Chi DC, Brogan F, Turenne I, Zelonis S, Schwartz L, Saif MW (2012). Gemcitabine-induced pulmonary toxicity. Anticancer research 32(9): 4147-4149.
Chougule A, Prabhash K, Noronha V, Joshi A, Thavamani A, Chandrani P, et al. (2013). Frequency of <italic>EGFR</italic> Mutations in 907 Lung Adenocarcioma Patients of Indian Ethnicity. PloS one 8(10): e76164.
Collins LG, H. C, P. R, Enck RE (2007). Lung Cancer: Diagnosis and Management. American Family Physician 75.
Diaz R, Nguewa PA, Parrondo R, Perez-Stable C, Manrique I, Redrado M, et al. (2010). Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model. BMC cancer 10: 188.
Dickson MA, Okuno SH, Keohan ML, Maki RG, D'Adamo DR, Akhurst TJ, et al. (2013). Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 24(1): 252-257.
Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G, et al. (2007). Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Current medicinal chemistry 14(27): 2839-2847.
Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology 35(4): 495-516.
Engelman JA (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8): 550-562.
Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, et al. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature medicine 14(12): 1351-1356.
Erlichman C (2009). Tanespimycin: the opportunities and challenges of targeting heat shock protein 90. Expert Opinion on Investigational Drugs 18(6): 861-868.
Evans CG, Chang L, Gestwicki JE (2010). Heat shock protein 70 (hsp70) as an emerging drug target. Journal of medicinal chemistry 53(12): 4585-4602.
Gainor JF, Varghese AM, Ou SH, Kabraji S, Awad MM, Katayama R, et al. (2013). ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 19(15): 4273-4281.
Garrido C, Schmitt E, Candé C, Vahsen N, Parcellier A, Kroemer G (2003). HSP27 and HSP70: Potentially Oncogenic Apoptosis Inhibitors. Cell cycle (Georgetown, Tex.) 2(6): 578-583.
Gaspar N, Sharp SY, Eccles SA, Gowan S, Popov S, Jones C, et al. (2010). Mechanistic evaluation of the novel HSP90 inhibitor NVP-AUY922 in adult and pediatric glioblastoma. Molecular cancer therapeutics 9(5): 1219-1233.
Gopalakrishnan R, Matta H, Chaudhary PM (2013). A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated Primary Effusion Lymphoma and blocks vFLIP K13-induced NF-κB. Clinical cancer research : an official journal of the American Association for Cancer Research 19(18): 5016-5026.
Guo W, Reigan P, Siegel D, Zirrolli J, Gustafson D, Ross D (2006). The bioreduction of a series of benzoquinone ansamycins by NAD(P)H:quinone oxidoreductase 1 to more potent heat shock protein 90 inhibitors, the hydroquinone ansamycins. Molecular pharmacology 70(4): 1194-1203.
Hadchity E, Aloy MT, Paulin C, Armandy E, Watkin E, Rousson R, et al. (2009). Heat shock protein 27 as a new therapeutic target for radiation sensitization of head and neck squamous cell carcinoma. Molecular therapy : the journal of the American Society of Gene Therapy 17(8): 1387-1394.
Hanahan D, Weinberg RA (2000). The Hallmarks of Cancer. Cell 100(1): 57-70.
Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, et al. (2004). VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature medicine 10(3): 262-267.
Hatzivassiliou G, Haling JR, Chen H, Song K, Price S, Heald R, et al. (2013). Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501(7466): 232-236.
Hinnebusch Alan G (2012). Translational Homeostasis via eIF4E and 4E-BP1. Molecular Cell 46(6): 717-719.
Hollander MC, Blumenthal GM, Dennis PA (2011). PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11(4): 289-301.
Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R (2013a). Targeting the molecular chaperone heat shock protein 90 (HSP90): Lessons learned and future directions. Cancer Treatment Reviews 39(4): 375-387.
Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R (2013b). Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treat Rev 39(4): 375-387.
Huang T, Chen S, Han H, Li H, Huang Z, Zhang J, et al. (2014). Expression of Hsp90alpha and cyclin B1 were related to prognosis of esophageal squamous cell carcinoma and keratin pearl formation. International journal of clinical and experimental pathology 7(4): 1544-1552.
Ischia J, So AI (2013). The role of heat shock proteins in bladder cancer. Nature reviews. Urology 10(7): 386-395.
Janin YL (2010). ATPase inhibitors of heat-shock protein 90, second season. Drug Discov Today 15(9-10): 342-353.
Janjigian YY, Azzoli CG, Krug LM, Pereira LK, Rizvi NA, Pietanza MC, et al. (2011). Phase I/II trial of cetuximab and erlotinib in patients with lung adenocarcinoma and acquired resistance to erlotinib. Clinical cancer research : an official journal of the American Association for Cancer Research 17(8): 2521-2527.
Janne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, et al. (2013). Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. The Lancet. Oncology 14(1): 38-47.
Jhaveri K, Modi S (2012). HSP90 inhibitors for cancer therapy and overcoming drug resistance. Advances in pharmacology (San Diego, Calif.) 65: 471-517.
Khalil AA, Kabapy NF, Deraz SF, Smith C (2011). Heat shock proteins in oncology: Diagnostic biomarkers or therapeutic targets? Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1816(2): 89-104.
Knowles MA, Hurst CD (2015). Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 15(1): 25-41.
Kuhn DJ, Zeger EL, Orlowski RZ (2006). Proteasome inhibitors and modulators of heat shock protein function. Update on Cancer Therapeutics 1(2): 91-116.
Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. The New England journal of medicine 363(18): 1693-1703.
Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, et al. (2012). The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. European journal of haematology 88(5): 406-415.
Lubin JH, Boice JD, Jr., Edling C, Hornung RW, Howe GR, Kunz E, et al. (1995). Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. Journal of the National Cancer Institute 87(11): 817-827.
Mao C, Qiu LX, Liao RY, Du FB, Ding H, Yang WC, et al. (2010). KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung cancer (Amsterdam, Netherlands) 69(3): 272-278.
Marcu MG, Schulte TW, Neckers L (2000). Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. Journal of the National Cancer Institute 92(3): 242-248.
Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T, et al. (2010). A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer chemotherapy and pharmacology 66(3): 535-545.
Meng J, Dai B, Fang B, Bekele BN, Bornmann WG, Sun D, et al. (2010). Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PloS one 5(11): e14124.
Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, et al. (2012). Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. The Lancet. Oncology 13(5): 528-538.
Millson SH, Chua CS, Roe SM, Polier S, Solovieva S, Pearl LH, et al. (2011). Features of the Streptomyces hygroscopicus HtpG reveal how partial geldanamycin resistance can arise with mutation to the ATP binding pocket of a eukaryotic Hsp90. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25(11): 3828-3837.
Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, et al. (2011). HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clinical cancer research : an official journal of the American Association for Cancer Research 17(15): 5132-5139.
Mok TS, Wu Y-L, Thongprasert S, Yang C-H, Chu D-T, Saijo N, et al. (2009). Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine 361(10): 947-957.
Munje C, Shervington L, Khan Z, Shervington A (2014). Could Upregulated Hsp70 Protein Compensate for the Hsp90-Silence-Induced Cell Death in Glioma Cells? International Journal of Brain Science 2014: 9.
Neckers L, Workman P (2012). Hsp90 molecular chaperone inhibitors: are we there yet? Clinical cancer research : an official journal of the American Association for Cancer Research 18(1): 64-76.
Pearl LH, Prodromou C (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual review of biochemistry 75: 271-294.
Pearl LH, Prodromou C, Workman P (2008). The Hsp90 molecular chaperone: an open and shut case for treatment. The Biochemical journal 410(3): 439-453.
Pedersen KS, Kim GP, Foster NR, Wang-Gillam A, Erlichman C, McWilliams RR (2015). Phase II trial of gemcitabine and tanespimycin (17AAG) in metastatic pancreatic cancer: a Mayo Clinic Phase II Consortium study. Investigational new drugs.
Peters MG, Vidal Mdel C, Gimenez L, Mauro L, Armanasco E, Cresta C, et al. (2004). Prognostic value of cell cycle regulator molecules in surgically resected stage I and II breast cancer. Oncology reports 12(5): 1143-1150.
Pines J (2011). Cubism and the cell cycle: the many faces of the APC/C. Nature reviews. Molecular cell biology 12(7): 427-438.
Piper PW, Millson SH (2011). Mechanisms of Resistance to Hsp90 Inhibitor Drugs: A Complex Mosaic Emerges. Pharmaceuticals 4(11): 1400-1422.
Pocaly M, Lagarde V, Etienne G, Ribeil JA, Claverol S, Bonneu M, et al. (2007). Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia 21(1): 93-101.
Polivka Jr J, Janku F (2014). Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacology Therapeutics 142(2): 164-175.
Powers MV, Clarke PA, Workman P (2008). Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer cell 14(3): 250-262.
Qian Y, Qiu M, Wu Q, Tian Y, Zhang Y, Gu N, et al. (2014). Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci. Rep. 4.
Richardson PG, Chanan-Khan AA, Lonial S, Krishnan AY, Carroll MP, Alsina M, et al. (2011). Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. British journal of haematology 153(6): 729-740.
Riely GJ, Johnson ML, Medina C, Rizvi NA, Miller VA, Kris MG, et al. (2011). A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 6(8): 1435-1437.
Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1999). Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. Journal of medicinal chemistry 42(2): 260-266.
Ronnen EA, Kondagunta GV, Ishill N, Sweeney SM, Deluca JK, Schwartz L, et al. (2006). A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Investigational new drugs 24(6): 543-546.
Rossi A, Maione P, Palazzolo G, Sacco PC, Ferrara ML, Falanga M, et al. (2008). New Targeted Therapies and Small-Cell Lung Cancer. Clinical Lung Cancer 9(5): 271-279.
Samuni Y, Ishii H, Hyodo F, Samuni U, Krishna MC, Goldstein S, et al. (2010). Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free radical biology medicine 48(11): 1559-1563.
Sauvageot CM, Weatherbee JL, Kesari S, Winters SE, Barnes J, Dellagatta J, et al. (2009). Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro-oncology 11(2): 109-121.
Schmid K, Oehl N, Wrba F, Pirker R, Pirker C, Filipits M (2009). EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clinical cancer research : an official journal of the American Association for Cancer Research 15(14): 4554-4560.
Schulz R, Streller F, Scheel AH, Ruschoff J, Reinert MC, Dobbelstein M, et al. (2014). HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell death disease 5: e980.
Senju M, Sueoka N, Sato A, Iwanaga K, Sakao Y, Tomimitsu S, et al. (2006). Hsp90 inhibitors cause G2/M arrest associated with the reduction of Cdc25C and Cdc2 in lung cancer cell lines. J Cancer Res Clin Oncol 132(3): 150-158.
Sequist LV, von Pawel J, Garmey EG, Akerley WL, Brugger W, Ferrari D, et al. (2011). Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29(24): 3307-3315.
Shen G, Blagg BS (2005). Radester, a novel inhibitor of the Hsp90 protein folding machinery. Organic letters 7(11): 2157-2160.
Shi J, Van de Water R, Hong K, Lamer RB, Weichert KW, Sandoval CM, et al. (2012). EC144 is a potent inhibitor of the heat shock protein 90. Journal of medicinal chemistry 55(17): 7786-7795.
Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, et al. (2012). Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 18(18): 4973-4985.
Shukuya T, Takahashi T, Tamiya A, Ono A, Igawa S, Tsuya A, et al. (2009). Evaluation of the safety and compliance of 3-week cycles of vinorelbine on days 1 and 8 and cisplatin on day 1 as adjuvant chemotherapy in Japanese patients with completely resected pathological stage IB to IIIA non-small cell lung cancer: a retrospective study. Japanese journal of clinical oncology 39(3): 158-162.
Sidera K, Patsavoudi E (2014). HSP90 inhibitors: current development and potential in cancer therapy. Recent patents on anti-cancer drug discovery 9(1): 1-20.
Siegel R, Ma J, Zou Z, Jemal A (2014). Cancer statistics, 2014. CA: a cancer journal for clinicians 64(1): 9-29.
Soga S, Shiotsu Y, Akinaga S, Sharma SV (2003). Development of radicicol analogues. Current cancer drug targets 3(5): 359-369.
Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, et al. (2009). Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. The Journal of clinical investigation 119(6): 1727-1740.
Stenderup K, Rosada C, Gavillet B, Vuagniaux G, Dam TN (2014). Debio 0932, a new oral Hsp90 inhibitor, alleviates psoriasis in a xenograft transplantation model. Acta dermato-venereologica 94(6): 672-676.
Suda K, Tomizawa K, Mitsudomi T (2010). Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer metastasis reviews 29(1): 49-60.
Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, et al. (2015). Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proceedings of the National Academy of Sciences.
Taldone T, Gozman A, Maharaj R, Chiosis G (2008). Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8(4): 370-374.
Trepel J, Mollapour M, Giaccone G, Neckers L (2010). Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8): 537-549.
Ueno H, Kiyosawa K, Kaniwa N (2007). Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy? British Journal of Cancer 97(2): 145-151.
Vanneman M, Dranoff G (2012). Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4): 237-251.
W D. Travis TVC, B. Corrin Y. Shimosato, and E. Brambilla (1999). Histological typing of lung and pleural tumours. World Health Organization.
Wayne N, Bolon DN (2007). Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers. The Journal of biological chemistry 282(48): 35386-35395.
Whitesell L, Lindquist SL (2005). HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10): 761-772.
Workman P, Burrows F, Neckers L, Rosen N (2007a). Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Annals of the New York Academy of Sciences 1113: 202-216.
Workman P, Powers MV (2007b). Chaperoning cell death: a critical dual role for Hsp90 in small-cell lung cancer. Nat Chem Biol 3(8): 455-457.
Yu XM, Shen G, Neckers L, Blake H, Holzbeierlein J, Cronk B, et al. (2005). Hsp90 inhibitors identified from a library of novobiocin analogues. Journal of the American Chemical Society 127(37): 12778-12779.
Zarogoulidis K, Zarogoulidis P, Darwiche K, Boutsikou E, Machairiotis N, Tsakiridis K, et al. (2013). Treatment of non-small cell lung cancer (NSCLC). Journal of Thoracic Disease: S389-S396.
Zhang H, Neely L, Lundgren K, Yang YC, Lough R, Timple N, et al. (2010). BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance. International journal of cancer. Journal international du cancer 126(5): 1226-1234.
Zhang L, Fok JJL, Mirabella F, Aronson LI, Fryer RA, Workman P, et al. (2013). Hsp70 inhibition induces myeloma cell death via the intracellular accumulation of immunoglobulin and the generation of proteotoxic stress. Cancer Letters 339(1): 49-59.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7994-
dc.description.abstract肺癌不論在全球或是台灣,都位居癌症致死率之首。由於病灶早期不易察覺,確診時常為病灶晚期或已有轉移情形,需要依靠全身性化療藥物或標靶藥物治療。目前的標靶藥物雖然有效提升病患的存活率,但部分病患使用單一機轉標靶藥物後會有抗藥性的產生,使得新機轉藥物的研發是急迫且必須的。.
  Heat shock protein 90 (HSP90) 是一個molecular chaperone,藉由幫助其受質蛋白 (client proteins) 正確的折疊與增強蛋白質間作用力,使其正常的運作。非小細胞肺癌 (non-small cell lung caner, NSCLC) 中許多的致癌性蛋白是HSP90的受質蛋白,也因此,針對肺癌發展HSP90的抑制劑被認為是有潛力的發展方向。
  MPT0G256是一個全合成的HSP90抑制劑,對於肺腺癌 (adenocarcinoma) 在體外與體內都展現出有效抑制癌細胞生長的作用。首先藉由一系列的篩選,發現MPT0G256能有效抑制人類非小細胞肺癌細胞的增生與毒殺細胞,且能有效抑制HSP90的活性。此外,MPT0G256能藉由降低多種致癌性受質蛋白的表現,抑制多條細胞存活相關的訊息路徑,導致非小細胞肺癌細胞難以存活。而MPT0G256也會導致細胞週期停滯與細胞凋亡。
  接著我們探討併用MPT0G256與其他機轉藥物,如傳統化療藥物gemcitabine於細胞體外的作用。發現MPT0G256併用gemcitabine能協同性地抑制細胞生長,且增強HSP90受質蛋白降解與細胞凋亡情形,同時也測得併用藥物會造成細胞週期的影響。
  接著探討MPT0G256併用gemcitabine於小鼠異體移植實驗的作用。發現單獨使用MPT0G256或gemcitabine都能有效抑制非小細胞肺腺癌的腫瘤生長,併用後呈現出更佳的抑制作用,且能有效降解體內腫瘤組織HSP90受質蛋白表現。
  綜合以上結果,我們認為新合成的HSP90抑制劑MPT0G256具備新藥研發的潛力,且合併gemcitabine治療策略於非小細胞肺癌治療是一個有潛力的發展方向。
zh_TW
dc.description.abstractLung cancer is the leading cause of cancer death worldwide. Although targeted therapies have led to remarkable improvements in response and survival, some patients will develop acquired drug resistance resulting in disease relapse. Therefore, new drugs with novel mechanisms of anti-cancer therapies are urgently needed to be discovered.
  Heat shock protein 90 (HSP90) is involved in protein folding and functions as a chaperone for numerous client proteins, many of which are important in non-small cell lung cancer (NSCLC) pathogenesis. MPT0G256 is a novel, fully synthesized HSP90 inhibitor with potent in vitro and in vivo anticancer activity against lung adenocarcinoma.
  MPT0G256, a novel synthetic HSP90 inhibitor, had shown the best antiproliferative activity and cytotoxicity against human lung adenocarcinoma cells, and it also showed prominent inhibitory effect on HSP90 activity. Moreover, MPT0G256 induced degradation of multiple HSP90 client proteins and thus blocked several cancer survival pathways. In addition, MPT0G256 induced cell cycle arrest and apoptosis in NSCLC cells.
  We next combined MPT0G256 with gemcitabine in NSCLC cells, and evaluated the drug combinational effect in vitro. Combination of MPT0G256 with both drugs resulted in synergistic growth inhibition, further enhancement of HSP90 client proteins degradation and cell apoptosis over either of the monotherapies in NSCLC cells. Cell cycle analysis after the combined treatment was also performed.
  Then we evaluated the drug combinational effect in vivo. The combined treatment of MPT0G256 and gemcitabine resulted in more effective tumor growth delay and degradation of HSP90 client proteins than either of monotherapies in NSCLC xenograft models.
  Together, our results showed that MPT0G256 has great potential as a new drug candidate for targeted therapy or a new strategy in combination with gemcitabine for NSCLC treatment.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:01:53Z (GMT). No. of bitstreams: 1
ntu-104-R02443007-1.pdf: 5426952 bytes, checksum: 2e5dfb83c36fc435a06f935f85657b4d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書…………………………………………………I
致謝………………………………………………………...……II
縮寫表…………………………………………………………..IV
中文摘要…………………………………………………………1
英文摘要…………………………………………………………2
第一章 研究動機與目的………………………………………..4
第二章 文獻回顧………………………………………………..5
第三章 實驗材料與方法………………………………………46
第一節 實驗材料……………………………………………46
第二節 實驗方法……………………………………………48
第四章 實驗結果………………………………………………54
第五章 討論……………………………………………………63
第六章 結論與展望……………………………………………69
參考文獻………………………………………………………..96
dc.language.isozh-TW
dc.title探討新合成HSP90抑制劑MPT0G256誘導細胞凋亡與合併gemcitabine呈現協同作用於人類非小細胞肺癌之體外及體內作用機轉zh_TW
dc.titleMPT0G256, a novel synthetic HSP90 inhibitor, induces cell apoptosis and displays synergistic anti-cancer activity with gemcitabine in human lung adenocarcinoma in vitro and in vivo.en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏茂雄,黃德富,楊春茂
dc.subject.keywordHSP90抑制劑,非小細胞肺癌,zh_TW
dc.subject.keywordHSP90 inhibitor,non-small cell lung cancer,en
dc.relation.page107
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-07-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
dc.date.embargo-lift2025-06-30-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf5.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved