Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫珍理(Chen-li Sun)
dc.contributor.authorChe-Wei Kuoen
dc.contributor.author郭哲瑋zh_TW
dc.date.accessioned2022-11-23T09:16:45Z-
dc.date.available2021-08-10
dc.date.available2022-11-23T09:16:45Z-
dc.date.copyright2021-08-10
dc.date.issued2021
dc.date.submitted2021-08-02
dc.identifier.citation[1] M. Pais, D. Tilton, L. Chow, and E. Mahefkey, 'High-heat-flux, low-superheat evaporative spray cooling,' in 27th Aerospace Sciences Meeting, Reno, NV, U.S.A., January 9-12 1989, p. 241, (10.5772/21076). [2] J. Yang, L. Chow, and M. Pais, 'Nucleate boiling heat transfer in spray cooling,' Journal of Heat Transfer, vol. 118, no. 3, pp. 668-671, 1996 (10.1115/1.2822684). [3] M. Visaria and I. Mudawar, 'Application of two-phase spray cooling for thermal management of electronic devices,' IEEE Transactions on Components and Packaging Technologies, vol. 32, no. 4, pp. 784-793, 2009 (10.1109/tcapt.2008.2010405). [4] T. A. Shedd, 'Next generation spray cooling: high heat flux management in compact spaces,' Heat Transfer Engineering, vol. 28, no. 2, pp. 87-92, 2007 (10.1115/1.4004012). [5] J.-X. Wang, Y.-Z. Li, H.-S. Zhang, S.-N. Wang, Y.-F. Mao, Y.-N. Zhang, and Y.-H. Liang, 'Investigation of a spray cooling system with two nozzles for space application,' Applied Thermal Engineering, vol. 89, pp. 115-124, 2015 (10.1016/j.ap-plthermaleng.2015.05.082). [6] K. M. Kelly, J. S. Nelson, G. P. Lask, R. G. Geronemus, and L. J. Bernstein, 'Cryo-gen spray cooling in combination with nonablative laser treatment of facial rhytides,' Archives of Dermatology, vol. 135, no. 6, pp. 691-694, 1999 (10.1115/1.4006802). [7] O. T. Laseinde and M. D. Ramere, 'Efficiency improvement in polycrystalline solar panel using thermal control water spraying cooling,' Procedia Computer Science,59 vol. 180, pp. 239-248, 2021 (10.1016/j.procs.2021.01.161). [8] S. V. Ravikumar, J. M. Jha, S. S. Mohapatra, S. K. Pal, and S. Chakraborty, 'Influence of ultrafast cooling on microstructure and mechanical properties of steel,' Steel Research International, vol. 84, no. 11, pp. 1157-1170, 2013 (10.1002/srin.201200346). [9] J. Kim, 'Spray cooling heat transfer: The state of the art,' International Journal of Heat and Fluid Flow, vol. 28, no. 4, pp. 753-767, 2007 (10.1016/j.ijheatfluidflow.2006.09.003). [10] S. V. R. Bandaru, W. Villanueva, S. Thakre, and S. Bechta, 'Multi-nozzle spray cooling of a reactor pressure vessel steel plate for the application of ex-vessel cooling,' Nuclear Engineering and Design, vol. 375, p. 111101, 2021 (10.1016/j.nuceng-des.2021.111101). [11] J. L. Xie, Y. B. Tan, T. N. Wong, F. Duan, K. C. Toh, K. F. Choo, P. K. Chan, and Y. S. Chua, 'Multi-nozzle array spray cooling for large area high power devices in a closed loop system,' International Journal of Heat and Mass Transfer, vol. 78, pp. 1177-1186, 2014 (10.1016/j.ijheatmasstransfer.2014.07.067). [12] S. Tsang, Z.-H. Wu, C.-H. Lin, and C.-l. Sun, 'On the evaporative spray cooling with a self-rewetting fluid: Chasing the heat,' Applied Thermal Engineering, vol. 132, pp. 196-208, 2018 (10.1016/j.applthermaleng.2017.12.084). [13] S. Tsang and C.-l. Sun, 'Utilizing the inverse Marangoni convection to facilitate extremely low-flow-rate intermittent spray cooling for large-area systems,' Applied Thermal Engineering, vol. 166, p. 114725, 2020 (10.1016/j.applthermaleng.2019.114725). [14] M. R. O. Panão and A. L. N. Moreira, 'Intermittent spray cooling: A new technology for controlling surface temperature,' International Journal of Heat and Fluid Flow, vol. 30, no. 1, pp. 117-130, 2009 (10.1016/j.ijheatfluidflow.2008.10.005). [15] M. R. O. Panão, A. M. Correia, and A. L. N. Moreira, 'High-power electronics thermal management with intermittent multijet sprays,' Applied Thermal Engineering, vol. 37, pp. 293-301, 2012 (10.1016/j.applthermaleng.2011.11.031). [16] X. Zhao, B. Zhang, X. Xi, and Z. Yin, 'Analysis and prediction of single-phase and two-phase cooling characteristics of intermittent sprays,' International Journal of Heat and Mass Transfer, vol. 133, pp. 619-630, 2019 (10.1016/j.ijheatmasstrans-fer.2018.12.146). [17] S. Somasundaram and A. A. O. Tay, 'Comparative study of intermittent spray cool-ing in single and two phase regimes,' International Journal of Thermal Sciences, vol. 74, pp. 174-182, 2013 (10.1016/j.ijthermalsci.2013.06.008). [18] L. Lin, R. Ponnappan, K. Yerkes, and B. Hager, 'Large area spray cooling,' in 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 4-8 2004, p. 1340, (10.2514/6.2004-1340). [19] B. Glassman, S. Kuravi, J. Du, Y.-r. Lin, G. Zhao, and L. Chow, 'A fluid management system for a multiple nozzle array spray cooler,' in 37th AIAA Thermophysics Conference, Portland, Oregon, June 28-July 01 2004, p. 2574, (10.2514/6.2004-612574). [20] Z. B. Yan, F. Duan, T. N. Wong, K. C. Toh, K. F. Choo, P. K. Chan, Y. S. Chua, and L. W. Lee, 'Large area impingement spray cooling from multiple normal and inclined spray nozzles,' Heat and Mass Transfer, vol. 49, no. 7, pp. 985-990, 2013 (10.1007/s00231-013-1131-1). [21] S. V. R. Bandaru, W. Villanueva, A. Konovalenko, A. Komlev, S. Thakre, P. Sköld, and S. Bechta, 'Upward-facing multi-nozzle spray cooling experiments for external cooling of reactor pressure vessels,' International Journal of Heat and Mass Transfer, vol. 163, p. 120516, 2020 (10.1016/j.ijheatmasstransfer.2020.120516). [22] J. Pearson, 'On convection cells induced by surface tension,' Journal of Fluid Mechanics, vol. 4, no. 5, pp. 489-500, 1958 (10.1017/S0022112058000616). [23] J. Brzoska, F. Brochard-Wyart, and F. Rondelez, 'Motions of droplets on hydrophobic model surfaces induced by thermal gradients,' Langmuir, vol. 9, no. 8, pp. 2220-2224, 1993 (10.1021/la00032a052). [24] N. Ono, T. Kaneko, S. Nishiguchi, and M. Shoji, 'Measurement of temperature dependence of surface tension of alcohol aqueous solutions by maximum bubble pressure method,' Journal of Thermal Science and Technology, vol. 4, no. 2, pp. 284-293, 2009 (10.1299/jtst.4.284). [25] R. Vochten and G. Petre, 'Study of the heat of reversible adsorption at the air solution interface. II. Experimental determination of the heat of reversible adsorption of some alcohols,' Journal of Colloid and Interface Science, vol. 42, no. 2, pp. 320-327, 1973 (10.1016/0021-9797(73)90295-6). [26] W.-W. Zhang, Y.-Y. Li, W.-J. Long, and W.-L. Cheng, 'Enhancement mechanism of high alcohol surfactant on spray cooling: Experimental study,' International Journal of Heat and Mass Transfer, vol. 126, pp. 363-376, 2018 (10.1016/j.ijheatmasstrans-fer.2018.05.130). [27] C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, 'National instruments Lab-VIEW: a programming environment for laboratory automation and measurement,' JALA: Journal of the Association for Laboratory Automation, vol. 12, no. 1, pp. 17-24, 2007 (10.1016/j.jala.2006.07.012). [28] S. H. Chan, D. T. Võ, and T. Q. Nguyen, 'Subpixel motion estimation without interpolation,' in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Sheraton Dallas Hotel, Dallas, Texas, USA, March 14-19 2010, pp. 722-725, (10.1109/ICASSP.2010.5495054).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79920-
dc.description.abstract本研究將自再濕潤流體應用於多種模式之間歇性噴霧冷卻方法,對一大面積的加熱區域進行散熱,在不同種噴霧模式間,固定工作流體的耗損量,改變其使用之噴嘴數量、噴嘴的擺放位置,及不同噴頭間噴灑時序的配置,並使用高低兩種噴霧頻率進行實驗。在固定加熱功率下,比較使用水與自再濕潤流體之溫度表現以及平均熱傳率。在實驗中使用紅外線熱像儀紀錄加熱基板表面的溫度變化,藉此計算平均溫度與溫度振幅,並同時觀察噴霧後所形成之液膜的燒乾情形。 由實驗結果可知,使用自再濕潤流體時,不論噴霧是以多噴頭同步噴灑或是不同噴頭依不同時序噴灑,只要噴霧後能在加熱表面上形成被完整液膜,都可明顯觀察到逆Marangoni對流由冷端持續不斷地往熱端填補液體,延緩液膜燒乾的現象,進而造成比水要低的平均溫度與溫度振幅。然而,若噴霧期間高溫區域所受到的噴灑量過少,可能會導致液膜過薄或不完整,造成逆Marangoni對流效應不足以及時補充強烈的液膜蒸發所造成的液體消耗,進而導致溫度表現與水相差無幾。另一方面,不論使用水或自再濕潤流體,在噴頭數量固定的條件下,將一次的噴灑量分配到不同噴頭並進行時序上的配置,相較於所有噴頭同步噴灑,往往可造成較低的平均溫度與溫度振幅,及較高的平均熱傳率,此優勢在使用水時更為明顯。這是由於相同噴霧頻率與流體損耗率的條件下,多噴嘴同步噴灑,瞬時的噴霧動量雖較大,但噴霧時間較短,造成短時間內噴灑過多的流體,使部分流體來不及升溫就被排出形成浪費。此外,同步噴灑會對應到較長的噴霧間隔時間,造成表面溫度與熱傳容易因液膜燒乾而惡化,而使用水時,液膜的燒乾更早發生,導致溫度上升幅度更大,熱傳惡化更為嚴重。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:16:45Z (GMT). No. of bitstreams: 1
U0001-2807202111070600.pdf: 14874756 bytes, checksum: 4be7c2b6b6fa4ef6456bec344aaf014f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 .............i Abstract .............v 目錄 .............vii 符號索引 .............x 表目錄 .............xiii 圖目錄 .............xiv 第一章 導論 .............1 1.1 前言 .............1 1.2 文獻回顧 .............2 1.2.1 間歇性噴霧冷卻............. 2 1.2.2 多噴嘴連續噴霧冷卻............. 3 1.2.3 逆Marangoni對流............. 4 1.3 研究目的 .............6 第二章 實驗架構與不確定性分析............. 7 2.1 實驗架構 .............7 2.1.1 噴霧系統 .............7 2.1.2 加熱系統 .............9 2.1.3 資料擷取系統............. 10 2.2 實驗流程 .............11 2.3 實驗數據分析程序 .............. 12 2.3.1 平均熱傳率 .............12 2.3.2 基板表面溫度分析............. 14 2.3.3 平均溫度 .............16 2.3.4 溫度振幅 .............16 2.3.5 液膜流場的速度分布 .............17 2.4 不確定性分析 .............17 2.4.1 溶液濃度配置 .............19 2.4.2 金屬加熱塊溫度量測 .............19 2.4.3 金屬基板表面溫度 .............20 2.4.4 噴霧高度 .............20 2.4.5 噴霧時間與間隔時間 .............20 2.4.6 噴霧流體消耗量............. 21 2.4.7 金屬加熱塊尺寸............. 21 2.4.8 基板尺寸 .............21 2.4.9 像素邊長所對應之實際長度 .............21 2.4.10 平均熱傳率 .............22 2.4.11 基板溫度與中心區域溫度 .............24 2.4.12 基板平均溫度與中心區域平均溫度 .............24 2.4.13 溫度振幅 .............25 2.4.14 液膜流場的速度分布 .............26 第三章 實驗結果與討論 .............27 3.1 水與自再濕潤流體之差異 27 3.1.1 低噴霧頻率 .............27 3.1.2 高噴霧頻率 .............36 3.2 平均熱傳率 .............42 3.2.1 低噴霧頻率 .............42 3.2.2 高噴霧頻率 .............44 3.3 基板表面溫度 .............45 3.3.1 平均溫度 .............45 3.3.2 溫度振幅 .............49 3.4 熱影像之流場可視化分析............. 53 第四章 結論與建議 .............55 4.1 結論 .............55 4.2 建議 .............57 參考文獻 .............58
dc.language.isozh-TW
dc.subject多噴頭zh_TW
dc.subject逆Marangoni對流zh_TW
dc.subject逐熱zh_TW
dc.subject自再濕潤流體zh_TW
dc.subject間歇型噴霧冷卻zh_TW
dc.subject大面積噴霧冷卻zh_TW
dc.subject噴霧模式zh_TW
dc.subjectinverse Marangonien
dc.subjectspray modeen
dc.subjectmultiple nozzlesen
dc.subjectintermittent spray coolingen
dc.subjectself-rewetting fluiden
dc.subjectheat chasingen
dc.title應用自再濕潤流體於多種間歇性噴霧模式之冷卻系統之效益分析zh_TW
dc.titleOn the performance of using a self-rewetting fluid in intermittent spray cooling with multiple nozzles under various spray modesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明蒼(Hsin-Tsai Liu),黃智永(Chih-Yang Tseng)
dc.subject.keyword逆Marangoni對流,逐熱,自再濕潤流體,間歇型噴霧冷卻,大面積噴霧冷卻,噴霧模式,多噴頭,zh_TW
dc.subject.keywordinverse Marangoni,heat chasing,self-rewetting fluid,intermittent spray cooling,multiple nozzles,spray mode,en
dc.relation.page117
dc.identifier.doi10.6342/NTU202101838
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2807202111070600.pdf14.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved